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Abstract

Motivation: Long-read sequencing technologies are invaluable for determining complex RNA transcript architec-
tures but are error-prone. Numerous ‘hybrid correction’ algorithms have been developed for genomic data that
correct long reads by exploiting the accuracy and depth of short reads sequenced from the same sample. These
algorithms are not suited for correcting more complex transcriptome sequencing data.

Results: We have created a novel reference-free algorithm called Transcript-level Aware Long-Read Correction
(TALC) which models changes in RNA expression and isoform representation in a weighted De Bruijn graph to cor-
rect long reads from transcriptome studies. We show that transcript-level aware correction by TALC improves the
accuracy of the whole spectrum of downstream RNA-seq applications and is thus necessary for transcriptome analy-
ses that use long read technology.

Availability and implementation: TALC is implemented in Cþþ and available at https://github.com/lbroseus/TALC.

Contact: william.ritchie@igh.cnrs.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in RNA-sequencing (RNA-seq) technologies have
revealed that transcription is more pervasive (Carninci et al., 2005),
more diverse (Forrest et al., 2014) and more cryptic (Byrne et al.,
2017) than expected (Li et al., 2020; Parker et al., 2020; Workman
et al., 2019) Given the major role that RNA processing plays in dis-
ease and normal biology, it is crucial to ascertain the existence of
novel isoforms and to accurately quantify their abundance. Second
generation RNA-seq technologies such as Illumina are well suited to
the tasks of assessing gene expression levels and determining prox-
imal exon connectivity. They produce numerous sequencing reads at
a low cost ensuring sufficient representation of most transcripts.
However, because the RNA or cDNA is fragmented during short
RNA-seq protocols, long range connectivity can only be computa-
tionally inferred. These predictions based on short reads struggle to
correctly identify transcript isoforms that contain multiple alterna-
tive exons (Bolisetty et al., 2015) or that contain retained introns
(Broseus and Ritchie, 2020; Middleton et al., 2017). In these cases,
long-read (LR) sequencing technologies are invaluable because they
can sequence entire molecules in one pass and thus capture long-
range connectivity of complex isoforms.

LR technologies however produce less reads than short-read
(SR) sequencing approaches (Shendure et al., 2017) for similar costs
and have higher error rates. In many cases, these higher error rates
can prevent the correct identification of isoforms (Kuosmanen et al.,

2018; Sessegolo et al., 2019; Tardaguila et al., 2018) Although sev-
eral alignment software (Boratyn et al., 2019; Li, 2018; Liu et al.,
2019; Sovi�c et al., 2016; Wu and Watanabe, 2005) are optimized to
handle these errors, their shortcomings confound transcript identifi-
cation and annotation. Many reads cannot be aligned and regions
where the sequencing error rates are higher such as UTRs frequently
produce ambiguous alignments. Second, they struggle to identify
splice junctions, notably those flanking small structural variants
such as small exons or alternative 50 and 30 splice sites. This impacts
the evaluation of exon skipping events and worsens the quality of
transcript assembly (Kuosmanen et al., 2018). These drawbacks
prompted the development of algorithms, referred to as hybrid
methods (Deonovic et al., 2017; Fertin et al., 2015; Fu et al., 2018;
Weirather et al., 2015), that take advantage of SR depth and accur-
acy to compensate LR shortcomings.

Numerous algorithms have been proposed to combine long and
short reads into high-accuracy long reads (Amarasinghe et al.,
2020). A first approach is to correct long reads by local consensus
inferred from short read multi-alignments (Au et al., 2012; Firtina
et al., 2018; Haghshenas et al., 2016). This strategy is generally
slow and computationally intensive. More importantly, it tends to
show poor performances over low-expressed regions, and a risk of
bias toward major isoforms. Therefore, they may not be suitable for
transcriptome and single-cell datasets where isoform representation
may vary considerably. In the second approach (Bao and Lan, 2017;
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Miclotte et al., 2016; Morisse et al., 2018; Salmela and Rivals,
2014; Wang et al., 2018), short reads are considered as the frag-
ments of a reference transcriptome, and roughly assembled using a
graph structure, onto which long reads are aligned (Limasset et al.,
2016). However, sequencing errors in SR datasets, complex tran-
script architectures and sequence duplicates often lead to extremely
complex graph structures (Lima et al., 2017; Peng et al., 2013) that
elicit graph simplifications or exploration heuristics to keep compu-
tations tractable. Most hybrid correction algorithms were primarily
intended to be applied to genomic data with the aim to improve the
quality of genome assemblies. As such, they typically rely on
assumptions that fit DNA-seq data properties and thus a linear ref-
erence genome. According to this, bifurcation nodes and tips (dead-
ends in the graph) are assumed to originate mainly from sequencing
errors and not transcript processing events. In addition, genome
sequencing benefits from a relatively uniform read coverage and
therefore the graph is simplified by discarding a priori all nodes
whose count is below a user-defined threshold. The fact that these
approaches are not adapted for RNA-seq data have been extensively
discussed in previous works on transcript assembly (Peng et al.,
2013) and short read correction (Le et al., 2013; Song and Florea,
2015) and their impact on long read correction can be easily antici-
pated. RNA-seq data display highly uneven coverage, even across a
same genomic location, thus the frequency of sequencing errors
varies depending on the surrounding coverage depth. Tips may cor-
respond to the start or end of a transcript and finally specific
regions, such as 30 ends of transcripts, are frequently under covered.

We have developed TALC for Transcript-level Aware Long-read
Correction which addresses RNA-seq data specificities by incorpo-
rating coverage analysis throughout the correction process. TALC
considers transcript expression and the existence of isoforms to cor-
rect LRs. For the purpose of testing TALC, we generated Oxford
Nanopore direct RNA sequencing reads and Illumina short reads on
an MCF10A human cell line and downloaded LR and SR data from
the GM12878 human cell line and a SIRV Spike-In experiment. We
demonstrate that after TALC correction, long reads map with higher
sequence identity and with less errors in exon assembly than current-
ly used methods. The gains observed following TALC were tested
on simulated long reads as well as on real reads.

2 System and methods

2.1 Methods overview
Figure 1 illustrates the methodology behind TALC and highlights
how it considers transcript abundance and architecture to correct
long reads. The first step of TALC graph-based procedure is to con-
sider short reads as a raw reference transcriptome by merging them
through a weighted De Bruijn Graph (DBG) structure (Limasset
et al., 2016; Salmela and Rivals, 2014), whose nodes represent k-
mers. For each node, we record their k-mer abundance in the SR
dataset. Thus, any sequence of transcripts expressed in the RNA-seq
sample should appear as a unique path of the graph. The long read
is corrected by finding the right sequence of nodes to which it corre-
sponds in the DBG built from short reads. Paths corresponding to
true transcripts should display consistent k-mer coverage except in
regions where the existence of multiple isoforms may alter the cover-
age such as at splice junctions (Fig. 2). We thus propose a method of
graph exploration that considers k-mer count variation consistent
with transcript abundance and isoform existence (adaptive count
thresholding).

2.2 Determining anchor points
As in the study by Salmela and Rivals (2014), the LR sequence is
first divided into solid regions (stretches of k-mers shared with the
SRs) interspersed with weak regions (stretches of likely erroneous k-
mers).

To crop background noise that frequently surrounds the solid
regions, we first estimate the frequency of k-mers resulting from
sequencing errors in the SR. The count of k-mers containing a
sequencing error in SR is assumed to follow a Poisson distribution
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Fig. 1. Overview of the TALC algorithm. TALC’s correction procedure begins by

creating a weighted DBG from the k-mer counts of the SRs. It then searches for

common sequences between the LRs and the k-mers of the DBG. Stretches of com-

mon k-mers are called solid regions and are assumed to be error-free parts of the

long read (green peaks). From the solid regions, TALC will then determine anchor

points. These will be used as entry points into the DBG; regions between these an-

chor points are called weak regions and will be corrected. To extract anchor points

from the solid regions TALC will first crop background noise that frequently sur-

round solid regions (red cross). The second step in determining anchors is to search

for sudden changes in coverage within a solid region. These changes may corres-

pond to divergent transcript architectures and should be explored separately. Thus,

a solid region will be split into as many anchors as there are changes in coverage.

Finally, to correct weak paths between anchors, TALC will explore consistent paths.

TALC explores the DBG, following paths of similar k-mer coverage. When the ex-

ploration reaches a potential transcriptional event such as exon–exon splits (red

dot), the exploration will branch out to account for the existence of multiple iso-

forms with varying coverage
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Fig. 2. Example of K-mer coverage across a long read before and after TALC correc-

tion. We mapped the k-mers discovered in the short-read (SR) sequencing of

MCF10A cells onto one of the long reads (LR) sequenced from the same sample.

The x-axis represents each nucleotide of the LR, the y-axis shows the abundance of

the mapped k-mers in the SR sample. Blue shading at the bottom of the figure high-

lights the correspondence between the transcript to which the long read was mapped

and the read itself; red shading highlights alternative transcript architectures that

could explain the sudden changes in the k-mer coverage of the graph. Alternative

isoforms are annotated using ENSEMBL transcript annotation
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whose mean should be less than the average noise level k. An esti-
mate of k is taken as the average coverage depth across the LR multi-
plied by the per base error rate in SR, whose estimates were found
to be higher in RNA-seq datasets than in genomic data, ranging
from 1 to 3% (Le et al., 2013).

A robust estimate of the average depth is derived a priori from
the shared k-mer counts: the 15% smallest and 10% highest counts
are removed, and the mean is calculated from all the remaining k-
mers. K-mers whose count falls under the upper bound of a confi-
dence interval from the Poisson distribution Poisson(k) (cf:
Supplementary Materials) are not considered solid and will not be
used as anchor points.

We then split solid regions into anchor points with contrasting
k-mer coverage. To this end, we inspect the regions coverage and
each k-mer at which an abrupt count variation is detected is selected
(cf Section 2.4). k-mers at the tips of a region are always selected,
and additional k-mers may be picked so as to have at least three dis-
tinct anchor points per solid region.

Once the long read is anchored, the DBG is explored in-between
any couple of consecutive anchors, in search for the error-free path
matching the inner weak region.

2.3 Selective exploration of the DBG
In TALC, a path in the DBG is defined as an ordered list of con-
nected k-mers (nodes) which are weighted by their number of occur-
rences in the SR dataset. When a k-mer is mapped to an LR, we
attribute its weight to the mapped region of the LR and use the term
coverage. Thus, when we speak of coverage of an LR, it is in effect
the weight of the k-mer that mapped to that region.

Abrupt changes in the coverage depth can be caused by alterna-
tive splicing events, duplicate k-mers, or sequencing bias in SR.
These abrupt changes are termed split-coverage.

Nodes in a DBG are either simple, which means there exists only
one successor k-mer in the data, or admit at least two successors,
and thus can be extended by several distinct paths. We will refer to
them as bifurcation nodes. Exploration is implemented as a breadth-
first approach where at each bifurcation, only the next nodes whose
count is considered consistent with the coverage of the current path
will be followed. More precisely, at a given step n0, the k-mers data-
base is queried for the counts of its four possible successors: (nA,
nC, nG and nT). And we want to assess which of these make up
valid extensions of the current path.

We need to infer two things: whether n0 is close to a split-
coverage event, in which case the exploration might be split into sev-
eral competing paths; and which nodes are likely erroneous and
should be filtered-out. To this end, we use the following decision
rules (cf: Supplementary Materials):

1. If there is only one non-zero k-mer, there is no decision to make.

2. If there are at least two non-zero k-mers, we postulate that most

of the time, there is no real split-coverage event at n0, so that its

count provides a good estimate of the downstream coverage

depth, from which both the correct successor (say nL) and a

local noise threshold can be inferred.

Accordingly, allowing to the consistence of the coverage, we
pose as a null model:

nL j ðn0 & no split coverage eventÞ � Poissonðn0Þ

and

sum ðnJ; J 6¼ LÞ � Poissonðn0 � eÞ

When the counts (nA, nC, nG and nT) do not fit this null model,
we infer the current bifurcation is due to a change-point (e.g. an
exon junction site with several splicing variants) and the exploration
is split into all downstream nodes. At each new node, the expected
count and the noise level are thus re-estimated, allowing an adaptive
filtering-out of erroneous k-mers.

Therefore, a true path is expected to be mostly made of count-
consistent nodes possibly with a few change-point nodes. And the
more a path admits change-points the less likely it is to represent the

sequence of a true transcript.

2.4 Competing paths
TALC favours coverage-consistent exploration of the DBG. As

opposed to LoRDEC (Salmela and Rivals, 2014), all paths passing
the test described above are explored in parallel by a breadth-first
approach. When the number of parallel paths exceeds a specified

threshold, an evaluation is performed: all on-going paths are com-
pared to the LR sequence and the least similar ones are stopped.

This allows a more local and gradual evaluation of the similarity be-
tween the paths and the long read and we believe it contributes to
reduces the inclusion of small sequencing errors from the SRs into

the LR.
All paths which successfully bridge both solid regions are scored

by their edit distance with the LR. The most similar one is consid-
ered suitable for further validation. Its sequence is aligned against

the LR’s; if the percent identity score with the LR is higher than a
user-specified threshold (by default 70%), we assume we have likely
found the best candidate.

2.5 Border exploration
Compared to inner weak regions (flanked on both sides by a solid
region), the correction of weak border regions (flanked only on one

side by a solid region) raises additional problems. First, there is no
clear targeted anchor point at which to stop exploration. Second,
UTR sequences often contain low complexity regions and duplicated

k-mers, which lead to increased complexity in the DBG. Finally,
borders of transcripts suffer from higher sequencing bias in short
reads (notably in 30 ends of transcripts). The two last points make k-

mer coverage more erratic and over dispersed. In certain cases, in-
complete coverage UTR extremities (e.g. rare longer UTR forms)

can sometime prevent a full-length correction entirely. For these rea-
sons, we rely more heavily on sequence length and similarity be-
tween the visited paths and the LR’s to direct graph exploration

across those regions. More exactly, graph exploration is monitored
in a same manner as described above (cf: Section 2.3) until the path’s

length matches the border’s length. When the number of consecutive
errors exceeds a given threshold, the corresponding paths are
stopped.

When there are no more branches to investigate (that is all possi-
bilities have ended in dead-ends of the graph or have been stopped),

the very last error-prone bases of all interrupted paths are trimmed
(cf: Supplementary Materials). To elect the best border path, we first

search for it among the paths that were at least as long as the portion
of the read we are attempting to correct, despite the constraints on
sequence similarity. We choose the one having the smallest edit dis-

tance with the LR, and the most consistent coverage if there is ex-
aequo. If no long border path could be found, shorter paths are com-
pared and the one with highest similarity to the LR is selected.

2.6 Choosing between multiple paths whose scores

are tied
Paths in the DBG that successfully bridge two solid regions are first

ranked according to their sequence similarity with the weak
region’s. The similarity is computed as the edit distance between

sequences.
We notice that the exploration stage often provides several solu-

tion paths having the exact same alignment score (this occurs, e.g.
when there are variants in sub-sequences that have been inserted or
deleted from the LR), so that we cannot decide between them based

on sequence information only. To choose between these equally
scoring paths, we perform a second ranking using count variation:
the path with the least change-points wins.
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3 Results

3.1 Benchmarked algorithms
We compared the corrections made by TALC with six other state of
the art hybrid correctors: FMLRC (Wang et al., 2018), CoLoRMap
(Haghshenas et al., 2016), Jabba (Miclotte et al., 2016), Hercules
(Firtina et al., 2018), LoRDEC (Salmela and Rivals, 2014) and LSC
(Au et al., 2012). We chose FMLRC, Jabba, LoRDEC and
ColoRMap as they were found to be the top performers according
to a recent benchmark on genomic data (Fu et al., 2019). We added
Hercules because it was a very recent method not yet benchmarked.
We also included LSC for it is (with LoRDEC) currently applied in
numerous transcriptomic studies combining long and short reads
(Filichkin et al., 2018; Lian et al., 2019; Sahraeian et al., 2017;
Zhao et al., 2019).

Though it was well suited for RNA-seq data, according to Lima
et al., we could not include NaS (Madoui et al., 2015) as it depends
on a third-party proprietary software (Newbler assembler) that is no
longer available.

Several algorithms (e.g. CoLoRMap, LSC and Jabba) exclude
uncorrected reads from the final output file. However, to allow a
fair comparison with the other methods, we systematically added
back all discarded raw sequences before evaluation.

All jobs were run using 15 CPUs with 512 gigabytes of available
RAM. If a job was not finished after 1 week, it was terminated
(Jabba failed to finish within a week and had to be finally remove
from the analysis; as already observed in the study by Firtina et al.
(2018), LSC could not scale to the biggest size real LR datasets;
Hercules is absent from several tests too, due to long running times
and heavy computational requirements, chiefly in its short-read
alignment phase).

LoRDEC and TALC were run with the recommended size of k-
mers set to 21 (Philippe et al., 2009; Salmela and Rivals, 2014), and
FMLRC with its default parameters.

3.2 Benchmarked datasets
To evaluate the efficiency of these algorithms, we made use of two
publicly available and one in-house SR and LR matched real data-
sets. The first dataset comes from a large GridION MinION cDNA
sequencing experiment of SIRV E0 Spike-Ins (Sahlin et al., 2020).
The second one is provided by the Nanopore consortium (Workman
et al., 2019) and was generated on the GM12878 B-Lymphocyte cell
line. Because there was no SR dataset provided with this experiment,
we used the GM12878 Illumina data from an earlier study (cf:
Supplementary Material). Lastly, we performed our own Oxford
Nanopore Technologies (ONT) direct RNA sequencing and
matched Illumina mRNA sequencing on the MCF10A cell line (cf:
Supplementary Material).

Using real datasets with contrasting error models (cf:
Supplementary Material) to compare these methods instead of a
computationally generated one we are testing them in authentic con-
ditions. However, the drawback of using real data is that it is impos-
sible to measure precisely the number of good corrections performed
because the entire repertoire of transcripts and their true abundance
is unknown; there is no reference transcriptome that perfectly
matches the MCF10A and GM12878 cells. For example, Workman
et al. (2019) reconstructed about 78 000 high-confidence isoforms
from the GM12878 datasets and found that the majority were ab-
sent from reference databases (Hardwick et al., 2019).

To work around this problem, we used the (raw) LR data to
measure the abundance of transcripts in MCF10A and GM12878
cells (Supplementary Materials). From this LR-derived transcrip-
tome, we simulated long ONT reads that respect the error rates that
we observed in the sequencing data. Thus, we have a dataset of
reads that are derived from the MCF10A and GM12878 transcrip-
tomes and for which we know the exact structure and abundance of
each isoform. This enables us to evaluate performances on a simu-
lated LR dataset derived from the MCF10A and GM12878
transcriptomes.

3.3 Measures of evaluation
We wished to use the recently published evaluation tool,
LC_EC_analyser (Lima et al.). Unfortunately, it does not scale to
our real size datasets (seemingly because of AlignQC issues in mem-
ory management). Nonetheless, we used analogous criteria (see
below). Scripts designed to perform our evaluation are available at:
https://github.com/lbroseus/TransAT.

To assess the behaviour and performance of the seven correction
methods, we computed multiple indicators that are summarized in
Radar Charts and Supplementary Tables S1–S3. These indicators
can be broken down into two categories: standard sequence quality
indicators and transcriptome-specific indicators.

3.3.1 Standard sequence quality indicators

These include the base accuracy between the LR and the molecule
from which the LR was generated, the various error rates (mis-
matches, insertions and deletions), and the percentage of primary
alignments to the reference genome. They are common benchmarks
for genomic data. In addition, we verified that the different correc-
tion algorithms were able to maintain the initial read length.

3.3.2 Transcriptome-specific indicators

When evaluating correction methods on real data, performance met-
rics can be unintentionally skewed because the molecule that was
sequenced is unknown. For example, a correction method that
would simply replace an LR by a known transcript sequence to
which it was most similar could obtain a high percentage of mapped
reads and low error rates but would not correctly represent the
sequenced transcriptome. Thus, to further evaluate the seven correc-
tion methods in this article, we computed two sets of transcriptome-
specific indicators which are directed towards the two major appli-
cations of RNA-seq experiments: transcript-level quantification
(Sessegolo et al., 2019; Soneson et al., 2019) and isoform recovery
(Kuosmanen et al., 2018). For this, we considered two types of data:
a real SIRV Spike-In dataset and two simulated LR data mimicking
the real MCF10A and GM12878 experiments. SIRV Spike-In data
have known theoretical concentrations from which we could gauge
how each correction method would impact transcript counts accur-
acy. Simulated LRs datasets mimicking the real MCF10A and
GM12878 datasets both in terms of error-model and transcript-level
expression (cf: Supplementary Material) allows us to extend our
observations on SIRV data to more complex transcriptomes.
Importantly, it gives us insight into the capacity of a hybrid correct-
or to preserve and clarify transcript structure at the read resolution.
For measuring the impact of correction on structure and transcript
assembly accuracies, we computed the proportion of (simulated)
long reads whose transcript structure could be correctly elucidated
by aligners and their ability to preserve true exon connectivity and
to improve false ones (cf: Supplementary Table S2C and D).

3.4 Sequence quality of long reads
We measured the general quality of corrected sequences using the
percentage of mapped reads, the base accuracy and the type of errors
that remained in the sequences. These are shown in Figure 4. Our
first measure of performance was the number of mapped reads fol-
lowing correction (Fig. 4, Supplementary Table S1A). This was eval-
uated for all seven methods using three different aligners: Minimap2
(Li, 2018), GMAP (Wu and Watanabe, 2005) and GraphMap
(Sovi�c et al., 2016). For all three aligners, we kept default parame-
ters suggested for ONT data by their respective authors. We chose
Minimap2 and GraphMap as they were specifically designed for
long mRNA reads and GMAP because it was considered the best
splice-aware aligner for long RNA data according to a recent bench-
mark (Kri�zanovi�c et al., 2018). TALC shows consistently high map-
ping numbers regardless of the aligner used. Its closest competitor in
this aspect, LoRDEC, has a high number of mapped reads with
Minimap2 and GMAP but this drops to the lowest number of all
methods with GraphMap. We noticed a similar trend at the gene-
level assessment where LoRDEC correctly associated LRs with their
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gene of origin when Minimap2 or GMAP were used but was one of
the worst performers with GraphMap (Fig. 4, Supplementary Table
S2A). This can be explained by the rather high mismatch rate that
remains after LoRDEC correction (partly due to the insertion of
false SNPs from SRs sequencing errors, Supplementary Table S1D).

Based on these alignments, we computed the base accuracy of
corrected reads as in the study by Soneson et al. (2019) (Fig. 4,
Supplementary Table S1B–D). To assess whether the benchmark
performances depended on the coverage in SRs, we also computed
the summary statistics of base accuracy according to the gene cover-
age depth in SRs (Supplementary Table S1E). The results of this ana-
lysis show that TALC globally performs well on this measure and
across the entire range of SR coverage bins. Its closest competitors
for base accuracy are CoLoRMap and FMLRC.

3.5 Read length conservation
Long-read technologies are often used to determine entire transcript
architecture including alternative start or end sites (Reyes and
Huber, 2018). Hence, it is important that correction algorithms in-
clude a strategy to delimitate RNA read borders accurately. To com-
pare the length of corrected sequences to the raw read, we
calculated the relative distances between the raw and the corrected
read length over all real datasets (cf: Supplementary Table and Fig.
S1F). Overall, the methods considered seem to control read length
with an average 2–3% difference in length with the raw read.
CoLoRMap was the only exception as we found that it extended
reads with an additional 5–13.61% which could cause the correc-
tion to drastically overextend the transcript borders.

3.6 Exon structure preservation and clarification
LR technologies are able to capture the full connectivity between
exons of transcripts. Although this does not necessarily require nu-
cleotide resolution of the transcript, the error rate of current LR
technologies is sufficiently high to confound exon connectivity ana-
lysis (Fig. 3A). Here, we define ‘structural errors’ as the incorrect in-
clusion or deletion of an exon or the incorrect identification of
exonic boundaries. We developed a method to systematically iden-
tify these errors (Fig. 3B and Supplementary Material) and evaluated
the impact of LR correction methods on them.

Because the mapping approach used to assign LRs to a given
transcript may impact on structural errors we again tested three
mapping approaches: mapping of LRs to a reference genome (hg38)
using GMAP and Minimap2, mapping of LRs to a reference tran-
scriptome (hg38, ENSEMBL release 97) using GraphMap. In our
evaluation, we measured for each exon, how many were properly
identified after correction (Supplementary Table S2C and D). If
these exons were already properly identified before correction, we
say that they were preserved by the correction algorithm; if they
were not, we say that they were clarified by the correction algorithm
(Supplementary Table S2D). These results are summarized in
Figure 4B.

Regardless of the mapping strategy, we found that TALC is sys-
tematically in the top two best algorithms and globally performs the
best (Fig. 4B). Again, we notice that other algorithms may compete
with TALC on specific criteria given specific aligners but their per-
formance drops drastically in other conditions. For example, when
using the Minimap2 aligner, LSC slightly outperforms TALC in pre-
serving the number of properly assigned exons (99.3% versus

98.5% preserved exons) but is very poor at correcting exons that
were initially incorrect (14.8% versus 56.6% clarified exons).

3.7 Gene and transcript-level quantitation
To our knowledge, at the time, no algorithm dedicated to long-read
transcript-level quantitation has been published nor validated yet
(Sessegolo et al., 2019; Soneson et al., 2019). The authors of
Soneson et al. (2019) tested several strategies to assess whether
Nanopore data were fit for quantification. We reproduced their
approaches based on Salmon (Salmon quasi-mapping). When splice-
aware genome alignment was applicable, we also tested the ap-
proach Minimap2þSalmon. For comparison, we added a third ap-
proach, independent of Salmon, and simply based on GraphMap
transcript assignments. Quantitation was realized on real SIRV
Spike-In data (transcript-level) and on simulated datasets (gene-level
and transcript-level). On simulated data, this analysis suggests that
read correction results in a significant overall improvement of gene-
level quantification accuracy (cf: Supplementary Table S2A), all cor-
rection methods providing a rather similar gain in accuracy. This ob-
servation seems to hold also at the transcript-level, when using
Salmon quasi-mapping mode, both on simulated datasets
(Supplementary Table S2B) and real Spike-In data (cf:
Supplementary Table S2E). But, surprisingly, a prior alignment step
(using either Minimap2 or GraphMap) seems to level the estimates.

4 Discussion

High error rates of long-read sequencing technologies can substan-
tially bias the assignment of reads to unique transcripts and can also
introduce major structural errors in de novo transcript prediction.
Consistent with a previous study (Kuosmanen et al., 2018), we
show that proper hybrid correction can provide significant improve-
ment in the quality of downstream transcriptome analyses.
However, existing hybrid correction algorithms were originally
designed to improve genome assembly and they are not all suitable
for RNA-seq data (Lima et al.).

We propose a hybrid correction method tailored to RNA
sequencing that considers transcript abundance to detect the pos-
sible existence of splice junctions and correct RNA long reads. This
information is used to guide the exploration of a graph structure by
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Fig. 4. Benchmark of correction algorithms using sequence and transcript features.

(A) Radar chart of sequence-specific measures of correction efficiency for cell lines

GM12878 and MCF10A and for the SIRV spike-in set. (B) Radar chart of transcript

structure-specific measures of correction efficiency for data simulated from cell lines

GM12878 and MCF10A. Missing plots for CoLoRMap, Hercules and LSC mean

that these algorithms were incapable of running within less than a week on the given

dataset
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Fig. 3. Structural errors in long reads after different correction methods. (A)

Screenshot of the IGV viewer showing long reads aligned to the genome with

GMAP. A structural error (insertion) has occurred in the non-corrected long reads

(red circle). (B) Overview of our approach to finding structural errors which are ei-

ther deletions or insertions in LRs computationally generated from a given

transcript
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eliminating edges that are not consistent in terms of transcript abun-
dance while simultaneously using an adaptive threshold to account
for the existence of multiple transcript isoforms. By eliminating in-
consistent nodes, TALC reduces the inclusion of false nucleotide
variants present in short-read data. And by integrating coverage in-
formation, it can efficiently detect and account for the existence of
multiple transcript isoforms.

We tested the efficiency of our approach on three real and two
simulated datasets. Globally, TALC shows better correction than
currently used methods both in base accuracy and alignment rates
but more importantly it conserves the exon connectivity in tran-
scripts. Although other state of the art correction algorithms com-
pete with TALC on specific applications, they have clear deficiencies
on other important criteria that we summarize here.

FMLRC was the fastest software included in our benchmark.
Additionally, it does very well on base accuracy. However, it
showed poor performances over most transcript-specific measures.
This behaviour may be due to its approach for filtering ‘erroneous’
k-mers. The threshold is read-specific but is computed a priori from
the median SR read coverage (Wang et al., 2018). This likely deletes
minor isoforms k-mers when the difference in coverage with the
major isoform is high. In addition, we noticed that FMLRC tended
to trim reads.

Although it has long running times on real size datasets (cf:
Supplementary Table S3), CoLoRMap exhibits interesting proper-
ties when applied to RNA-seq data. Analysis on simulated data indi-
cates it can fairly improve the reconstruction of the inner body of
transcripts. Nonetheless, it lacks a specific strategy to stop correc-
tion at the borders, and has a marked tendency to extend reads. This
feature, though relevant for genome assembly, can be detrimental
on RNA-seq data when the corrected read originates from a gene
which expressed multiple UTR forms or undergoes alternative tran-
scription start and end.

Consistent with conclusions from the study by Lima et al.,
LoRDEC demonstrates very good results on most the transcriptome-
specific indicators. Its main drawback is a lower base accuracy due
to the inclusion of many sequencing errors from the SRs into the
LRs, especially across high SR coverage regions. Additionally, its
performances vary dramatically between aligners. Although TALC
and LoRDEC both use a graph-based approach, TALC includes an
adaptive count thresholding that is robust to coverage variations,
which allows to keep good correction performances even under me-
dium and high coverage. Second, LoRDEC makes use of a depth-
first approach, and thereby only operates a selection of the best path
at the end of the exploration. This also partly explains why it
includes so many mismatches into the long reads. Using a breadth-
first approach instead, TALC explores the paths in parallel and can
filter-out locally inconsistent paths on-the-fly.

TALC displayed a good capacity to improve sequence quality
while preserving splicing variants and proved robust to all error pro-
files considered. In addition, it provided rather consistent results
whatever the aligner that was used across all aligners. Overall,
TALC is systematically amongst the best performers across all met-
rics and seems fitted to improve the quality of transcriptome assem-
blies. It is worth noting that TALC can correct data from other
sequencing platforms such as PacBio.

Given the recent discovery of numerous novel functional tran-
scripts in multiple organs (Byrne et al., 2017; Clark et al., 2020), the
re-evaluation of transcript diversity and complexity in model organ-
isms (Li et al., 2018; Parker et al., 2020; Wang et al., 2019;
Workman et al., 2019) and the growing interest in Oxford
Nanopore direct-RNA multiple assets in viral transcriptome re-
search (Boldogk}oi et al., 2018, 2019; Keller et al., 2018; Viehweger
et al., 2019), TALC’s capacity to correct the entire gamut of tran-
scripts, and preserve the correct transcript structure may prove in-
creasingly valuable.

5 Data availability and implementation

TALC is written in Cþþ and uses the SeqAn library (Döring et al.,
2008; Reinert et al., 2017). The program is freely available under

the CECILL license in the Github repository (https://github.com/lbro
seus/TALC). Currently, the De Bruijn graph is built from k-mer
counts files as output by Jellyfish2 (Marçais and Kingsford, 2011).

All R scripts written to evaluate hybrid correction methods can
be found at https://github.com/lbroseus/TransAT.

Direct RNA Nanopore and Illumina RNA-seq MCF10A samples
have been deposited on GEO under accession number GSE126638.
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Marçais,G. and Kingsford,C. (2011) A fast, lock-free approach for efficient

parallel counting of occurrences of k-mers. Bioinformatics, 27, 764–770.

Miclotte,G. et al. (2016) Jabba: hybrid error correction for long sequencing

reads. AlgorithmsMol. Biol., 11, 10.

Middleton,R. et al. (2017) IRFinder: assessing the impact of intron retention

on mammalian gene expression. Genome Biol., 18, 51.

Morisse,P. et al. (2018) Hybrid correction of highly noisy long reads using a

variable-order de Bruijn graph. Bioinformatics, 34, 4213–4222.

Parker,M.T. et al. (2020) Nanopore direct RNA sequencing maps the com-

plexity of Arabidopsis mRNA processing and m6A modification. eLife, 9,

e49658.

Peng,Y. et al. (2013) IDBA-tran: a more robust de novo de Bruijn graph assem-

bler for transcriptomes with uneven expression levels. Bioinformatics, 29,

i326–i334.

Philippe,N. et al. (2009) Using reads to annotate the genome: influence of

length, background distribution, and sequence errors on prediction cap-

acity. Nucleic Acids Res., 37, e104–e104.

Reinert,K. et al. (2017) The SeqAn Cþþ template library for efficient sequence

analysis: a resource for programmers. J. Biotechnol., 261, 157–168.

Reyes,A. and Huber,W. (2018) Alternative start and termination sites of tran-

scription drive most transcript isoform differences across human tissues.

Nucleic Acids Res., 46, 582–592.

Sahlin,K. et al. (2020) Error correction enables use of Oxford Nanopore tech-

nology for reference-free transcriptome analysis. bioRxiv,

2020.01.07.897512.

Sahraeian,S.M.E. et al. (2017) Gaining comprehensive biological insight into

the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat.

Commun., 8, 15.

Salmela,L. and Rivals,E. (2014) LoRDEC: accurate and efficient long read

error correction. Bioinformatics, 30, 3506–3514.

Sessegolo,C. et al. (2019) Transcriptome profiling of mouse samples using

nanopore sequencing of cDNA and RNA molecules. Sci. Rep., 9, 12.

Shendure,J. et al. (2017) DNA sequencing at 40: past, present and future.

Nature, 550, 345–353.

Soneson,C. et al. (2019) A comprehensive examination of Nanopore native

RNA sequencing for characterization of complex transcriptomes. Nat.

Commun., 10, 14.

Song,L. and Florea,L. (2015) Rcorrector: efficient and accurate error correc-

tion for Illumina RNA-seq reads. GigaScience, 4, 48.

Sovi�c,I. et al. (2016) Fast and sensitive mapping of nanopore sequencing reads

with GraphMap. Nat. Commun., 7, 11.

Tardaguila,M. et al. (2018) SQANTI: extensive characterization of long-read

transcript sequences for quality control in full-length transcriptome identifi-

cation and quantification. Genome Res., 28, 396–411.

Viehweger,A. et al. (2019) Direct RNA nanopore sequencing of full-length

coronavirus genomes provides novel insights into structural variants and

enables modification analysis. Genome Res., 29, 1545–1554.

Wang,J.R. et al. (2018) FMLRC: hybrid long read error correction using an

FM-index. BMC Bioinformatics, 19, 50.

Wang,X. et al. (2019) Full-length transcriptome reconstruction reveals a large

diversity of RNA and protein isoforms in rat hippocampus. Nat. Commun.,

10, 15.

Weirather,J.L. et al. (2015) Characterization of fusion genes and the signifi-

cantly expressed fusion isoforms in breast cancer by hybrid sequencing.

Nucleic Acids Res., 43, e116–e116.

Workman,R.E. et al. (2019) Nanopore native RNA sequencing of a human

poly(A) transcriptome. Nat. Methods, 16, 1297–1305.

Wu,T.D. and Watanabe,C.K. (2005) GMAP: a genomic mapping and align-

ment program for mRNA and EST sequences. Bioinformatics, 21,

1859–1875.

Zhao,Y. et al. (2019) Transcriptomic profiles of 33 opium poppy samples in

different tissues, growth phases, and cultivars. Sci. Data, 6, 10.

TALC 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa634/5872522 by Institut de G

énétique H
um

aine user on 15 D
ecem

ber 2020




