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Abstract

We introduce the prototype of a digital timing simulation and power analysis tool for integrated circuits that supports
the involution delay model (Függer et al., IEEE TCAD 2019). Unlike the pure and inertial delay models typically used
in digital timing analysis tools, the involution model faithfully captures short pulse propagation and related effects. Our
Involution Tool facilitates experimental accuracy evaluation of variants of involution models, by comparing their timing
and power predictions to those from SPICE and standard timing analysis tools. The tool is easily customizable w.r.t.
instances of the involution model and circuits, and supports automatic test case generation and parameter sweeping.

We demonstrate the capabilities of the Involution Tool by providing timing and power analysis results for three
different circuits, namely, an inverter tree, the clock tree of an open-source processor, and a combinational circuit that
involves multi-input NAND gates. Our evaluation uses two different technologies (15 nm and 65 nm CMOS), and three
different variants of involution channels (Exp, Hill and SumExp-channels). It turns out that the timing and power
predictions of all involution models are significantly better than the predictions obtained by standard digital simulations
for the inverter tree and the clock tree, with the SumExp-channel channel clearly outperforming the others. For the
NAND circuit, the performance of any involution model is generally comparable but not significantly better than that of
standard models, however, which reveals some shortcomings of the existing involution channels for modeling multi-input
gates.

Keywords: Digital timing simulation, design tools, delay models, pulse degradation, glitch propagation.

1. Introduction

Modern digital circuit design relies heavily on state-of-
the-art timing analysis tools like Synopsys Prime Time,
Mentor Questa, Cadence NC-Sim or Synopsis VCS. These
tools can accurately predict the signal propagation through
a given circuit design, and thus identify setup/hold viola-
tions and other timing-related problems in synchronous
designs, for example. Moreover, they facilitate a reason-
ably accurate power analysis at early design stages [1, 2].

The “golden standard” for circuit analyses are fully-
fledged analog simulations, e.g., by using SPICE [3], which
are based on detailed physical models of all elements in
a digital standard-cell library. Since the execution times
of analog simulations on even moderately complex cir-
cuits are prohibitively excessive, however, digital timing
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analysis tools use discrete-valued (typically binary) circuit
models augmented by continuous-time delays. The latter
is determined by elaborate timing prediction models like
CCSM [4] and ECSM [5], which characterize the delay of a
cell via (typically manufacturer-supplied) technology data
and massive analog simulations. The gate and wire de-
lay estimates obtained via CCSM or ECSM are then used
for parametrizing pure or inertial delay channels [6] (e.g.,
in VHDL Vital or Verilog timing libraries). The result-
ing executable HDL simulation models are finally used in
subsequent simulation and timing analysis runs.

While pure delay channels with constant delay for-
ward pulses without changing their width, inertial delay
channels provide simple means to model pulse suppres-
sion. More accurate results can be expected from dynamic
timing analysis techniques, which consider more elaborate
signal trace-related effects. One example is pulse degrada-
tion, meaning that short input pulses usually get shorter
when processed by a gate. The arguably simplest way
to capture such dynamic effects are single-history channel
models, which allow gate delays (modeled via the intercon-
necting channels) to vary depending on the previous tran-
sition in a trace. More specifically, single-history channels
are characterized by a delay function δ that maps a tran-
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Figure 1: Principle functionality of a single-history delay model.
Based on the input-to-previous output transition time T , the delay
δ(T ) is determined.

sition occurring at the channel input at time t to its cor-
responding output transition at time t+ δ(T ), where T is
the previous-output-to-input delay (cp. Fig. 1). If two suc-
ceeding input transitions would, according to δ(T ), occur
at the output in reversed order, they are said to cancel each
other (shown in Fig. 2) and are removed. Note that single-
history channels allow different rising and falling transition
delays, specified by the delay functions δ↑ and δ↓, respec-
tively.

The first proper single-history channel model was the
Degradation Delay Model (DDM) introduced by Bellido-
Dı́az et al. [7, 8]. However, it was proven by Függer
et al. [9] that all existing delay models, including DDM,
are not faithful: For the simple short-pulse filtration (SPF)
problem, it turned out that the bounded resp. unbounded
version is solvable in physical implementations but not
within existing circuit models, or vice versa. In [10, 11], the
authors therefore introduced the involution model (IM ),
which is the only delay model known so far that does not
share this problem. Its distinguishing property is that its
delay functions form involutions, i.e., are self-inverse, in
the sense that −δ↓(−δ↑(T )) = T and −δ↑(−δ↓(T )) = T .
Different variants of the IM differ in the particular in-
stance of the delay function they use. In [12], the authors
utilized both SPICE simulations and real measurements
to demonstrate that even the most basic involution model
(based on an Exp-channel, see Section 2.1) predicts the
behavior of a real circuit, namely, an inverter chain, rea-
sonably accurate.

Main contributions. In order to be able to apply the in-
volution model to custom signal traces, we developed the
Involution Tool (invTool) that is described in this paper.1

It allows to include and run any IM in state-of-the-art digi-
tal circuit simulation tools (e.g. Questa), and is embedded
in a comprehensive test infrastructure that allows to gener-
ate user-controlled random input vectors, to run different
analog/digital simulations, and to generate various reports
on the results. Thanks to its ability to process the out-
put of other simulation tools, in particular, HSPICE - or
Spectre-generated traces, it easily allows to compare tim-
ing and power predictions of the involution model vs. other
models. As switching from standard to IM simulation is

1The invTool can be found on GitHub: https://github.com/

oehlinscher/InvolutionTool

in(t)

t
out(t)

t

Tδ (T )

Figure 2: The input pulse is so short that the transitions at the
output appear in reverse order (dashed lines), i.e., cancel. Note that
here T < 0 and δ(T ) < 0.

essentially achieved by loading a different library, existing
infrastructure, such as test scripts and input vectors, can
be reused without modification.

In more detail:

(i) We provide an overview of the features and some de-
tails of the implementation of the invTool, which
facilitates digital timing simulation and power anal-
ysis of circuits composed of arbitrary Boolean func-
tions connected via involution channels. We also de-
scribe the three variants of involution channels cur-
rently supported by our tool, namely, Exp-channels
based on simple exponential switching waveforms,
Hill-channels based on Hill functions that more closely
match real switching waveforms, and SumExp-channels
that were identified as a promising alternative thanks
to the results of the earlier PATMOS’19 version [13]
of this paper.

(ii) We demonstrate the utility of the invTool by con-
ducting a timing and power analysis of three example
circuits: an inverter tree, the clock tree of an open-
source processor from [14], and a sample circuit that
involves multi-input NAND gates, synthesized in two
different technologies: 65 nm and 15 nm. It turns out
that the timing and power predictions of all our in-
volution models are significantly better than the pre-
dictions obtained by standard digital simulations for
the inverter tree and the clock tree, albeit the Hill-
channels surprisingly perform worse than the Exp-
channels for short pulses. This observation inspired
the definition of the SumExp-channel, which consid-
erably outperforms the former two. For the NAND
circuit, however, the predictions for any involution
model turn out to be comparable but not signifi-
cantly better than the ones of the standard models,
sometimes even worse.

Overall, our experiments show that the IM is a viable
approach for an accurate performance and power analy-
sis of a circuit design. However, they also reveal some
potential for improving the current model. In particular,
we conclude that single-input single-output delay channels
are not adequate for accurately modeling the behavior of
multi-input gates.

Paper organization. In Section 2, we describe those fea-
tures of the involution model that are instrumental for the
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Figure 3: Simple analog channel model (upper part) with a sample
execution (bottom part) taken from [10]. At a transition on ud (blue)
the transitions waveforms are immediately switched (green).

invTool. Section 3 is devoted to an overview of how the
IM is integrated into digital simulation tools. The archi-
tecture/implementation and the features provided by the
invTool are described in Section 4, the experimental setup
and the results obtained for our sample circuits are pre-
sented in Section 5. Finally, the paper closes with some
conclusions in Section 6.

2. Involution Model

We briefly summarize the most relevant properties of
the involution model in Section 2.1, compare the utilized
switching waveforms in Section 2.2, and explain the gen-
eral principle of circuit simulations in this model in Sec-
tion 2.3. The interested reader is referred to [11] for addi-
tional details.

2.1. Involution channels

When introducing the involution model in [10, 11],
Függer et al. have shown that its self-inverse delay func-
tions arise naturally in a (generalized) standard analog
model that consists of a pure delay component, a slew-
rate limiter with generalized switching waveforms, and an
ideal comparator, as shown in Fig. 3. First, the incoming,
binary-valued input ui is delayed by a pure delay Tp, which
is necessary to assure causal channels, i.e., δ↑/↓(0) > 0.
For every transition on ud, the generalized slew rate lim-
iter immediately switches to the corresponding waveform
(f↓ for a falling and f↑ for a rising transition) in a way
that the value at ur, representing the analog output volt-
age, does not jump. Finally, the comparator generates the
output uo by discretizing the value of this waveform w.r.t.
the threshold voltage Vth.

To calculate the delay function δ↓(T ), as detailed in
[10], one has to determine the value of ur as the falling
transition on ud arrives and the time it takes from there
onwards to return to Vth. For this purpose, we compute
the delay of a perfectly idle channel δ↑∞ = limT→∞ δ↑(T )

and δ↓∞ = limT→∞ δ↓(T ) from a transition on ui to reach-
ing Vth on ur as

δ↑∞ = Tp + f−1↑ (Vth) and δ↓∞ = Tp + f−1↓ (Vth). (1)

For a time difference of T between the last transition
on u0 and the current one on ud, the value of ur can now
be expressed as f↑(T + δ↑∞). To finally get δ↓(T ), the time
it takes for f↓ to reach ur has to be subtracted from δ↓∞,
i.e.,

δ↑(T ) = δ↑∞ − f−1↑ (f↓(T + δ↓∞)) and

δ↓(T ) = δ↓∞ − f−1↓ (f↑(T + δ↑∞)).
(2)

If the slew rate limiter is implemented as a first-order
RC low pass filter, for example, we obtain what is called
an Exp-channel : The switching waveforms are f↓(t) = 1−
f↑(t) = e−t/τ here, with τ being the RC time constant
that determines its steepness. Inserting these functions
and their inverses into Eq. (2) and Eq. (1), we obtain

δ↑(T ) = Tp − τ ln(1− Vth) + τ ln(1− e−(T+Tp−τ ln(Vth))/τ )

δ↓(T ) = Tp − τ ln(Vth) + τ ln(1− e−(T+Tp−τ ln(1−Vth))/τ ).

(3)

Recall that Tp > 0 is required to ensure causality of
the Exp-channel, i.e., δ↑(0) > 0, δ↓(0) > 0.

The invTool also supports involution channels based
on the well-known Hill function [15], which matches real
switching waveforms better than the exponential function;
they are called Hill-channels in this paper. Their switching
waveforms are

f↓(t) = 1− f↑(t) =
tn

kn + tn
, (4)

the parameter k basically determines when the threshold
is reached and thus primarily depends on δ↑∞ resp. δ↓∞,
Tp and Vth. The parameter n (the Hill coefficient) can
be chosen freely to adjust the actual switching speed. By
using

δ↑∞ = Tp + k↑
n↑

√
1− Vth
Vth

and

δ↓∞ = Tp + k↓
n↓

√
Vth

1− Vth

(5)

and again inserting these functions and their inverses into
Eq. (2), we obtain

δ↑(T ) = δ↑∞ − k↑
(

k↓

T + δ↓∞

)n↓
n↑

and

δ↓(T ) = δ↓∞ − k↓
(

k↑

T + δ↑∞

)n↑
n↓
.

(6)
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Another variant of an involution channel can be ob-
tained by using the slew-rate limiter to model the electri-
cal behavior of interconnecting wires. This is quite reason-
able, since nowadays wire delays are more dominant than
gate delays. A popular model here is the Π model [16],
which can be reduced to a second-order system consisting
of two RC low pass filters in series. Calculating the switch-
ing waveform of such a system yields a linear combination
of two exponential functions, with different2 positive time
constants τ1, τ2:

f↑(t) = 1− x1e−
t
τ1 − (1− x1)e−

t
τ2 and

f↓(t) = 1− f↑(t) = x1e
− t
τ1 + (1− x1)e−

t
τ2

(7)

Eq. (7) has more degrees of freedom than Exp and
Hill-channels, which makes fitting to real switching wave-
forms easier: τ1 and τ2 are used to parameterize the speed
of each exponential function, whereas x1 is used to con-
trol the ratio between the two exponential functions. Like
for all other involution channels, Tp can be chosen freely.
Since Eq. (1) imposes constraints on the switching wave-
form, however, we effectively lose one degree of freedom:
In particular, it is possible to compute x1 out of the other
parameters such that the constraints for Eq. (1) are ful-
filled. Compared to the other two channel types, empir-
ically parametrizing the SumExp-channel is a lot more
challenging, as choosing unsuitable values for the time con-
stants quickly leads to unreasonable waveforms, for exam-
ple ones that go above 1 respectively below 0.

Therefore, we augmented Eq. (7) by means of an addi-
tional time scaling factor c that allows to stretch or com-
press the waveform. The additional degree of freedom
due to c compensates for the loss caused by fulfilling the
constraints for Eq. (1). This is particularly beneficial for
empirical parametrization, as it is possible to first define
the general shape of the waveform (using x1, τ1 and τ2)
and subsequently use c to cross Vth at the intended point
in time. The corresponding involution channel is called
SumExp-channel in this paper:

f↑(t) = 1− x1e−c
t
τ1 − (1− x1)e−c

t
τ2 and

f↓(t) = 1− f↑(t) = x1e
−c tτ1 + (1− x1)e−c

t
τ2 .

(8)

Note that, for each parameter set, i.e., for each gate’s
characteristic δ∞ (see Section 3 for details), the scaling
factor c has to be computed individually. Since there is no
closed-form solution for c, we employ the Newton-Raphson
method for this purpose. Note that, since there is no closed
form for the delay function in Eq. (2) either, the invTool

must calculate the actual delay values during simulation
numerically as well.

2Actually, a SumExp-channel degenerates to an Exp-channel
when τ1 = τ2.

0 δ∞−TP
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Figure 4: Sample switching waveforms for the utilized IM channels
(only one direction shown). Recall that the SumExp-channel pro-
vides more degrees of freedom than the other ones.

2.2. Channel Parametrization

Sample switching waveforms of the utilized IM chan-
nels are shown in Fig. 4; we only depict one switching
waveform (f↑) for better readability. Our channels differ
not only in the shape of the corresponding waveforms, but
also in the effort for empirical characterization, which will
be sketched below. Note that the problem of how to sys-
tematically determine the parameters of, say, a SumExp-
channel in order to match the delay function of a given
gate in a given technology, which is already difficult for
the simple DDM model [17, 18], is outside the scope of
this paper.

The first complication, which we neglected on purpose
so far for simplicity, is that in general not only δ↑∞ 6= δ↓∞
but also f↑(t) 6= 1−f↓(t). Consequently, rising and falling
switching waveforms must be characterized separately.

The first and foremost property that has to be guaran-
teed here is that the switching waveform hits Vth exactly
at time δ↑∞ − Tp resp. δ↓∞ − Tp. Then, by varying the pa-
rameters, the waveform is tuned such that the shape of
the resulting delay function matches the desired one more
closely (see Fig. 5 for some examples). Note that the Exp-
channel does not provide sufficiently many parameters to
allows this: By fixing δ↑∞, δ↓∞ and Tp (which is identical for
both), the time constant τ and thus the shape of the wave-
forms and, consequently, the shape of the delay functions
is fully determined according to

τ↓ = −δ
↓
∞ − Tp
ln(Vth)

τ↑ = − δ↑∞ − Tp
ln(1− Vth)

.

(9)

Similarly, for the Hill-channel, the parameters k↓ and
k↑ can be computed as

k↓ = (δ↓∞ − Tp) ·
(

Vth
1− Vth

) 1
n↓

k↑ = (δ↑∞ − Tp) ·
(

1− Vth
Vth

) 1
n↑
.

(10)
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In contrast to the Exp-channel, however, Hill-channels
have an additional degree of freedom: The parameters n↑
and n↓ can be freely chosen, whereat higher values result
in steeper switching waveforms. Note that only their ratio
is relevant for the resulting delay functions, as revealed by
Eq. (6).

The most flexible IM channel is the SumExp-channel
given in Eq. (8), which is parametized via x1, τ1, τ2 and
c. Similar to the Hill-channel, the corresponding delay
functions only depend on the ratio A = τ2/τ1, whereat
we assume without loss of generality that A > 1. De-
pending on the choice for A, the value of x1 then deter-
mines the shape of the waveform. As pointed out, these
choices are very delicate, because inappropriate values lead
to over/undershooting. Waveforms resembling real signals
(that look similar to Hill functions, i.e., start with a deriva-
tive of zero, getting steeper, and finally flat again, like the
purple example in Fig. 4) are achieved for x1 = 1/(1−A),
as a short calculation reveals. For our assumption A > 1,
we end up with x1 < 0 and thus 1 − x1 > 1, i.e., with
a difference of two exponentials. Unfortunately, however,
such traces did not lead to satisfactory fittings of the delay
functions.

Consequently, we had to treat x1 as a freely adjustable
parameter as well. Good results w.r.t. matching the de-
sired delay functions have eventually been obtained for
x1 ∈ (0, 1), which leads to 1 − x1 ∈ (0, 1) and thus to a
sum of exponentials again. Note carefully, however, the
corresponding switching waveforms looks very unrealistic
(see the orange curve in Fig. 4). However, a nice feature of
such waveforms is the ability to easily read-off suitable pa-
rameter values from the desired shape: A determines the
ratio between the steepness at beginning and end of the
curve, while (1−)x1 defines the approximate value where
the transition from the part dominated by τ1 to the one
dominated by τ2 occurs. Finally, by using δ↑∞ resp. δ↓∞,
the appropriate value of c can be determined numerically,
as no closed-form expression exists.

2.3. Simulations

Viewed at the level of digital signals, the behavior of an
involution channel is defined by the channel simulation Al-
gorithm 1, which maps channel input signal s (with event
list Input) to channel output signal fC(s) (with event list
Output). Event lists hold the transitions (t, s) of a sig-
nal, where t is the occurrence time and s ∈ {0, 1} the
signal value after the transition. Signals contain an initial
transition at time −∞, potentially followed by transitions
with increasing non-negative times and alternating values.
Since output signal transitions of an involution channel
may cancel each other, the simulation algorithm also main-
tains an internal event list Pending: An output transition
is only fixed, i.e., moved from Pending to Output, when it
cannot be canceled later on.

When being implemented in a digital simulation tool
(in our case Questa), Algorithm 1 can be simplified dra-
matically, since transitions in the wrong temporal order

Algorithm 1 Channel algorithm, up to time τ .

1: Pending← [ ]; Output← [ ]
2: (−∞, x−∞)← initial event in Input
3: add (−∞, x−∞) to Output
4: Prev← (−∞, x−∞)
5: for (t, x) in Input with 0 ≤ t ≤ τ , ascending in time t do
6: (t′, x′)← Prev
7: if x = 1 then δ ← δ↑(t− t′) else δ ← δ↓(t− t′) endif
8: Prev← (t+ δ, x)
9: if t+ δ ≤ t′ then

10: remove (t′, x′) from Pending
11: else
12: if exists move (t′, x′) from Pending to Output
13: add (t+ δ, x) to Pending
14: end if
15: end for
16: if exists (t, x) in Pending with t ≤ τ , add it to Output
17: return Output

are dropped automatically. Therefore, it suffices to calcu-
late δ(T ) and delay the input transition by exactly that
amount, leaving it to Questa to cancel wrongly ordered
transitions. Note that we did not verify this convenient
property for alternative simulation suites.

3. Incorporating IM in Questa in Practice

One of the main reasons for developing the invTool

was our desire to perform circuit simulations using the IM
without the need to install and utilize some non-standard
software tool. For that reason, we used VHDL Vital as our
guidance for the development of the invTool. As a result,
changing between our IM implementation and the former
is achieved simply by switching libraries, which facilitates
code and test setup re-using.

Consequently, our solution not only has the same struc-
ture as VHDL Vital, but also responds to the same vari-
ables and is also written in VHDL. Simulations in the
invTool are completely controlled by Questa, which makes
it possible to use all its features without restrictions: Based
on the next input transition time at the channel input, the
algorithm determines T and the resulting δ(T ), and adds
the transition to the channel’s output. This is done sepa-
rately for each channel, as their parameters can differ.

For simulations using the invTool, one hence needs ex-
actly the same input files as for any standard post-layout
simulation: the circuit, a testbench, and the timing char-
acteristics stored in .sdf files. The latter contain the static
delay of each gate (δ↑∞ and δ↓∞) in the circuit and the in-
terconnects in between.

While VHDL Vital uses essentially pure/inertial delays
with a priori given fixed delay values, the channels used
for the IM need to be parametrized to evaluate the delay
functions δ↑ and δ↓. In this paper, we rely on the educated
guesses and empirical fits sketched in Section 2.2 for all
those parameters that are not fully determined by the de-
lay characteristics in the .sdf files, namely, the pure delay

5



TP δ∞
0

Vth

1

time [ps]

va
lu

e

Exp Hill SumExp

(a) switching waveforms

0 2 4 6 8
0

0.4

0.8

1.2

1.6

2nd median

T [ps]

δ
[p

s]

δ Exp Hill SumExp

(b) delay function

Figure 5: Fitting results for an inverter (INV X1) using Exp-channel,
Hill-channel and SumExp-channel. The latter has a very artificial
shape of the switching waveforms, which however achieves an almost
perfect match of the experimentally determined delay function of a
real gate.

Tp for all our channels, the values for n↑ and n↓ for Hill-
channels, and (the ratio of) τ1 and τ2 and x1 for SumExp-
channels. Note that the parameter sweeping capabilities
of the invTool also allow to experimentally determine the
impact of a parameter like Tp, as we demonstrate in Sec-
tion 5.

Fig. 5 shows a typical fitting result for a specific value
of Tp. Note that some delay functions are so close together
that they appear as a single line in the figure. Clearly, the
SumExp-channel achieves the best results, followed by the
Exp and Hill-channel. While the Exp-channel is fully de-
termined by Tp and δ↑∞ resp. δ↓∞ (cp. Section 2.2), the
Hill-channel has two free parameters (n↑ and n↓) that can
be adjusted: By varying their ratio (remember that this
is the only important parameter for the delay function),
the delay functions δ↑(T ) and δ↓(T ) that are the same for
n↑/n↓ = 1 can be made different, as shown for n↑/n↓ = 1.5
by opaque blue lines in Fig. 5b. Unfortunately, tuning

the ratio typically increases the matching for one direc-
tion while decreasing it for the other. For NAND gates,
we even observed such effects for SumExp-channels. One
important avenue of future research is hence definitely a
systematic approach for characterizing the parameters of
a channel model in order to match the delay function of a
given real gate.

Baseline delay models. Besides checking our results against
fully fledged analog simulation results, we also compare
them to state-of-the-art digital delay models. Depending
on the used gate library, either VHDL Vital [19, Chap-
ter 9] or the Verilog delay model [20, Chapter 14] is ap-
plied. Both implementations offer the possibility to use
pure and inertial delay channels.

• Verilog uses two parameters (rejection: pulse r and
error: pulse e) to control the behavior of the delay
model. If both are set to 0, pulses are never rejected
and hence a pure delay model is configured. If both
parameters are set to 100, all pulses with a width
smaller than δ∞ are rejected. In the simulations per-
formed in Section 5, we used solely the inertial delay
implementation of Verilog for comparison.

• In Vital, the type of delay model is configured al-
ready in the library, and cannot be overridden via
command line parameters. It offers a simple iner-
tial (VitalInertial) and pure delay (VitalTransport)
model. Note carefully, however, that the default set-
ting in the libraries we used for simulation was On-
Detect, a mode which outputs “unknown” (’X’) val-
ues in the case of a glitch (the parameters of Verilog
allow the user to configure a similar behavior). To
ensure a fair comparison with the IM, this needs to
be unset.

Note that we verified our channel simulation framework
by also modeling pure delay channels and comparing the
results to the ones achieved by using VHDL Vital and
Verilog pure delay models. Since no difference could be
observed, we can reasonably assume that our involution
channel implementations work properly.

Another crucial task for making the invTool useful in
practice is to provide a well-populated set of available basic
gates, which consist of Boolean functions interconnected
by IM channels. In order to incorporate a new gate, it
suffices to model the Boolean functionality in VHDL and
to connect inputs and outputs via suitable IM channels.
While single-input single-output gates are easy to han-
dle, things get slightly more complicated for multi-input
gates, as there are different possible locations for placing
the (single-input single-output) IM channels: As they can
be placed either at the output of a gate or at its input(s),
which may result in different timing behaviors of the over-
all gate, this sometimes needs careful consideration.
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4. Involution Tool (invTool)

Our Involution Tool invTool, which was originally de-
veloped in [21], is a complete framework for the system-
atic and automatic evaluation of different delay prediction
methods for several power and timing metrics. It allows to
generate user-controlled random input vectors, to run dif-
ferent analog/digital simulations, to automatically sweep
the ranges of user-defined parameters, and to generate var-
ious reports on the results. In Section 4.1, we outline
the workflow of using the invTool, which also provides
a glimpse on its overall architecture and its core features.
In Section 4.2, we explain how the tool supports parameter
sweeping and multiple simulation runs.

4.1. Workflow of the invTool

The overall information flow in our tool is shown in
Fig. 6. Around the central delay estimation method (termed
Digital Simulation in our figure, see Section 3 for details),
which is implemented in Questa (also called QuestaSim),
we developed a complete framework that handles every-
thing from waveform generation to evaluation and report-
ing autonomously. The only required inputs are (i) a
SPICE/Verilog description of the circuit under test as well
as (ii) the corresponding timing file, which can be created
using Cadence Encounter [14], for example. Due to its
modular structure, each part of the toolchain can be sub-
stituted, provided that the interfaces do not change. Note
that this feature became crucial in the course of the ex-
periments described in this paper, as we encountered nu-
merical issues with HSPICE that forced us to switch to
Spectre for some circuits/technologies.

Waveform Generation. The first task of invTool is to
generate the test stimuli for the circuit. Since suitable
test vectors largely depend on the actual circuit, we re-
sorted to randomly generating transitions on the input(s)
here. More specifically, for each input, the time until the
next transition follows a Gaussian distribution, whose pa-
rameters (µ, σ) can be set by the user. Besides the obvious
restriction to non-negative inter-transition times, it is also
possible to specify an optional worst case bound β > 0.
If set, it prohibits inter-transition times outside µ± β (by
causing a re-sampling).

This way, desired constellations, such as pulse cancel-
lations in the circuit, can be made more probable than
others, and even ruled out for sure via β. The user can
furthermore choose between two modes of operation: In
one the randomly determined delay is added to the last
global transition time, while in the other it is added to
the last transition at the corresponding input. By group-
ing multiple inputs, the user can increase the probability
for transitions in a short period of time for the signals of
the group, which can be useful for multi-input gates. All
these choices can be saved, together with the parameters
(µ, σ), in a configuration file, which is finally read by a
Python script that ultimately determines the actual tran-
sition times.

Waveform Generation

Analog Simulation

Vth Crossings

Digital Simulation

vcd2saif

Power Estimation

EvaluationPlotting

Reporting

Digital Domain

Analog Domain

Figure 6: Workflow in the invTool. The green parts had to be
implemented from scratch. The blue parts have been available, albeit
the available resources had to be extended significantly. Orange parts
could be used almost out of the box.

Analog Simulation. To evaluate the accuracy of our pre-
dictions, we need a “golden reference”, which are currently
analog simulations using HSPICE or Spectre. Initially,
the randomly generated input transition times are trans-
formed to an analog curve using a piecewise linear (PWL)
source with a rise/fall time of 1 ps. This source is then
added to a template file, which also imports the circuit
under test and is used for the subsequent analog simula-
tions. Since the input transitions are very steep (mostly
likely too steep for certain circuits), it is possible to em-
ploy inverter chains in front of each input to shape the
signal. For the technologies used in our experiments, two
inverters proved to be sufficient to generate realistic sig-
nals. Note that we provided a separate supply voltage
source to these shaping circuits to prevent any effect on
our power measurements.

Our analog simulations provide us with both (i) a ref-
erence for the actual power consumption and (ii) refer-
ence switching traces (i.e., threshold crossings) at differ-
ent nodes within the circuit. In the next step of our tool
chain, these SPICE switching traces are fed to a Python
script (termed Vth Crossings in Fig. 6), which generates
input files that can be interpreted by the succeeding digital
simulation tool, in our case, Questa.

Digital Simulation. All digital simulations, as described in
Section 3, are performed by Questa. The input files, which
are extracted from the analog simulation switching traces,
are read by the testbench and applied to the circuit under
test as inputs. Different delay models can be used in these
simulations: some provided VHDL Vital or Verilog library,
denoted as STA in the sequel, or our IM library (INV).
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Of course, as pointed out in Section 3, every gate used
in the circuit under test has to be present in the respec-
tive library. In the case of IM, the invTool is capable of
automatically generating a corresponding entry for sim-
ple gates, i.e., those consisting of a single combinational
function only. The parameters of the gates (in particular,
channel type, pure delay, location and specific parameters)
can be specified in a configuration file. For more complex
gates, the user has to enter the description of the gate in
VHDL manually, which gives full control on channel types
and locations. The invTool is also capable of generat-
ing a complete gate library, which can be used as drop-in
replacement in already existing simulation environments.

Power Estimation. In addition to the SPICE -generated
analog power estimation, the invTool allows to use multi-
ple digital power estimation tools, currently Design Com-
piler and PrimeTime, where for the latter two different
modes (average and time-based) can be chosen. Note that
in our simulations these two differed quite significantly.
As the reference power estimation, the invTool allows
to choose between the following two alternatives: (i) the
SPICE analog power estimation and (ii) the Design Com-
piler and PrimeTime power estimation generated for the
SPICE switching traces (obtained from the SPICE wave-
forms). For power comparison, the results of the Questa
simulation (STA, INV) are fed into the same tools as in (ii)
and compared to the reference value. Note that the De-
sign Compiler and the average-based simulation mode of
PrimeTime only use the switching activity information file
(.saif), whereas the time-based simulation utilizes a value
change dump file (.vcd), which also contains information
about the time of the transitions.

Evaluation. As a first step, the tool converts all the re-
sults from the previous stages into a unified format. The
following four metrics are supported:

• Power deviation: As already mentioned, the results
of the digital simulation of the involution gates (INV)
and the standard gates (STA) are compared to the
two types of reference values (where the second type
actually produces three values, one for each tool and
option). This way, we can identify deviations and
bias caused by the different power estimation tech-
niques.

• The number of transitions in the digital simulation
trace, for the signal at every node, is calculated and
compared to the corresponding SPICE switching traces.
Both the average deviation and the maximum devi-
ation are computed.

• The deviation between a digital simulation trace and
the corresponding SPICE switching trace is mea-
sured via the area under the deviation trace, which
can be computed with and without induced resp.
suppressed glitches. Note that the invTool actually

computes signed areas, normalized to VDD = 1 and
per transition (i.e., divided by the number of relevant
transitions), with the sign depending on whether the
transition of the reference signal comes first (nega-
tive, representing a trailing transition) or not (pos-
itive, representing a leading transition). Note that
the normalized area per transition effectively rep-
resents the (average) time a transition happens be-
fore or after the reference signal. This feature is
extremely useful for determining a bias in the de-
lays, e.g., caused by inaccurate information in the
.sdf file. Fig. 7 shows an example trace with leading
(blue) and trailing (green) transitions. The average
time that the reference transition happens before the
digital trace is 0.2+0.2+0.1+0.1+0.1

5 = 0.14 time units.
The result for the trailing metric is 0.1+0.1

2 = 0.1
time units per transition. Note that we ignored the
deviation caused by original glitches here, since their
influence is considered in a separate metric.

Due to the design of our involution channels, they
will always perform better compared to a pure delay
channel for the trailing category, as the maximum
delay δ∞ is the one that the pure delay channel uses
at every transition. On the other hand, with re-
spect to leading transitions, the IM predictions will
always be worse for the same reasons. Some caveat
is in order when comparing numerical values of the
leading (or trailing) metric per transition for differ-
ent models, however: Even if the underlying SPICE
trace is the same, the number of relevant transi-
tions for different models is likely to be different,
due to suppressed and/or induced glitches. Since
such glitches barely change the total area under the
deviation trace, this leads to a possibly significantly
different normalized area per transition.

• During the comparison of a SPICE switching trace
and the corresponding digital simulation trace, the
tool checks whether a pulse (= two subsequent tran-
sitions, starting from and returning to the current
level of the other trace) happens in one trace with-
out any transition in the other one: If such a pulse
occurs in the SPICE switching trace, we call it an
original suppressed glitch, otherwise an original in-
duced glitch. The invTool also evaluates whether a
pulse in one trace properly contains a pulse in the
other trace; we call such a pulse an inverted sup-
pressed glitch resp. an inverted induced glitch. It out-
puts the number of those glitches divided by the to-
tal number of transitions in the corresponding signal.
Fig. 7 shows an example trace depicting a suppressed
glitch (s) on the SPICE trace, and an induced glitch
(i) on the digital trace, i.e., the trace obtained by
using Questa. In the example trace, the suppressed
original glitch percentage and the induced glitch per-
centage are both 1

9 ≈ 11%

8
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SPICE trace s

Digital trace i

Deviation Trace

Figure 7: Catagorization of the deviation between analog and digi-
tal simulation. Shown are pulses (dashed areas) caused by original
induced (i) or original suppressed glitches (s) and the leading (blue)
and trailing metric (green).

Section 5 will show that these relatively simple mea-
sures provide useful information on the influence of certain
model parameters.

Reporting. The final step of the toolchain allows to au-
tomatically generate a LATEX report. The default report
shows (i) information about the simulation environment,
(ii) waveform generation settings, (iii) power consump-
tion, (iv) trace comparison results, (v) plots and (vi) the
schematic of the circuit. Detailed information about the
trace comparison results, for every node, is also stored in a
.csv file. The report can hence easily be customized by the
user: format and content can be configured by means of a
template, which allows to incorporate all values extracted
and calculated during the evaluation.

4.2. Multi-execution and parameter sweeping

The invTool is capable of automatically performing
multiple simulation runs, by invoking the toolchain several
times. Since the waveforms are generated randomly, this
is an important feature for obtaining reasonable results.
Furthermore, sweeping over different channel parameters
and waveform generation settings is supported by the tool.
In the following, we denote a complete sweep over all con-
figured parameters as simulation run, whereas simulation
denotes a single execution with a certain configuration.

The following channel parameters are supported:

• Pure delay Tp.

• Channel location: Decides whether the channels are
placed at the inputs or the outputs of the gates.

• Channel-specific parameters: For Hill-channels, n↑
and n↓ can be specified. For SumExp-channels, τ1,
τ2 and x1 can be set.

An important feature of our multi-execution is that the
generated waveforms can be retained between subsequent
simulations, as long as only the channel parameters are
modified. Since these parameters only influence the in-
volution channel parts of the simulation, which are solely
handled by Questa, a lot of simulation time (up to 2/3)
can be saved. After all, the analog simulation needed for
waveform generation is the most time-consuming part of
the toolchain. Moreover, starting from the same input

waveforms increases reproducibility and comparability of
the simulation results.

After finishing all simulation runs in multi-execution,
the tool aggregates (i.e., averages) the results from all sim-
ulations and generates a report, again based on a LATEX tem-
plate. Moreover, the results are exported to a .csv file
again, which allows further post-processing. Using the
invTool, in particular the multi-execution feature, enables
easy comparison between different channels and also ex-
perimenting with new channel types to check hypotheses.

5. Results

To demonstrate the utility of the invTool and to vali-
date/reject some conjectures w.r.t. the existing involution
model, we present the results of the evaluation of three dif-
ferent circuits, namely, an inverter tree, the clock tree of
an open-source MIPS processor [14] and a custom NAND
circuit. For our simulations we used a standard 65 nm
UMC library (VDD = 1.1 V) and a Nangate Open Cell
Library with FreePDK15TM 15 nm FinFET models [22]
(VDD = 0.8 V) to investigate the accuracy for different
technologies. Note that we used HSPICE in combination
with the 65 nm library, while we had to resort to Spec-
tre for the 15 nm one, since we ran into numerical issues
using HSPICE in this setup. However, due to the mod-
ular design of the invTool, this switch of tools was eas-
ily achievable. The inverter tree and the NAND circuit
were analyzed for both technologies while for the MIPS
clock tree solely the more modern 15 nm library was used.
Below, we describe the results of the evaluation of these
circuits and draw some conclusions from our findings.

Among all the metrics extractable by the invTool, as
described in Section 4.1, we selected the following

• Power deviation: We focused on the comparison be-
tween SPICE and the PrimeTime time-based simu-
lation mode. In Section 5.5 we discuss the differences
between the used power estimation tools, and why
focusing on one tool is reasonable.

• Leading and trailing normalized area under the de-
viation trace per transition (without glitches): This
metrics give insights how accurate the transition time
is estimated, compared to SPICE, which is useful
when examining properties of different channels.

• Percentage of original induced and suppressed glitches:
The glitch metrics can be used to find out how sus-
ceptible different channels are to glitches. Especially
for clock networks and asynchronous logic, accurate
modeling of glitches is a major concern.

In all simulations, we use Exp-channels, Hill-channels
and SumExp-channels and compare them to the default
Verilog inertial delay model and a pure delay model. For
every parameter setting, we averaged the results of 10 ran-
domly generated traces, which was found to be sufficient

9



•
••

(a) inverter tree (b) NAND circuit

Figure 8: Schematic of circuits used for simulation.

to reasonably average out the stochastic variations in all
our experiments.

Using the multi-execution feature of our tool, we car-
ried out simulations for multiple values of Tp and varying
channel parameters: For the Hill-channel we swept over
the ratio

n↓
n↑

, and for the SumExp-channel over x1, τ1, τ2.

Since the results for the Hill-channel were best when us-
ing

n↓
n↑

= 1, the following plots omit results with different

ratios. For the SumExp-channel, x1 = 0.25, τ1 = 30 fs
and τ2 = 3000 fs have been chosen for the inverters, while
changing them to x1 = 0.42, τ1 = 20 fs and τ2 = 7000 fs
for the NAND gates.

5.1. Inverter tree

Fig. 8a shows the inverter tree used for our simulation
experiments. Note that the minimum values of δ↓∞ and δ↑∞
can be as low as 7.7 ps in the 65 nm and 1.5 ps in the 15 nm
technology. In order to facilitate a direct comparison of
the results between those two, we chose µ = 45 ps for the
65 nm library (Fig. 9), and µ = 15 ps for the 15 nm one
(Fig. 10). This is reasonable, since the latter is about
three times faster compared to the former, with an even
larger ratio for the respective minimum values of δ↓∞ and
δ↑∞ (see above).

With respect to the power estimation accuracy,3 for
both technologies, the Exp-channel performs best, imme-
diately followed by the SumExp-channel and the Hill-channel.
The increase in the power deviation with increasing Tp is
a result of the higher amount of induced glitches resp. the
lower amount of suppressed glitches. The cause can eas-
ily be identified by taking a look at the analog channel
model (see Fig. 3): By increasing Tp, signal ud and thus
the switching between the up and down waveform is more
and more delayed. Consequently, the original waveform
is followed for a longer duration, which causes pulses that
formerly did not just reach the threshold, i.e., were can-
celed and hence counted as a suppressed glitch, to reach
it, i.e., become decanceled and thus create an additional
pulse at the output.

3Note that we did not use a .spef file for the power estimation
with Design Compiler and PrimeTime when using the 65 nm library.
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Figure 9: Inverter tree simulation results (65 nm) for µ = 45 ps.

In our results, we also observe a decrease of leading
(= leading normalized area under the deviation trace per
transition) with increasing Tp. As explained in the previ-
ous paragraph, one possible cause is the increasing number
of relevant transitions caused by less suppressed glitches.
However, as the leading keeps decreasing when all sup-
pressed glitches have disappeared (for 65 nm at around
2 ps), there must also be another cause. To spot it, recall
the shape of the delay functions shown in Fig. 5b. By in-
creasing Tp, one effectively moves the starting point of δ(T )
along the 2nd median towards larger delay values, while the
end point (the maximum delay δ↑∞ or δ↓∞) remains fixed.
In other words, the closer Tp gets to the minimum δ↑∞ and
δ↓∞, the more involution channels behave like pure delays,
i.e., the less is the dependence on the switching waveform.
This effectively leads to an overestimation of the delay for
small values of T , which causes transitions to be scheduled
later in our simulations. Thus, transitions that had been
scheduled before their corresponding reference transition
would be pushed closer to it (or even beyond it), thereby
decreasing leading (or even setting leading to zero and in-
creasing trailing). This effect increases with increasing TP ,
which is clearly visible as the leading metric approaches
zero for all channels. Note carefully that this also explains
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Figure 10: Inverter tree simulation results (15 nm) for µ = 15 ps.

the slight increase in trailing with increasing Tp for larger
values of Tp, e.g., for Exp-channel and SumExp-channel in
both Fig. 9 and Fig. 10.

Somewhat counterintuitive is the behavior of the Hill-
channel and, moderately so, also of the Exp-channel with
respect to the trailing metric. As we explained in Sec-
tion 4.1, pure delay channels are supposed to be the worst
here, as they always use the maximum delay causing their
transitions to be scheduled latest. And indeed, we verified
this property for individual simulation traces. The rea-
son why some involution channels are sometimes worse
in the per transition trailing metric in our figures can
be explained by means of the delay functions shown in
Fig. 5b: Despite the fact that the Hill-channel uses a real-
istic switching waveform, it underestimates the delay con-
siderably (the same is true for the Exp-channel in certain
regions). This is primarily a consequence of the continu-
ous but nevertheless instantaneous switching between up-
and down waveforms, recall Section 2.1: If the rising and
falling waveforms are very steep in some range, as is the
case for the Hill-channel close to the threshold voltage,
in particular, this creates a sharp peak in the combined
waveform, which in turn causes the corresponding IM to
underestimate the delay. Due to the underestimated de-

lays, the number of suppressed glitches is large and the
number of relevant transitions for the trailing metric is
small. Dividing the total area by the latter hence causes
the per transition metric to sometimes increase beyond the
value for pure delay channels.

Overall, it turns out that, surprisingly, waveforms that
match real switching waveforms better, like the Hill-channel,
perform considerably worse, as is shown by the leading and
trailing metric both in Fig. 9 and Fig. 10.

Comparing our results for 65 nm (Fig. 9) and 15 nm
(Fig. 10) indicate a quite reasonable technology indepen-
dence: The SumExp-channel performs best, followed by
the Exp-channel. However, in terms of absolute numbers,
the results differ significantly, with lower values achieved
by the 15 nm technology. This is not surprising, of course,
given the fact that the maximum delay values are consid-
erably smaller (δ∞ of 7.7 ps versus 1.5 ps). The influence
of Tp on both trailing and leading metric is also a lot less
pronounced for the 15 nm technology, which is again due to
the fact that we experienced larger variations of δ↑∞ and δ↓∞
for different gates in the first place there. In fact, only the
Hill-channel shows a significant dependence on Tp, which
can be traced back to the effects already explained.

For broader pulses (µ = 100 ps), we found that power
is estimated accurately and no glitches are induced or sup-
pressed. As revealed by Fig. 12, however, the Hill-channel
still substantially underestimates delays. Fig. 5b shows
that, even for large T , the deviation between the real de-
lay function and the Hill-channel is large, which explains
its poor performance. The other involution channels, as
well as the baseline delay models, perform very well. With
respect to trailing, involutions now always outperform Ver-
ilog.

In summary, except for suppressed glitches and the
leading metric, the Verilog inertial delay model and es-
pecially the pure delay model perform poorly compared
to any involution model. Among the latter, the SumExp-
channel is clearly superior.

5.2. MIPS clock

The clock tree was synthesized in 15 nm technology for
a MIPS [14] with Cadence Encounter. It comprises of 227
inverters (strengths X1, X2, X4, and X8) which drive 123
Flipflops (see Fig. 11). Fig. 13 shows the results of our
evaluation. Since δ↓∞ and δ↑∞ can be as low as 1.2 ps here,
we had to restrict the range for Tp appropriately.

Normally, one would of course drive a clock tree with
a frequency that is low enough in order not to cause any
pulse cancellations. However, our experiments with large
values of µ = 50 ps and bounded variation β = 5 ps (recall
Section 4.1) revealed that involution channels and stan-
dard channels do not show any significant difference in
this setting. For a more aggressive value of µ = 15 ps,
the qualitative results for the MIPS clock are quite simi-
lar to the ones for the inverter tree. The SumExp-channel
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Figure 11: Schematic of MIPS clock tree.
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Figure 12: Inverter tree simulation results (65 nm) for µ = 100 ps.

perform particularly well: It accurately models the tran-
sition times, and also in terms of glitches it is among the
best. The increasing number of induced glitches can be
explained when bearing in mind that δ↓∞ and δ↑∞ can be
as small as 1.2 ps, which results in a gradual degeneration
of the different channels to a pure-delay channel. This ef-
fect causes more transitions on the digital simulation trace,
and therefore the power deviation metric increases.

The trailing metric for the Hill-channel again nicely
demonstrates both the influence of an increasing number
of relevant transitions caused by a decreasing number of
suppressed glitches (for Tp ≤ 0.25 ps) and the effect of
shifting transitions more into the future with increasing
Tp causing both leading to drop and trailing to increase,
i.e., the former gets better while the latter worse. Note
that the leading of the SumExp-channel being below the
inertial and pure delay channel is again an artifact caused
by less relevant transitions, causing a sometimes excessive
quotient.

5.3. NAND circuit

The NAND circuit shown in Fig. 8b was synthesized
both in the 65 nm (see Fig. 14 for the results) technology
and in the 15 nm technology (Fig. 15), which resulted in
δ↓∞ resp. δ↑∞ being as low as 9.2 ps resp. 2.7 ps. The
involution channels were placed either at each input or at
the output of a gate in our multi-execution setting.

Since the circuit has multiple inputs, we used the lo-
cal waveform generation feature of the invTool, which re-
sults in a higher overall density of transitions. Interest-
ingly, placing the channels at the input was better in the
15 nm technology, whereas channels at the outputs pro-
vided better results for 65 nm. This already suggests that

0

20

40

po
w

er
de

v.
[%

]

Inertial-Delay Pure-Delay Exp-Ch
Hill-Ch SumExp-Ch

1

2

le
ad

in
g

pe
r

tr
an

si
tio

n
[p

s]

−0.8

−0.6

−0.4

−0.2

tr
ai

lin
g

pe
r

tr
an

si
tio

n
[p

s]

5

10

15

in
du

ce
d

or
ig

.
gl

itc
he

s
[%

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

1

2

3

Tp [ps]

su
pp

re
ss

ed
or

ig
.

gl
itc

he
s
[%

]

Figure 13: MIPS clock circuit simulation results (15 nm) for µ =
15 ps.

single-input single-output channels are not fully adequate
for accurately modeling the delay of multi-input gates.

The simulation results for both technologies are com-
parable in the sense that the behavior of the involution
channels is similar; again, the SumExp-channel outper-
forms the others, however. The only apparent differences
are observable for the leading and trailing metric: While
for the 65 nm technology inertial and pure delay are very
close together compared to the accuracy of the involution
channels, for 15 nm the predictions are in between. We
conjecture that this is due to the fact that the pure de-
lays are placed at the inputs of a gate for this simulation,
whereas the Verilog inertial delays are tied to the gate
outputs.
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Figure 14: NAND circuit simulation results (65 nm) for µ = 45 ps,
with channels placed at the output.

Consequently, it is apparent from the results in Fig. 14
and Fig. 15 that the involution models do not outperform
the default Verilog inertial delay model as significantly as
for the inverter tree. Another explanation for the loss in
accuracy is logical masking, which makes the NAND cir-
cuit less susceptible to propagating glitches.

In addition, we strongly conjecture that any model that
accurately models multi-input gates needs to consider mul-
tiple inputs together for computing the gate delay. For
example, for our 2-input NAND gate, an accurate delay
function should depend on two parameters, namely, the
previous-output-to-input delays for both inputs. Develop-
ing suitable delay functions is of course way beyond the
scope of this paper, and actually a pivotal part of our cur-
rent work on extensions of the involution model.

5.4. Performance

A very important figure of merit for digital simulations
is running time. More specifically, it is the main reason
for choosing a digital simulator rather than its much more
accurate analog counterpart, e.g., SPICE, which takes a
prohibitive amount of simulation time even for circuits of
small size. Hence, we also compared the simulation times
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Figure 15: NAND circuit simulation results (15 nm) for µ = 15 ps,
with channels placed at the input.

of all our approaches on a server (2 Intel Xeon X5650,
1600 MHz, 32 GB RAM, CentOS 6.10) for the MIPS clock
tree (see Table 1), which is the largest circuit in our test
set. The results clearly reveal that the overhead intro-
duced by using the computationally more demanding in-
volution channels is only minimal and does not blow up
for circuits of a certain size. For the MIPS clock tree,
our involution channel implementations increase the sim-
ulation time only by approximately 10 % compared to the
standard delay models. Interestingly, despite involving nu-
merical computations, the performance of the SumExp-
channel is only marginally lower than that of the other
involution channels.

Not surprisingly, all involution channels outperform the
analog SPICE simulations by a factor of 250. To be fair,
however, we should add that our SPICE simulations also
contain the estimation of the power consumption. Esti-
mating the power consumption based on the results of
the digital simulation adds another 2.2 s to the simulation
time (PrimeTime, time-based mode). Note that for larger
values of µ, the SPICE simulation time almost scales up
linearly, while the digital simulation time is mostly influ-
enced by the overall number of transitions. This is a con-

13



SPICE
(Spectre)

Inertial
(Verilog)

Pure-
Delay

Exp-
channel

Hill-
channel

SumExp-
channel

576.6 s 2.122 s 2.345 s 2.357 s 2.347 s 2.364 s

Table 1: Simulation time for the 15 nm MIPS clock tree (µ = 15 ps, σ = 10 ps, 50 transitions at the input).

sequence of the implemented simulation methods: SPICE
determines all signal values at every point throughout the
simulated time period. Digital simulations, however, are
only triggered by a transition, causing them to be compu-
tationally much more efficient.

5.5. Tool accuracy

To ensure that the used tools yield accurate results,
we checked the transition time accuracy and the power
estimation accuracy.

Transition time accuracy. During simulation, we observed
that the tool-generated delay estimation files (.sdf ) are
very inaccurate: They led to significant deviations be-
tween analog and digital simulations already for very broad
pulses (i.e., large µ). Therefore, we eventually decided to
create custom delay files based on our analog simulations.
By doing so, we achieved precise delay predictions,4 with
an accuracy of ±1 ps. These custom delay files serve the
additional purpose of incorporating the interconnect de-
lay into the gate delay. This is mandatory, as our model
does not yet support separate interconnect delays. By us-
ing these custom delay files, we ensure that the leading
and trailing metric, as well as the glitch percentages, yield
meaningful results.

Power estimation accuracy. As mentioned in Section 4.1,
the invTool uses different tools for estimating power. All
simulation results show the deviation of the power esti-
mation between the SPICE trace and the traces obtained
with Questa when using the time-based mode in Prime-
Time for both. Since we are interested in the relative
behavior of different channels and configurations, this is a
reasonable approach.

Nevertheless, we also compared the power estimation
tools against SPICE : First, we simulated our designs in
SPICE, logging power and signal traces. We then dis-
cretized the SPICE traces and fed them back into the De-
sign Compiler and PrimeTime, obtaining power estimates.
The results can be seen in Table 2. While for 65 nm sim-
ulations the tools perform similar, the time-based mode
of PrimeTime tends to perform better for 15 nm simula-
tions. We conjecture that the absolute values of the time-
based mode are more accurate due to the different input
data that the different simulations use. While the Design
Compiler and the average-based mode of PrimeTime only

4As a consequence, the overall area under the deviation trace has
been significantly decreased. For example, for µ = 100ps (the case
shown in Fig. 12), from over 30 to below 3.5.

use a switching activity file (which contains no informa-
tion about time), the time-based approach has information
about the switching times. One interesting observation
from the results of Table 2 is that, for the simulation of
the 65 nm inv tree with µ = 100 ps, the deviation between
SPICE and the power estimation tools is quite large, while
all the metrics we use for comparison show good results.
For the simulation of the mips clock, the deviation is also
quite large. However, these observations are not an issue,
since we are not interested in absolute values, but rather
in the relative behavior of different channels and config-
urations. By consistently using the time-based mode of
PrimeTime, the validity of the power deviation results is
guaranteed.

6. Conclusions

In this paper, we presented an overview of the fea-
tures and the internal architecture of the Involution Tool,
a custom simulation environment for the involution de-
lay model. Thanks to its embedding into the state-of-the-
art digital simulation tool Questa, and its compatibility
with analog simulation tools like HSPICE and Spectre,
existing circuits can be easily simulated in the involution
model and its performance compared to other prediction
methods. Complemented by automatic waveform genera-
tion, parameter sweeping capabilities, and automatic re-
port generation facilities, it allows the systematic exper-
imental evaluation of different circuits in different model
variants.

We demonstrated its capabilities by means of analyz-
ing several circuits, in different technologies, using differ-
ent involution channels. Whereas our experiments con-
firmed the superiority of the involution model in general,
they also revealed two unexpected facts. First, it turned
out that Hill-channels, which are based on more realistic
switching waveforms, provide worse delay predictions than
the simple Exp-channels for short pulses. Second, the con-
siderably less superior predictions of the involution model
for our NAND circuit suggest that the existing involution
channels are not fully adequate for accurately modeling
multi-input gates. Developing more accurate extensions
of the involution model for multi-input gates is hence an
important part of our current and future work.
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[9] M. Függer, T. Nowak, and U. Schmid, “Unfaithful glitch prop-
agation in existing binary circuit models,” IEEE Transactions
on Computers, vol. 65, no. 3, pp. 964–978, March 2016.
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