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Introduction

The strengthening of elemental metals by alloying has a long history. The un-2 derlying mechanism of strengthening [1, [START_REF] Gleiter | Fundamentals of Strengthening Mechanisms[END_REF]2] is the interaction of dislocations with 3 either (i) the alloying elements as solutes in the lattice or (ii) the stable and/or 4 metastable precipitates formed by the host elements and the alloying elements. So-5 lute strengthening due to the glide of dislocations through a field of substitutional 6 solute atoms, whether the solutes are randomly distributed on the lattice sites or for Al, ∼ 2.57 for Ni, ∼ 3.21 for Cu, and ∼ 2.85 for Au [START_REF] Bower | Applied Mechanics of Solids[END_REF]. Dilute alloys based Leyson et al. [START_REF] Paul | Quantitative prediction of solute strengthening in aluminium alloys[END_REF][START_REF] Leyson | Solute strengthening from first 625 principles and application to aluminum alloys[END_REF] formalized the above description in a more quantitative 85 way, in particular (i) by making connection with the atomistically-computed solute / 86 dislocation interaction energies, and (ii) by considering a dislocation of total length L 87 to become wavy with a wavelength 4ζ and amplitude w, constructing the total energy 88 as a function of (ζ, w), and minimizing the total energy to obtain the characteristic 89 length scales (ζ c , w c ). The elastic energy due to increased dislocation length can be 90 expressed as

91 ∆E el ≈ Γ w 2 2ζ L 2ζ , (1) 
when w ζ, which is typically the case. The potential energy due to solute interac-92 tions with the dislocation starts from the fundamental interaction energy U (x i , y j )

93
between a solute at in-plane position (x i , y j ), and a straight dislocation aligned along 94 z at the origin. For fcc metals, x and y are the < 110 > and < 111 > crystallo-95 graphic directions. In a specific solute environment, the change in potential energy 96 of a segment as the dislocation glides a distance w from an initial starting point is

97 ∆U tot (ζ, w) = ij n ij [U (x i -w, y j ) -U (x i , y j )] (2) 
where n ij is the number of solute atoms along the dislocation length ζ. In a random 98 alloy, the average energy change is zero, and the dislocation segments seek favorable 99 (energy-lowering) fluctuations that scale with the standard deviation of the potential 100 energy change. The total potential energy of the wavy dislocation in the random alloy 101 can be derived as [START_REF] Leyson | Solute strengthening from first 625 principles and application to aluminum alloys[END_REF],

102

∆E p = - ζ √ 3b 1 2 ∆ Ẽp (w) • L 2ζ , (3) 
where ∆ Ẽp (w) = c ij (U (x i -w, y j ) -U (x i , y j ))

2 1 2 , (4) 
is the characteristic energy fluctuation per unit length of dislocation and c is the .

(

) 5 
The energy barrier is reduced by an applied stress, which does work of -τ bζ c x on 105 the dislocation as it glides over distance x. The zero-temperature yield stress τ y0 is 106 the stress needed to reduce the barrier to zero so that the dislocation moves with no 107 thermal activation. This flow stress is given by

108 τ y0 = π 2 ∆E b bζ c (w c )w c = 1.01 ∆ Ẽ4 p (w c ) Γb 5 w 5 c 1 3 . ( 6 
)
For stresses τ < τ y0 , the energy barrier is finite and the dislocation segments overcome the barrier by thermal activation. The time required to overcome the barrier is then related to the plastic strain rate. The finite-temperature and finite strain-rate flow stress τ y (T, ε) is then derived as

τ y (T, ε) = τ y0 1 - kT ∆E b ln ε0 ε 2 3 
; at low temperatures, [START_REF] Clouet | The vacancy -edge dislocation interaction in FCC metals: a compar-585 ison between atomic simulations and elasticity theory[END_REF] where ε0 = 10 4 s -1 , consistent with previous works [START_REF] Paul | Quantitative prediction of solute strengthening in aluminium alloys[END_REF][START_REF] Varvenne | Theory of strengthening in 683 fcc high entropy alloys[END_REF]. At stresses below ≈ 0.5τ y0 109 waviness on multiple scales becomes important [START_REF] Labusch | Cooperative effects in alloy hardening[END_REF][START_REF] Leyson | Solute strengthening at high temperatures[END_REF] but this is not crucial for the 110 present paper.

111

From the skeleton review of the theory above, it is evident that the key parameters The solute/dislocation interaction energies U (x i , y j ) can be computed using inten-121 sive first-principles methods [START_REF] Paul | Quantitative prediction of solute strengthening in aluminium alloys[END_REF][START_REF] Leyson | Solute strengthening from first 625 principles and application to aluminum alloys[END_REF][START_REF] Varvenne | Solute strength-679 ening in random alloys[END_REF][START_REF] Yasi | First-principles data for solid-691 solution strengthening of magnesium: From geometry and chemistry to proper-692 ties[END_REF] for dilute alloys. Atomistic simulations 

U (x i , y j ) = p(x i , y j )∆V, (8) 
where p(x i , y j ) is the pressure field created at position (x i , y j ) by the dislocation 129 centered at the origin. The above expression is specific to substitutional solutes in 130 cubic materials; the general form involves the contraction of the stress tensor and 131 the solute misfit strain tensor [START_REF] Clouet | The vacancy -edge dislocation interaction in FCC metals: a compar-585 ison between atomic simulations and elasticity theory[END_REF][START_REF] Clouet | Dislocation interaction with C in α-Fe: A comparison between 589 atomic simulations and elasticity theory[END_REF]36,[START_REF] Tehranchi | Solute strengthening of basal slip in 671 Mg alloys[END_REF] and is straightforward. Note that solute 132 interactions with the stacking fault of the dissociated fcc dislocation are neglected 133 here. The pressure field of the dislocation depends on the dislocation core structure.

134

The dislocation structure is characterized generally by the distribution of Burgers 

p(x i , y j ) = C 44 f (x i , y j , C 11 C 44 , A, ∂b ∂x ), (9) 
where f is a dimensionless pressure field. f is obtained from the fundamental Stroh solution σ Stroh ij for the components of the stress field created by an incremental Burgers vector db(x ) in an anisotropic material [START_REF] Stroh | Dislocations and Cracks in Anisotropic Elasticity[END_REF], followed by superposition of the fields due to all the increments of Burgers vector. Specifically, we can write

f (x i , y j ) = 1 C 44 ∞ -∞ ∂σ Stroh kk ∂b (x i -x , y j ) ∂b ∂x (x )dx . (10) 
Substituting the above approximation for U (x i , y j ) into all of the prior results leads to a decoupling of the solute misfit volume and the dislocation fields. The key energy quantity in Equation 4 becomes

∆ Ẽp (w) = C 44 ∆V c 1 2 ij (f (x i -w, y j ) -f (x i , y j )) 2 1 2 , = C 44 ∆V c 1 2 g w, C 11 C 44 , A, ∂b ∂x . (11) 
6

The minimization with respect to w to obtain w c involves only the dislocation-corestructure-dependent quantity g via the solution of dg/dw = g/2w. The final quantities controlling the flow stress versus temperature and strain rate reduce to the forms ∆E b = 1.22 (w c g (w c ))

2 3 cC 2 44 ∆V 2 Γ b 1 3 , (12) 
τ y0 = 1.01 g 4 (w c ) w c 5 1 3 c 2 C 4 44 ∆V 4 Γb 5 1 3 . ( 13 
)
For a given matrix material, the analysis is independent of the solute(s) added to 

In this form, the contribution to solute-dislocation interaction energy from disloca-155 tion structure (g iso ) and elasticity are fully decoupled. All predictions scale with µ avg 156 and ν avg . Here, we examine the three standard averaging schemes of Voigt, Reuss,

157
and Hill [START_REF] Voigt | Lehrbuch der Kristallphysik[END_REF]30,[START_REF] Hill | The Elastic Behaviour of a Crystalline Aggregate[END_REF]. For all three, the bulk modulus is 158

K avg = C 11 + 2C 12 3 , (15) 7 
while the shear moduli are given by

µ Voigt avg = C 11 -C 12 + 3C 44 5 , (16) 
µ Reuss avg = 5C 44 (C 11 -C 12 ) 3C 11 -3C 12 + 4C 44 , (17) 
µ Hill avg = µ Voigt avg + µ Reuss avg 2 . ( 18 
)
The average Poisson's ratio ν avg is then computed from µ avg and K avg as

159 ν avg = 3K avg -2µ avg 2 (3K avg + µ avg ) . ( 19 
)
The Voigt and Reuss results are polycrystalline upper and lower bounds, respectively. 

180 ∂b ∂x (x) = 1 √ 2πσ 2 b p,1 e -(x+d/2) 2 2σ 2 + b p,2 e -(x-d/2) 2 2σ 2 . ( 20 
)
8

or two local minima depending on the core structure [START_REF] Varvenne | Solute strength-679 ening in random alloys[END_REF]. Two local minima, w c,1 182 and w c,2 , emerge when d is sufficiently larger than σ. In such situations, the Burgers 

d =4b d =6b d =7b d =9.5b d =13.5b
Figure 1: Non-dimensional total energy of a wavy dislocation in a random alloy as a function of the amplitude, for various Shockley partial separation distances d at fixed partial peak width σ/b = 1.5 as computed assuming isotropic elasticity. For partial separations > 6b, there are two minima at w c,1 and w c,2 while for small partial separations the first minimum is subsumed by the second minimum, resulting in a single minimum label as w c,1 .

Results

192

We now assess the accuracy of the easily-used isotropic model relative to the The Voigt averaged moduli should not be used for estimating the line tension [START_REF] Barnett | 579 The effects of elastic anisotropy on dislocation line tension in metals[END_REF].

211

Thus, to minimize the differences between isotropic and anisotropic results, the 212 line tension must be calculated either directly from µ 111/110 , or from the isotropic 213 polycrystal data. In no case does the isotropic approximation for g yield a different number of solutions for w c than the anisotropic case. Choosing the line tension as described above, we thus compute the relative error of the isotropic solution as

∆E iso b -∆E b ∆E b = µ avg C 44 1 + ν avg 1 -ν avg 2 3 w iso c w c • g iso w iso c g (w c ) 2 3
-1; and ( 21)

τ iso y0 -τ y0 τ y0 = µ avg C 44 1 + ν avg 1 -ν avg 4 3 w c w iso c 5 3 g iso w iso c g (w c ) 4 3 -1. ( 22 
)
The relative error is independent of (i) any absolute values of the elastic constants,

216

(ii) the solute misfit volumes, (iii) dislocation line tension, (iv) total Burgers vec-217 tor magnitude, and (v) any numerical prefactors. Thus, the results depend only 218 on the ratios of anisotropic elastic constants, the isotropic averaging scheme (see Overall, the errors when using the Voigt isotropic elastic constants are within 5% 275 of the true anisotropic results, and typically overestimating. Deviations do increase 276 with increasing A, but are almost always small for A < 3 and remain moderate for 277 A < 4. We discuss the practical application of these results below.

278 15 We first present the isotropic results over the range of core structures. From Eqs. 12, 13 and 14, it is evident that the energy barrier and strength are functions of w iso c (d/b, σ/b) and g iso (w c , d/b, σ/b), with

14 1 0 -1 1 0 -1 1 0 -1 1 0 -1 1 0 -1 1 0 -1 1 0 -1 1 0 -1 1 2 3 4 5 σ = 1b σ = 1.5b σ = 2b σ = 2.5b d = 3b d = 7b d = 11b d = 15b ( 
σ = 1b σ = 1.5b σ = 2b σ = 2.5b 1 0 -1 1 2 3 4 5 1 0 -1 1 0 -1 1 0 -1 1 0 -1 1 0 -1 d = 7b d = 11b d = 15b ( 
∆E b ∝ w iso c g iso 2/3 , (23) 
τ y0 ∝ g iso /w iso 

324

The full stiffness tensor of an existing alloy sample can be measured using standard 325 methods for single crystals and advanced techniques for polycrystals [START_REF] Li | Determination of single crystals' elastic constants 628 from the measurement of ultrasonic velocity in the polycrystalline material[END_REF]14,[START_REF] Du | Facile measurement of single-crystal elastic constants 591 from polycrystalline samples[END_REF]. It is 

(2A + 3)(3A + 2) 3A 2 + 19A + 3 , (27) 
ν Voigt avg ≈ µ expt avg 1 + ν expt avg -µ Voigt avg 1 -2ν expt avg 2µ expt avg 1 + ν expt avg + µ Voigt avg 1 -2ν expt avg . (28) 
The lattice constant can be computed using first-principles methods or atomistic 332 simulations with suitable interatomic potentials, or measured by diffraction. The 333 solute misfit volumes can be computed with some additional effort [START_REF] Varvenne | Average-atom inter-681 atomic potential for random alloys[END_REF][START_REF] Yin | First-principles-based prediction of yield strength 694 in the RhIrPdPtNiCu high-entropy alloy[END_REF]. The 334 misfit volumes can be determined in principle from experiments on alloys at different 335 compositions followed by interpolation, but this requires fabrication of the alloys [START_REF] Bandyopadhyaya | Low temperature lattice parameter of 576 nickel and some nickel-cobalt alloys and grüneisen parameter of nickel[END_REF].

336

Lattice constants and misfit volumes can also be estimated using Vegard's law, which 337 has been shown to be fairly accurate over a range of alloys [START_REF] Maresca | Mechanistic origin of high retained strength in 631 refractory bcc high entropy alloys up to[END_REF][START_REF] Varvenne | Theory of strengthening in 683 fcc high entropy alloys[END_REF][START_REF] Varvenne | Predicting yield strengths of noble metal 677 high entropy alloys[END_REF][START_REF] Yin | First-principles-based prediction of yield strength 694 in the RhIrPdPtNiCu high-entropy alloy[END_REF]. A). This value may partially compensate for (i) additional "chemical" 348 contributions in the core that are not included in the elasticity model and (ii) a larger 349 σ/b combined with a larger numerical prefactor (see Ref. [START_REF] Maresca | Mechanistic origin of high retained strength in 631 refractory bcc high entropy alloys up to[END_REF] and discussion below).

350

For example, for Al-X binary alloys, the full DFT-computed X-solute interactions 351 energies were computed [START_REF] Leyson | Solute strengthening from first 625 principles and application to aluminum alloys[END_REF] but the final results could be well represented by the We also note that these coefficients do not enter 455 into any difference between isotropic and anisotropic theories, and so do not affect 456 the primary analyses of this paper.

457

The theory is also currently being extended to include the effects of solute-solute 458 interactions, while remaining in the random alloy limit. The anisotropic elasticity 459 theory here will remain valuable because the solute-solute interactions can be in-460 corporated along with the elasticity contributions to solute/dislocation interactions.

461

Thus, the theory will continue to improve by incorporating increasing, but realistic, 27

103 concentration of the solute. 104

 104 Minimization of the total energy, ∆E tot = ∆E p + ∆E el , with respect to ζ is analytic. The subsequent minimization with respect to w reduces to the solution of d∆ Ẽp (w)/dw = ∆ Ẽp (w)/2w. Each individual segment at length ζ c then lies in a minimum local energy well of depth -(ζ c / √ 3b)) 1/2 ∆ Ẽp (w c ) with a nearby energy maximum at distance w c along the glide plane. The net barrier height, including the reduction in elastic energy, leads to an energy barrier of ∆E b = 1.22 w 2 c Γ∆ Ẽ2 p (w c ) b 1 3

112 3 .

 3 for solute strengthening are the energy barrier ∆E b and zero-temperature flow stress 113 τ y0 . These quantities are directly derived from the underlying solute/dislocation 114 interaction energies U (x i , y j ) and dislocation line tension Γ, and so the theory has 115 no fitting parameters. The theory above has been outlined for the case of a dilute 116 binary alloy (one type of solute in a host matrix) but the analysis can be generalized 117 to arbitrary compositions and thus encompasses High Entropy Alloys and other non-118 dilute solid solution alloys[START_REF] Varvenne | Theory of strengthening in 683 fcc high entropy alloys[END_REF][START_REF] Varvenne | Solute strength-679 ening in random alloys[END_REF].119 Linear elasticity model 120

135

  vector ∂b/∂x along the glide plane; we discuss analytical descriptions of the core 136 structure later. The pressure field generated by the dislocation structure is then a 137 function of the Burgers vector distribution and the elastic constants, and can be 138 written in the form 139

160 3 . 3 .

 33 The intermediate Hill average was proposed because it tends to be closer to many 161 experimental measurements of elastic constants in polycrystals than either of the 162 bounds. Lastly, µ avg /C 44 and ν avg are dimensionless functions of only C 11 /C 44 and 163 the anisotropy ratio A. Therefore, comparisons between isotropic and anisotropic 164 elasticity depend only C 11 /C 44 , A, the slip density ∂b/∂x, and the chosen isotropic 165 averaging scheme. 166 Dislocation core structure parameterization 167 The strengthening parameters depend on the dislocation structure as character-168 ized by ∂b/∂x. In fcc systems, the relevant a/2 110 dislocations dissociate into two 169 Shockley partial dislocations, b p,1 and b p,2 , of a/6 112 type. Following Varvenne 170 et al. [42], we parameterize the dislocation core structure in terms of two Gaussian 171 functions of width σ separated by the Shockley partial separation d. The classical 172 analytical Peierls-Nabarro model yields a Lorentzian distribution [6], and atomistic 173 simulations of the shear displacement across the glide plane show a slow decay sim-174 ilar to the Lorentzian function. However, the atomistic simulations give the total 175 shear displacement, not solely the "plastic" displacement associated with the dis-176 tribution ∂b/∂x. The slow decay in atomistics is well-represented as arising from 177 the elastic strain due to a Gaussian distribution of Burgers vector ∂b/∂x, as shown 178 explicitly for atomistic models of Al, Cu, and Ni in Appendix A. The Burgers vector 179 distribution is thus parameterized as

183

  vector distribution has two very distinct peaks, one for each partial, and the first 184 minimum occurs at small w c typically smaller than the partial separation d. Also, 185 as evident from Figure 1, the "second" larger w c,2 solution exists for all parameter 186 values, with w c,2 decreasing with decreasing d/b. The "first solution" w c,1 exists for 187 larger d/b but is subsumed by the "second solution" below d/b ≈ 6. Unfortunately, 188 the literature seems to suggest that it is the larger-w c solution that emerges with 189 increasing d/b whereas it is really the smaller w c that emerges as a new solution.190 Later on we discuss results for both solutions when they arise.

9 dislocation

 9 193 more-complex anisotropic model. Anisotropy enters in the theory through (i) the 194 line tension, and (ii) the dislocation core structure quantity g. Both 195 aspects are examined in the following.

196 4 .

 4 1. Line tension 197The line tension Γ enters the theory as Γ 1/3 in ∆E b and as Γ -1/3 in τ y0 (Equa-198 tions 12 and 13), and hence results are weakly dependent on the precise value of 199 Γ. However, the line tension scales with the elastic moduli, and so is in princi-200 ple a function of the anisotropy. For fcc alloys, the line tension is best related to 201 the shear modulus in the < 111 > plane along the < 110 > direction, µ 111/110 = 202 (C 11 -C 12 + C 44 ) /3 via the scaling relation Γ = αµ 111/110 b

214 4 .

 4 2. Error of the isotropic approximation215

Figure 2 :228 4 . 3 . 11 2. 7 ;Figure 3 :

 2431173 Figure 2: Comparison of µ avg with µ 111/110 for the different isotropic averaging schemes as a function of C 11 /C 44 and A.

Figure 4 :

 4 Figure 4: Relative differences in ∆E b and τ y0 as estimated with Voigt isotropic elastic constants versus full anisotropy as a function of C 11 /C 44 and anisotropy ratio (for dislocation core parameters d = 7b and σ = 1.5b). Marker colors indicate different C 11 /C 44 values. Filled circles: first minimum solution; filled stars: second minimum solution.

Figure 5 Figure 6 13 The

 5613 Figure5shows the relative differences in w c , ∆E b and τ y0 between the Voigt

  274

Figure 5 :

 5 Figure 5: Relative differences in (a) w c , (b) ∆E b and (c) τ y0 computed with the Voigt-averaged isotropic elastic constants versus full anisotropic results as a function of the anisotropy ratio A, for the first minimum solution.

Figure 6 :

 6 Figure 6: Relative differences in (a) w c , (b) ∆E b and (c) τ y0 computed with the Voigt-averaged isotropic elastic constants versus full anisotropic results as a function of the anisotropy ratio A, for the second minimum solution. Note that there is no second minimum solution for the wider partial spreads σ/b = 2, 2.5 when the partial separation is 7b since it is effectively one full dislocation undissociated.

c 5 /4 4/ 3 . ( 24 )Figures 7 297 Figure 7 [ 6 ]Figure 7 : 18 µ

 5324729776718 Figures 7(b) and 7(c) show these normalized quantities over a wide range of

  however, to measure only the average elastic moduli of equiaxed 327 polycrystals, which are typically close to the Hill approximation[START_REF] Hill | The Elastic Behaviour of a Crystalline Aggregate[END_REF]. Γ can thus 328 be computed using the experimental isotropic shear modulus. The Voigt-averaged 329 values can then be estimated by using the anisotropy A of the rule-of-mixtures C rom ij 330 and the measured isotropic elastic constants with equations 15-19 as

338

  The dislocation core parameters d/b and σ/b are more challenging to assess. For-339 tunately, most results are insensitive to d/b for d/b ≥ 7. The partial separation d/b 340 can be estimated from knowledge of the stable stacking fault energy γ ssf and ana-341 lytic and/or Peierls-Nabarro models. It can also be measured, on average, via TEM 342 [28, 19]. The partial core spreading σ/b is the least accessible quantity, yet the results 343 are rather sensitive to this value. The uncertainty in σ/b likely dominates the over-344 all uncertainty of the elasticity model, whether isotropic or anisotropic. Successful 345 past applications have used a single value of σ/b = 1.5 with the Leyson et al. model, 346 which is on the low end of physical values seen in several fcc atomistic core structures 347 (Appendix

352 20 lished to be 6 , 21 theFigure 5 )

 206215 Figure5). The remaining inputs to the theory are unchanged. Using the components 405

415 6 .

 6 Discussion and Summary416The illustration in the previous section shows how experimental measurements 417 provide some guidance on the relevant material properties needed in the theory. As 418 noted, in the absence of experiments, many of these quantities can be estimated 419 or computed using first-principles[START_REF] Yin | First-principles-based prediction of yield strength 694 in the RhIrPdPtNiCu high-entropy alloy[END_REF]. Thus, there are different avenues for evalu-420 ating the parameters needed in the model. Alloy design and discovery will follow 421 the route of computation. The use of experimental inputs on materials that have 422 been fabricated and tested can further validate the theory or help identify if other 423 factors (solute-solute interactions; chemical short-range order; microstructure) are 424 important in determining strength. 425 There are uncertainties associated with each material quantity, and the errors 426 associated with these uncertainties can accumulate. The elasticity theory itself is an 427 approximation to a more-complete theory, and even the full theory is not perfect. 428 Nonetheless, the theory provides general guidance for understanding what material 429 variables determine the strength, and their relative importance. This allows for 430 the rationalization of experimental trends across families of alloys and provides a 431 framework for searching higher-performance alloys.

432 22 random

 22 alloy continues to evolve. In application to edge dislocations in bcc alloys, 434 a new general stochastic analysis of the wavy dislocation configuration has been 435 presented[START_REF] Maresca | Mechanistic origin of high retained strength in 631 refractory bcc high entropy alloys up to[END_REF]. This analysis involves a more-detailed statistical analysis of the wavy 436 dislocation structure via stochastic modeling of the structure segment-by-segment 437 and including the full statistical distribution of possible segment energy changes due 438 to the solute fluctuations. This analysis leads to additional numerical coefficients to that obtained using the present Leyson model with σ/b = 1.5 (dimensionless 451 coefficient ∼ 0.017) and with the Leyson coefficient 1.01, giving a net factor ∼ 452 0.017. However, for overall consistency with the previous literature and successful 453 quantitative application of the Leyson model, we advocate continued use of the 454 original Leyson model coefficients.

463

  In summary, we have shown that the predictions of a fully anisotropic elastic 464 model for solute strengthening can be obtained using an isotropic elasticity model 465 with the Voigt-averaged elastic constants for the dislocation field and the Hill-466 averaged elastic constants for the line tension. Additional small correction factors 467 to match the anisotropic result precisely are also provided. The effects of anisotropy 468 are not negligible -the use of the standard Hill estimate for the isotropic moduli 469 in equations 21 and 22 leads to rather lower strength predictions for high anisotropy is taken as the distance between the peaks in D∆u x /Dx and the average or 532 center position x c of the full dislocation is taken as the middle of the peaks. σ/b is 533 then the only fitting parameter, computed by a least-squares method, considering 534 both components ∂bx ∂x and ∂bz ∂x . Figure A.8 shows the best-fit results using dislocations 535 symbols ⊥ ⊥ ⊥ and the fitted value of σ/b is shown in each figure. The fits are gener-536ally good, with root-mean-square error below ∼ 0.01. We note that fits to other

Figure A. 8 :

 8 Figure A.8: Analysis of the dislocation core: atomistics, Gaussian fit and relative displacement gradient due to the fitted Gaussian core. The blue stars are the D∆u/Dx computed from atomistic displacements near the dislocation core, the dislocations ⊥ ⊥ ⊥ are from bimodal Gaussian fit to the atomistic D∆u/Dx (explained in the text) and the red filled circles • are the D∆u tot /Dx computed from the anisotropic displacement field due to the dislocations ⊥ ⊥ ⊥ (also explained in the text).

  2 . Values of α ∼ 1/16 -

	203	
	204	1/8 have been used, with the larger value found in several atomistic studies of bowed-
		out dislocations [35]. In the absence of the crystal anisotropic elastic constants,

205 µ 111/110 must be appropriately estimated. Figures 2(a)-(c) thus displays the ratios 206 µ avg /µ 111/110 for the Voigt, Reuss and Hill averaging schemes, and for an important 207 range of A and C 11 /C 44 . The ratio (µ Hill avg /µ 111/110 ) 1/3 is nearly unity over a wide range 208 of A and C 11 /C 44 , deviating by at most 5%. Thus, µ Hill avg , which is close to the esperi-209 mental polycrystalline shear modulus, should be used in estimating the line tension.

210
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Application using experimental or computational inputs

Here we provide a simple method for experimentalists and computational material 308 scientists to investigate alloy strengthening in existing or new materials, reasonably 309 accounting for elastic anisotropy. This is further illustrated on a specific HEA case.

310

In section 4 we have established that the dislocation line tension is well estimated as Γ = αµb 2 using the Hill-average moduli. We have also compared the energy barrier for dislocation motion (∆E b ) and the zero-temperature yield stress (τ y0 ) using Voigt-averaged elastic constants versus full anisotropic stiffness tensor, and found a deviation of mostly 5% (occasionally ∼ 10% for ∆E b and ≥ 10% for τ y0 , but only for very high anisotropy). So, for a first estimation of the strengthening, we can avoid the cumbersome anisotropic formalism and instead make isotropic predictions ∆E Voigt 

according to Equations 12 and 13. Finally, for a more-accurate prediction accounting 311 for the elastic anisotropy, the above isotropic estimations for ∆E b and τ y0 can be 312 corrected by the additional factors shown in Figures 5 and6.

313

The above procedure requires ingredients from either experiments or atomistic [START_REF] Szajewski | The influ-661 ence of anisotropy on the core structure of Shockley partial dislocations within 662 FCC materials[END_REF]. Here, we show that a Gaussian function provides a better description of the 500 plastic displacements associated with the atomistic dislocation core structure.

501

The Burgers vector distribution is the plastic slip distribution along the glide 502 plane. The plastic slip is not the same as the total shear strain, due to the additional 503 elastic shearing. In the centers of the partial cores of the dislocation, the elastic 504 shearing is indeed small and the use of elasticity questionable. Away from the centers