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QUASI-STATIONARY DISTRIBUTION FOR STRONGLY FELLER
MARKOV PROCESSES BY LYAPUNOV FUNCTIONS AND

APPLICATIONS TO HYPOELLIPTIC HAMILTONIAN SYSTEMS

ARNAUD GUILLIN†, BORIS NECTOUX†, AND LIMING WU†

Abstract. In this paper, we establish a general result for the existence and the
uniqueness of the quasi-stationary distribution µD of a strongly Feller Markov process
(Xt, t ≥ 0) killed when it exits a domain D, under some Lyapunov function condition.
Our result covers the case of hypoelliptic damped Hamiltonian systems. Our method
is based on the characterization of the essential spectral radius by means of Lyapunov
functions and measures of non-compactness.
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1. Introduction

1.1. Setting and literature. The notion of quasi-stationary distribution is a central
object in the study of population processes or more generally of models derived from
biological systems, see for instance [24, 60, 25, 14, 17, 22] and references therein. More
recently, the notion of quasi-stationary distribution has attracted a lot of attention in
the mathematical justification of the very efficient accelerated dynamics algorithms [71,
81, 80, 64] (see also [65, 66]) which are widely used in practice and aim at simulating
the atomistic evolution of statistical systems over long time scales (by accelerating the
sampling of the exit event from a metastable macroscopic state D). Let us be more
precise on this. A typical process used in simulation in statistical physics to model
the evolution of the positions of the particles of a system is a (stochastic) hypoelliptic
damped Hamiltonian systems ((xt, vt), t ≥ 0) on Rd × Rd (see (6.1)), where xt ∈ Rd

gathers the positions of the particles of the system and vt ∈ Rd their velocities at
time t ≥ 0, (d = 3N, N being the number of particles). In most applications of the
algorithms mentioned above, the macroscopic state is associated with a subdomain
D of R2d of the form D = O × Rd, where O is a subdomain of Rd. The set O is
defined in practice as a neighborhood (bounded or not) of some local minimum of the
potential energy function V : Rd → R (the interatomic potential function), where the
process (xt, t ≥ 0) can spend a huge amount of time before leaving it 1 (in this case,
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1Because of the presence of energetic barriers.
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2 A. GUILLIN, B. NECTOUX, AND L. WU

D is called a metastable region). For such domains D, it is thus expected that the
conditional distribution of (xt, vt) before leaving D is close to a local equilibrium inside
D. This local equilibrium inside D is described by a quasi-stationary distribution (see
(2.3)). The exit event from D can thus be studied starting from this quasi-stationary
distribution [51, 29, 2, 56] which is at the heart of the mathematical analysis of the
accelerated dynamics algorithms mentioned above (see [53, 29, 31, 52, 30, 2] when the
considered process is the overdamped Langevin process, an elliptic diffusion).

The existence of a quasi-stationary distribution (as well as its uniqueness) for hy-
poelliptic processes is therefore of important interest in Molecular Dynamics. This
question is an open problem (as mentioned e.g. in [51, 56]) that we answer in this
work in our main result Theorem 6.9. More precisely Theorem 6.9 provides existence
and uniqueness of a quasi-stationary distribution for hypoelliptic damped Hamiltonian
systems (6.1) on domains D of the form O× Rd. It also provides the exponential con-
vergence of the law at time t of the conditioned process towards this quasi-stationary
distribution.

The method we develop in this work allows to deal with hypoelliptic damped Hamil-
tonian systems with coefficients which are only continuous. In addition, the damping
coefficient can be unbounded and the position state space O is not necessarily bounded.
The latter is of practical interest for the following reason. In many applications of the
accelerated algorithms mentioned above, O is defined as the basin of attraction of a
local minimum of the potential function V for the dynamics ẋ = −∇V (x). In many
situations, these basins of attraction are unbounded.

Quasi-stationary distributions for hypoelliptic diffusions have also been studied at
the same time in [55, 68] for the Langevin dynamics with C∞ coefficients, constant
damping coefficient, and bounded position state space O. Hypoelliptic diffusions killed
at the boundary of a subdomain D of Rm have also been studied at the same time in
[8] when D is bounded and satisfies a noncharacteristic boundary condition, and the
coefficients of the diffusions are smooth and satisfies some Hörmander conditions. None
of these conditions are satisfied when D = O × Rd and for the processes considered in
Theorem 6.9. Let us also mention that non conservative force fields are also considered
in [55], and the approach developed in [8] allows to deal with some non strong Feller
processes.

Many different criteria have been given to ensure the existence and uniqueness of a
quasi-stationary distribution for different Markov processes, see [18, 38, 19, 42, 21, 67,
49, 72, 74, 86, 44, 20] and [76, 3] (based on the R-theory for Markov chains [77, 78]). We
also mention [43] for the study of existence of quasi-stationary distributions through
the notion of quasi-compact operators in the case of discrete time Markov chains, see
also [46, 39]. In particular, for elliptic diffusions killed when exiting a bounded sub-
domain of Rd, the existence and uniqueness of a quasi-stationary distribution are well
known, see for instance [45, 21, 18, 51, 67, 42]. When considering unbounded domains,
it is known that it might exist many quasi-stationary distributions, see [57]. We also
refer to [33, 32] for the study of quasi-stationary distributions on a finite state space
(see also [23] when considering a discrete state space) and to [26, 79, 11, 37, 60], and
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references therein, for the approximation of the quasi-stationary distribution using in-
teracting particle system in different settings (see also [9, 10]).

We finally refer to [62] for a spectral study of the kinetic Fokker-Planck operator
on L2(O × Rd) when O is bounded with several boundary conditions on ∂O × Rd (see
also [4, 47] and references therein).

1.2. Purpose of this work. We recall that the main result of this work is Theorem 6.9.
It provides existence and uniqueness of a quasi-stationary distribution for hypoelliptic
damped Hamiltonian systems (6.1) on domains D = O×Rd, as well as the exponential
convergence of the law at time t of the conditioned process towards this quasi-stationary
distribution.

Theorem 6.9 is based on the general result Theorem 2.2 which gives a general frame-
work (see more precisely (C1)-(C5) in the next section) in which we can establish for
general strong Feller Markov processes (Xt, t ≥ 0) valued in a Polish space S:

(1) the existence of quasi-stationary distribution µD of the process (Xt, t ≥ 0) in-
side D (see (2.3) for definition);

(2) the uniqueness of a quasi-stationary distribution µD satisfying µD(W1/p) < +∞,
where W is the Lyapunov functional appearing in (C3);

(3) the exponential convergence of the conditional distribution Pν(Xt ∈ ·|t < σD)
towards µD, for any given initial distribution ν such that ν(W1/p) < +∞.

In particular, when the Lyapunov functional W is bounded (which is the case for in-
stance when S is compact), the uniqueness of the quasi-stationary distribution holds
(see more precisely (b) in Theorem 2.2 and the discussion after Theorem 2.2). Our con-
ditions on the semigroup of the killed Markov processes are quite general for strongly
Feller Markov processes. We build our argument upon the litterature on non-killed
Markov processes, where Lyapunov type conditions have already been widely investi-
gated these past few years, in particular to:

• Study the stability of differential equations with random right-hand side (since
the pioneer works of Khasminskii, see the reference textbook [48]). We also refer
to [1] where Lyapunov type conditions are used to characterize the stability of
controlled diffusions or to obtain asymptotic flatness of controlled diffusions.
• Derive regularity estimates and upper bounds on the invariant measure, as it is

done in [12, Chapter 7].
• To obtain the existence of a spectral gap for the associated Markov semigroup

(see for example [34] in weighted spaces and [5] in L2).

Note that the use of Lyapunov type conditions to study quasi-stationarity is also present
in the recent works [45, 21, 18].

Then as explained, Theorem 2.2 is then applied to a wide range of hypoelliptic
damped Hamiltonian systems, this is the purpose of Theorem 6.9, for which the checking
of the assumptions (C1)-(C5) of Theorem 2.2 requires some extra fine analysis.

Finally, we point out that Theorem 2.2 can also be used to prove existence and
uniqueness of a quasi-stationary distribution for elliptic diffusion processes, for which
the assumptions of Theorem 2.2 are much easier to check.
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1.3. Organization. This paper is organized as follows. In the next section we present
the general framework and the main theoretical result Theorem 2.2 for the quasi-
stationary distribution. To prove the main result, a first key point is the existence
of the spectral gap for the semigroup of the killed Markov process. For obtaining it
we will use the measures of non-weak-compactness of a positive kernel introduced in
[84] to establish the formula of the essential spectral radius by means of the Lyapunov
function for non killed Markov processes, which generalizes [84] from discrete time to
continuous time case. The use of measures of non-compactness allows us to obtain the
existence of a spectral gap for the semigroup of the killed Markov process. That is the
content of Theorem 3.5 in Section 3.

The second key ingredient for the main result is a Perron-Frobenius type theorem
(see Theorem 4.1) for a general Feller kernel. This is the purpose of Section 4.

With those preparations which should have independent interest, we prove the main
result in Section 5. Finally the applications to hypoelliptic damped Hamiltonian sys-
tems are developed in Section 6.

2. Main result

2.1. Framework: notations and conditions. Let (Xt, t ≥ 0) be a time homogeneous
Markov process valued in a metric complete separable (say Polish) space S, with càdlàg
paths and satisfying the strong Markov property, defined on the filtered probability
space (Ω,F , (Ft)t≥0, (Px)x∈S) where Px(X0 = x) = 1 for all x ∈ S (and where the
filtration satisfies the usual condition). Its transition probability semigroup is denoted
by (Pt, t ≥ 0). Given an initial distribution ν on S, we write Pν(·) =

∫
S Px(·)ν(dx).

Under Pν , the distribution of X0 is ν.

Let B(S) be the Borel σ-algebra of S, bB(S) the space of all bounded and Borel mea-
surable functions f on S (its norm will be denoted by f ∈ bB(S) 7→ ‖f‖bB(S) =
supx∈S |f(x)|). The space D([0, T ],S) of S-valued càdlàg paths defined on [0, T ] is
equipped with the Skorokhod topology.

We suppose that

(C1) (strong Feller property) There exists t0 > 0 such that for each t ≥ t0, Pt is
strong Feller, i.e. Ptf is continuous on S for any f ∈ bB(S).

(C2) (trajectory Feller property) For every T > 0, x → Px(X[0,T ] ∈ ·) (the
law of X[0,T ] := (Xt)t∈[0,T ]) is continuous from S to the space M1(D([0, T ],S))
of probability measures on D([0, T ],S), equipped with the weak convergence
topology.

Now let D be a nonempty open domain of S, different from S. Consider the first exit
time of D

σD := inf{t ≥ 0, Xt ∈ Dc} (2.1)

where Dc = S\D is the complement of D. The transition semigroup of the killed process
(Xt, 0 ≤ t < σD) is for t ≥ 0 and x ∈ D,

PDt f(x) = Ex[1t<σDf(Xt)], (2.2)

for f ∈ bB(D). Let us now recall the definition of a quasi-stationary distribution.
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Definition 2.1. A quasi-stationary distribution (QSD in short) of the Markov process
(Xt, t ≥ 0) in the domain D is a probability measure on D such that

µD(A) = PµD(Xt ∈ A|t < σD) =
PµD(Xt ∈ A, t < σD)

PµD(t < σD)
, ∀t > 0, A ∈ B(D) (2.3)

where B(D) :=
{
A ∩ D;A ∈ B(S)

}
.

2.2. Main general result. For a continuous time Markov process, often what is given
is its generator L, not its transition semigroup (Pt, t ≥ 0), which is unknown in general.
We say that a continuous function f belongs to the extended domain De(L) of L, if

there is some measurable function g on S such that
∫ t

0
|g|(Xs)ds < +∞,Px − a.e. for

all x ∈ S, and

Mt(f) := f(Xt)− f(X0)−
∫ t

0

g(Xs)ds (2.4)

is a Px-local martingale for all x. Such a function g, denoted by Lf , is not unique in
general. But it is unique up to the equivalence of quasi-everywhere (q.e.): two functions
g1, g2 are said to be equal q.e., if g1 = g2 almost everywhere in the (resolvent) measure

R1(x, ·) =
∫ +∞

0
e−tPt(x, ·)dt for every x ∈ S.

Let us introduce the Lyapunov function condition:

(C3) (Lyapunov condition) There exist a continuous function W : S → [1,+∞[,
belonging to the extended domain De(L), two sequences of positive constants (rn)
and (bn) where rn → +∞, and an increasing sequence of compact subsets (Kn)
of S, such that

−LW(x) ≥ rnW(x)− bn1Kn(x), q.e,

where 1Kn is the indicator function of Kn.

We say that a class A of bounded continuous functions on D is measure-separable, if
for any bounded (signed) measure ν on D, if ν(f) = 0 for all f ∈ A, then ν = 0.

Theorem 2.2. Assume that (C1), (C2), and (C3) hold. Suppose that the killed
process (Xt, 0 ≤ t < σD) satisfies:

(C4) (weak Feller property) For t ≥ 0, PDt is weakly Feller, i.e. for a measure-
separable class A of continuous bounded functions f with support contained in
D, PDt f is continuous on D.

(C5) (topological irreducibility and almost sure extinction) There exists t0 >
0 such that for all t ≥ t0, for all x ∈ D and nonempty open subsets O of D,

PDt (x, O) > 0

(we can assume this t0 > 0 is the same as the one in (C1)), and there is some
x0 ∈ D such that Px0(σD < +∞) > 0.

Then, for any p ∈]1,+∞[ fixed:

(a) There is only one QSD µpD of the process (Xt, t ≥ 0) in D satisfying

µpD(W1/p) :=

∫
D
W1/p(x)µpD(dx) < +∞. (2.5)
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(b) In particular if W is bounded over D, the QSD inside D is unique.
(c) There exists λpD > 0 (which is often called least Dirichlet eigenvalue of the killed

Markov process) such that the spectral radius of PDt on bW1/pB(D) equals to e−λ
p
Dt

for all t ≥ 0. Furthermore, µpDP
D
t = e−λ

p
DtµpD, for all t ≥ 0, and µpD(O) > 0 for all

nonempty open subsets O of D. In addition, there is a unique continuous function
ϕp bounded by cW1/p such that µpD(ϕp) = 1 and

PDt ϕ
p = e−λ

p
Dtϕp on D,∀t ≥ 0. (2.6)

Moreover, ϕp > 0 everywhere on D. Here bW1/pB(D) is the Banach space of all
B(D)-measurable functions on D with norm

‖f‖b
W1/pB(D) := sup

x∈D

|f(x)|
W1/p(x)

< +∞.

(d) There are some constants δ > 0 and C ≥ 1 such that for any initial distribution ν
on D with ν(W1/p) < +∞,∣∣Pν(Xt ∈ A|t < σD)− µpD(A)

∣∣ ≤ Ce−δt
ν(W1/p)

ν(ϕp)
, ∀A ∈ B(D), t > 0. (2.7)

(e) Px(σD < +∞) = 1 for every x ∈ D, XσD and σD are PµpD-independent and

PµpD(t < σD) = e−λ
p
Dt.

Notice that the set of initial distributions ν on D with ν(W1/p) < +∞ includes any
initial distribution ν with compact support in D, and thus includes in particular Dirac
measures δx (x ∈ D), which is for instance of interest to analyse the mathematical
foundations of the accelerated algorithms we mentioned in the introduction2. In addi-
tion, choosing ν = δx in (2.7) (x ∈ D) for each p > 1, one deduces that µpD is actually
independent of p > 1 (and then also λpD), i.e. for any p, q > 1, µpD = µqD and λpD = λqD.

Theorem 2.2 is applied in Section 6 to hypoelliptic damped Hamiltonian systems,
see (6.1) and Theorem 6.9. Let us mention that under the assumptions of Theorem 2.2,
from Corollary 3.6 and (5.3), for each t > 2t0 (see (C1)):

PDt : bW1/pB(D)→ bW1/pB(D) is compact.

Remark 2.3. From Definition (2.3), µD is a QSD if and only if

µDP
D
t = λ(t)µD, λ(t) = PµD(t < σD)

in other words, µD must be a common positive left-eigenvector of PDt . The part (c)
above says that λ(t) = e−λDt is exactly the spectral radius of PDt on bW1/pB(D).

We now discuss the assumptions (C1) and (C3), and the uniqueness of the QSD in
the whole space of measures on D.

On assumption (C1). As already explained, a key point in the proof of Theorem 2.2
is the existence of the spectral gap for the semigroup of the killed Markov process. This

2Which is based on the comparison of the exit event from D when X0 = x ∈ D and when X0 is
distributed according to a quasi-stationary distribution of the process (Xt, t ≥ 0) in D.
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spectral gap is obtained using the formula (3.3) valid for a bounded nonnegative kernel
P on S satisfying in particular the condition (see (3.1) and (A1))

∃N ≥ 1, βτ (1KP
N) = 0, for all compact subset K of S. (2.8)

This is where (C1) is used in this work (see Remark 3.3). Condition (A1) is not
restricted to strong Feller kernels but they are cases where it is easier to check (A1). We
have decided to work with (C1) instead of (2.8) for ease of exposition and because most
of the hypoelliptic processes we consider in Section 6 satisfy (C1). We also mention
that one advantage of the method based on the formula (3.3) is that it provides an
explicit upper bound on the spectral radius (see Theorem 3.5). This can be used to
derive a spectral gap when one has a sufficiently good lower bound on the spectral
radius of the killed process, and we hope to develop this method for non strong Feller
processes in future works.

On Assumption (C3). If we replace in (C3), the assumption that rn → +∞ as
n→ +∞ by rn → r∞ as n→ +∞ with r∞ > λD, then all the statements of Theorem 2.2
remain valid. It is the condition used by [21]. Such a criterion is in practice quite hard to
check since one does not know the Dirichlet eigenvalue λD. Note that (C3) is known to
imply various functional inequalities, depending on the growth of rn to infinity such as
logarithmic Sobolev inequalities or various F -Sobolev type inequalities, see [6, 16, 15].
If rn goes to infinity slowly one may show that the F -Sobolev inequalities implied by
(C3) is weaker than ultracontractivity, condition which was behind the ”coming down
from infinity” property used in [14] for example.
Let us also comment on the other assumptions imposed in [21]. The authors introduce
condition (F) which includes in particular the variant of (C3), (F2) in their work, but
also a local Harnack inequality (F3) which seems quite hard to verify in non elliptic case.
We prefer to use our conditions (C4) and (C5), easily verified for muldimensionnal
elliptic diffusion processes thus recovering the extent of their results [21, Sect. 4.], but
which will be also useful in hypoelliptic cases.

Let us also mention that Lyapunov type conditions to study quasi-stationary dis-
tributions has also been used before in [20]. The Lyapunov conditions in [20] imply
uniqueness of the QSD, which does not hold in general assuming only (C3) (see indeed
the next discussion). Note also that (C3) only involves the non killed process.

We finally mention that (C3) implies that LW ≤ bnW, which causes that the quasi-
stationary measure µD satisfies µD(W1/p) <∞, p > 1.

Uniqueness of the QSD in certain cases. We give two situations for which there
will be a unique QSD of (Xt, t ≥ 0) in D (i.e. in the whole space of probability measures
over D).

• When in addition to (C1)→(C5) in Theorem 2.2, it holds for some t > 0 and
some p > 1, Pt(bW1/pB(S)) ⊂ bB(S), then the process (Xt, t ≥ 0) has a unique
QSD in D.
• When (C1), (C2), (C4), and (C5) hold, and S is compact, all the results of

Theorem 2.2 are valid with W = 1 there (indeed (C3) is always satisfied with
W = 1, Kn = S, and rn = bn = n for instance). Thus, in this case, item (b)
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in Theorem 2.2 holds and item (d) in Theorem 2.2 is satisfied for any initial
distribution ν in D.

Without extra assumptions in Theorem 2.2, (Xt, t ≥ 0) does not have a unique QSD in
D. Indeed consider the Ornstein Uhlenbeck process dXt = −Xtdt+ dBt on S = R and
with D = R∗− (for which it is known that there are infinitely many QSD [57]). One can
easily check with much easier arguments than those used in Section 6 (since this process

is elliptic), that Theorem 2.2 is valid with W(x) = eεx
2/2 (ε ∈ (0, 1)). Theorem 2.2 allows

us to catch its minimal QSD, namely ν1 = 2xe−x
2
, see [57] and references therein.

Remark 2.4. The key, like in the current literatures, consists in proving that PDt has
a spectral gap at its spectral radius rsp(P

D
t ) acting on some Banach lattice space B

of functions. We will work on B = bWB(S), CbW(S) (introduced in Section 3.3 below),
which are well adapted to our Lyapunov function condition (C3). The problem is: PDt is
not strongly continuous on such Banach spaces, and the domain DB(L) of the generator
L is not dense in B. So we cannot use the spectral theory of strongly continuous
semigroups in Functional Analysis. Let us finally mention [58] for an analytical study
(using the notions of minimal positive solutions and weak generator) of some classes of
non strongly continuous nor analytical Markov semigroups induced by some degenerate
second-order operators on RN (the case of unbounded domains is also considered there
for uniformly elliptic second-order operators).

3. Essential spectral radius of Pt

The purpose of this section is to prove Theorem 3.5 which aims at giving a lower bound
on the essential spectral radius of Pt, t > 0. To this end, we first recall a characterization
of the essential spectral radius of a semigroup of transition kernels (see Theorem 3.4)
obtained in [84].

3.1. Essential spectral radius. Let B be a real Banach lattice and P a nonnegative,
linear and bounded operator on B. A complex number λ ∈ C is said to be in the
resolvent set ρ(P ) of P if the inverse (λI − P )−1 on the complexified Banach space BC
of B exists and is bounded, by definition. The complementary σ(P ) := C\ρ(P ) is the
spectrum of P on B. The spectral radius of P is given by Gelfand’s formula

rsp(P |B) := sup
{
|λ|;λ ∈ σ(P )

}
= lim

n→+∞

(
‖P n‖B→B

)1/n
.

A complex number λ ∈ C does not belong to the (Wolf) essential spectrum σess(P |B)
of P |B, iff λI − P is a Fredholm operator on the complexified Banach space BC of B,
by definition. For a point λ0 in the spectrum σ(P |B), λ0 /∈ σess(P |B) iff λ0 is isolated in
σ(P |B) and the associated eigen-projection

Eλ0 :=
1

2πi

∫
Γ

(λI − P )−1dλ

(Dunford integral in the counter-clockwise way) is finite dimensional, where Γ is a
circumference of sufficiently small radius: |λ− λ0| = δ such that the disk |λ− λ0| ≤ δ
contains no other spectral point than λ0. Let us recall that by definition, the algebraic
multiplicity of λ0 /∈ σess(P |B) is the dimension of the range of Eλ0 . Let us finally
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mention that since P is bounded, λ0 /∈ σess(P |B) is a pole of the resolvent [85, Theorem
4 in §8 in Chap. VIII].

Definition 3.1. The essential spectral radius of P on B is defined by

ress(P |B) = sup
{
|λ|; λ ∈ σess(P |B)

}
.

3.2. Two parameters of non weak compactness and the formulas of the es-
sential spectral radius. Our state space S is Polish with a compatible metric d (i.e.,
(S, d) is complete and separable), whose Borel σ-field is denoted by B(S). The nota-
tion “K ⊂⊂ S” means that K is compact in S. LetMb(S) (resp. M+

b (S),M1(S)) be
the space of all σ-additive (resp. and nonnegative; probability) measures of bounded
variation on (S,B(S)). The pair relation between ν ∈Mb(S) and f ∈ bB(S) is

〈ν, f〉 := ν(f) :=

∫
S
f(x)dν(x).

Using the pair above, Mb(S) is a subspace of the dual Banach space (bB(S))∗. For
a nonnegative kernel P (x, dy), bounded on bB(S), its adjoint operator P ∗ on (bB(S))∗

keeps Mb(S) stable, i.e., for each ν ∈Mb(S),

P ∗ν(·) = (νP )(·) :=

∫
S
ν(dx)P (x, ·) ∈Mb(S).

Besides the variation norm ‖ν‖TV -topology, we shall also consider the following two
weak topologies on Mb(S). The weak topology σ(Mb(S), bB(S)) (i.e., the weakest
topology on Mb(S) for which ν 7→ ν(f) is continuous for all f ∈ bB(S)), according
to the usual language, will be called τ -topology, denoted simply by τ . And the weak
topology σ(Mb(S), Cb(S)) (the most often used weak convergence topology) will be
denoted by w. The space Cb(S) is the space of all functions f ∈ bB(S) such that f is
continuous on S (its norm is the one of bB(S) but we will sometimes write it ‖ · ‖Cb(S)

when we want to emphasize that we work on Cb(S)).

The following measures of non weak compactness of a positive (i.e. nonnegative and
non-zero) kernel P (x, dy) were introduced in the third author’s [84].

Definition 3.2. (a) For a bounded sub-family M of M+
b (S), define

βw(M) := inf
K⊂⊂S

sup
ν∈M

ν(Kc)

βτ (M) := sup
(An)

lim
n→∞

sup
ν∈M

ν(An)
(3.1)

where sup(An) is taken over all sequences (An)n ⊂ B(S) decreasing to ∅.
(b) Let P (x, dy) be a nonnegative kernel on S such that supx∈E P (x,S) = ‖P1‖bB(S) <

+∞ (i.e., the boundedness of kernel P ). We call

βw(P ) := βw(M); βτ (P ) := βτ (M) (3.2)

where M = {P (x, ·); x ∈ S}, measure of non-τ -compactness and measure of non-“w”-
compactness of P , respectively.
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Here and in the following, 1 will denote the constant function equal to 1 on S. Introduce
the following assumption

βw(1KP ) = 0 and ∃N ≥ 1 : βτ (1KP
N) = 0, ∀K ⊂⊂ S. (A1)

Remark 3.3. If P is Feller and P k is strong Feller on S, i.e. P k(bB(S)) ⊂ Cb(S), then
(A1) is satisfied with N = k.
In fact for any sequence An ↓ ∅ in B(S), fn(x) = P k(x,An) is continuous and converges
to zero for every x ∈ S. In addition fn+1(x) ≤ fn(x) for all n and x ∈ S. Then, by Dini’s
monotone convergence theorem, for each K ⊂⊂ S, limn→+∞ supx∈S 1K(x)P k(x, An) = 0.
That yields βτ (1KP

k) = 0.
When P is Feller, the fact that βw(1KP ) = 0 for all K ⊂⊂ S is proved similarly using
Prokorov’s theorem (see for instance [84, (a.iii) in Lemma 3.1]).

Theorem 3.4. ([84, Theorem 3.5]) Let P be a bounded nonnegative kernel on S satis-
fying (A1). Then, it holds:

ress(P |bB(S)) = lim
n→∞

[
βw(P n)

]1/n
. (3.3)

3.3. Lyapunov function criterion for the essential spectral radius of (Pt, t ≥ 0).
The main objective of this section is to apply the results of Theorem 3.4 to Pt, where
we recall that (Pt, t ≥ 0) is the semigroup of the (non killed) process (Xt, t ≥ 0). Let us
first introduce some notation. Given a continuous function W : S → [1,+∞[ (weight
function), let

bWB(S) :=

{
f : S → R measurable such that ‖f‖bWB(S) := sup

x∈S

|f(x)|
W(x)

< +∞
}
,

and
CbW(S) =

{
f ∈ bWB(S) such that f : S → R is continuous

}
which are Banach spaces with norm ‖ · ‖bWB(S). Notice that when W = 1, bWB(S) =
bB(S) and CbW(S) = Cb(S), where bB(S) and Cb(S) are introduced above. The space of
measures

MbW(S) =
{
ν ∈Mb(S) such that W(x)ν(dx) ∈Mb(S)

}
is a subspace of the dual Banach space (bWB(S))∗ by regarding each ν ∈ MbW(S) as
a bounded linear form f → ν(f) on bWB(S). We now turn to the main result of this
section.

Theorem 3.5. Assume (C1) and (C2). Assume that there is some continuous Lya-
punov function W : S → [1,+∞[ such that for some K ⊂⊂ S, r > 0, and b > 0, it
holds:

− LW
W
≥ r1Kc − b1K (3.4)

and for some p > 1,
LWp ≤ bWp. (3.5)

Then for every t > 0,

βw(Pt,W) ≤ e−rt and in particular ress(Pt|bWB(S)) ≤ e−rt (3.6)



QSD FOR STRONGLY FELLER MARKOV PROCESSES BY LYAPUNOV FUNCTIONS 11

where for x, y ∈ S, we set

Pt,W(x, dy) =
W(y)

W(x)
Pt(x, dy). (3.7)

Proof. Let t > 0 be fixed. Consider the isomorphism MW : f → Wf from bB(S) to
bWB(S). We have, for t ≥ 0, Pt,W = M−1

W PtMW. Then

ress(Pt|bWB(S)) = ress(Pt,W|bB(S)).

Then, (Pt,W, t ≥ 0) is again a semigroup of transition kernels, but it is not Markov in
general.

Step 1. Let us check that Q = Pt,W satisfies (A1) for t > 0. At first, from (3.5),
(e−btWp(Xt), t ≥ 0) is a supermartingale, and then for any x ∈ S, t ≥ 0,

PtW
p(x) = ebtEx[e

−btWp(Xt)] ≤ ebtWp(x). (3.8)

Therefore, for any compact K ⊂⊂ S, letting q = p/(p − 1), we have using in addition
Hölder’s inequality,

βw(1KQ) = inf
K′⊂⊂S

sup
x∈K

Q(x,S\K ′)

≤ inf
K′⊂⊂S

sup
x∈K

(
(PtW

p)(x)
)1/p

W(x)
Pt(x,S\K ′)1/q

≤ ebt/p
(

inf
K′⊂⊂S

sup
x∈K

Pt(x,S\K ′)
)1/q

= 0

by the Feller property of Pt (guaranteed by (C2)), see Remark 3.3.
Let us check the second condition in (A1) with some N so that Nt ≥ t0 (see (C1)).

βτ (1KQ
N) = sup

(An)

lim
n→∞

sup
x∈K

QN(x, An)

≤ sup
(An)

lim
n→∞

sup
x∈K

(
(PNtW

p)(x)
)1/p

W(x)
PNt(x, An)1/q

≤ eNbt/p

(
sup
(An)

lim
n→∞

sup
x∈K

PNt(x, An)

)1/q

where the sup above is taken over all sequences (An)n in B(S) decreasing to ∅. The
last factor above, being βτ (1KPNt), is equal to zero by the strong Feller property of PNt
(see (C1)) and Remark 3.3.

Step 2. Let us prove βw(Q) ≤ e−rt, which yields βw(Qn) ≤ βw(Q)n ([84, Proposition
3.2.(e)]) for all n and then the desired result by Theorem 3.4 (results that we can use
since Q satisfies (A1)).

To prove that βw(Q) ≤ e−rt, we introduce the first hitting time τK := inf{s ≥ 0;Xs ∈
K} to the compact K for the process (Xt, t ≥ 0), where K is the compact set appearing
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in the Lyapunov condition (3.4). We then have

βw(Q) = inf
K′⊂⊂S

sup
x∈S

Q(x,S\K ′)

= inf
K′⊂⊂S

sup
x∈S

1

W(x)
Ex[W(Xt)1Xt /∈K′ ].

(3.9)

Notice that for x ∈ S, we have

1

W(x)
Ex[W(Xt)1Xt /∈K′ ] ≤

1

W(x)
Ex[W(Xt)1Xt /∈K′,τK≤t] +

1

W(x)
Ex[W(Xt)1τK>t]

≤ ebt/p
(

sup
y∈K

Py(∃s ∈ [0, t], Xs /∈ K ′)
)1/q

+
1

W(x)
Ex[W(Xt)1τK>t]

(3.10)

where the second inequality follows by Hölder’s inequality and the strong Markov prop-
erty of the process (Xt, t ≥ 0).

Let us first deal with the first term in the r.h.s. of (3.10). By condition (C2), for
any ε > 0, there is some compact subset Aε in D([0, t],S) such that

sup
y∈K

Py

(
X[0,t] /∈ Acε

)
< ε.

By the well known property of the Skorokhod topology ([36]), the set

Bε :=
⋃
s∈[0,t]

{γ(s); γ ∈ Aε}

is relatively compact in S. Thus

inf
K′⊂⊂S

sup
y∈K

Py(∃s ∈ [0, t], Xs /∈ K ′) ≤ sup
y∈K

Py

(
∃s ∈ [0, t], Xs /∈ Bε

)
≤ sup

y∈K
Py(X[0,t] /∈ Acε) < ε.

As ε > 0 is arbitrary, infK′⊂⊂S supy∈K Py(∃s ∈ [0, t], Xs /∈ K ′) = 0. Substituting it into
(3.10), we see from (3.9) that it remains to show that

1

W(x)
Ex[W(Xt)1τK>t] ≤ e−rt, ∀x ∈ S. (3.11)

This is the purpose of the next step.

Step 3. Let us deal with (3.11). To this end, introduce for t ≥ 0,

Mt :=
W(Xt)

W(X0)
exp

(
−
∫ t

0

LW
W

(Xs)ds

)
.

The key ingredient is the fact that (Mt, t ≥ 0) is a local Px-martingale (for every x), by
Ito’s formula. Thus, (Mt, t ≥ 0) is then a supermartingale by Fatou’s lemma. Then, by
the Lyapunov condition (3.4),

ert
1

W(x)
Ex[W(Xt)1τK>t] ≤ Ex[Mt] ≤M0 = 1.

This is (3.11). Therefore, the proof of Theorem 3.5 is complete. �
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Corollary 3.6. Assume that (C1), (C2), and (C3) are satisfied. If (3.5) holds, then,
for each t > 2t0 (see (C1)), PDt : bWB(D)→ bWB(D) is compact.

Proof. From the first step of the proof of Theorem 3.5, Pt,W satisfies (A1) with N such
that Nt ≥ t0. For t ≥ 0, one has

PDt,W =
W(y)

W(x)
PDt (x, dy) ≤ W(y)

W(x)
Pt(x, dy) = Pt,W(x, dy).

Let us show that for t ≥ t0, Pt,W is strongly Feller like Pt, i.e. for any f ∈ bB(S),
Pt(Wf) is continuous. Let us consider, for any n ≥ 1, let

fn :=
W ∧ n
W

f.

Since Wfn is bounded, Pt(Wfn) is continuous by the strong Feller property of Pt (by
(C1)). Now for any compact K ⊂⊂ S, it holds

sup
x∈K

∣∣Pt(Wf)(x)− Pt(Wfn)(x)
∣∣ ≤ sup

x∈K

[
(PtW

p)(x)
]1/p

sup
x∈K

[
(Pt|fn − f |q)(x)

]1/q
.

We have for all n, |fn − f | ≤ ‖f‖bB(S), and |fn − f | ↓ 0 pointwisely on S. Since
Pt is strongly Feller (by (C1)), the sequence of functions hn(x) := (Pt|fn − f |q)(x)
is continuous over S. Moreover, hn ↓ 0 pointwisely on S. Consequently, by Dini’s
monotone convergence theorem, we then have

sup
x∈K

(
Pt|fn − f |q

)
(x)→ 0.

Thus, for t ≥ t0, Pt(Wf) is continuous, which implies that Pt,W is strongly Feller.
From Theorem 3.5 (with r = rn → +∞ by (C3)), we obtain

βw(PDt,W) ≤ βw(Pt,W) = 0, for each t > 0. (3.12)

Because for each t ≥ t0, Pt,W is strongly Feller on S, we have for all K ⊂⊂ D:

βτ (1KP
D
t,W) ≤ βτ (1KPt,W) = 0, for each t ≥ t0. (3.13)

Therefore, by [84, (f) in Proposition 3.2], it holds for each s > 0:

βτ (P
D
s+t0,W

) ≤ βw(PDs,W)βτ (P
D
t0,W

) = 0.

Finally, applying [84, (g) in Proposition 3.2], PDs+2t0,W
: bB(D) → bB(D) is compact.

This concludes the proof of Corollary 3.6. �

4. A Perron-Frobenius type theorem on bWB

In this section, we present a version of Perron-Frobenius’ theorem we will need for Feller
kernels Q on bWB(S) or CbW(S), which is of independent interest.

Theorem 4.1. Let Q = Q(x, dy) be a positive bounded kernel on S and W ≥ 1 a
continuous weight function on S. Assume that:

(1) There exists N1 ≥ 1 such that Qk is Feller for all k ≥ N1, i.e. Qkf ∈ Cb(S) if
f ∈ Cb(S).
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(2) There exists N2 ≥ 1 such that for any x ∈ S and nonempty open subset O of S,

QN2(x, O) > 0.

(3) For some p > 1 and constant C > 0, it holds:

QWp ≤ CWp.

Notice that this implies that Q is well defined and bounded on bWB(S).
(4) Q has a spectral gap in bWB(S),

ress(Q|bWB(S)) < rsp(Q|bWB(S)). (4.1)

Then, there exist a unique couple (µ, ϕ) where µ is a probability measure on S with
µ(W) < +∞, ϕ ∈ CbW(S) is positive everywhere on S with µ(ϕ) = 1, and constants
r ∈]0, 1[, C ≥ 1, such that

µQ = rsp(Q|bWB(S))µ, Qϕ = rsp(Q|bWB(S))ϕ (4.2)

and ∥∥∥ 1

rsp(Q|bWB(S))n
Qnf − ϕµ(f)

∥∥∥
bWB(S)

≤ Crn‖f‖bWB(S), ∀f ∈ bWB(S). (4.3)

In particular

(a) If ν ∈ MbW(S) satisfies for some λ ∈ R, νQ = λν and ν(ϕ) 6= 0, then λ =
rsp(Q|bWB(S)) and ν = cµ for some constant c.

(b) If f ∈ bWB(S) satisfies λ ∈ R, Qf = λf and µ(f) 6= 0, then λ = rsp(Q|bWB(S)) and
f = cϕ for some constant c.

Remark 4.2. Let us mention that the standard Krein-Rutman theorem [35, Theo-
rem 1.2] or its generalization [69, Theorem 7], with the natural choice of cone K = {φ ∈
B, φ ≥ 0} (recall B = bWB(S), CbW(S) which is endowed with the norm supS |f |/W),
do not apply here in general, for the following reason. Let S ⊂ Rd be a smooth
bounded domain and Q(x, ·) = Px(X1 ∈ · , 1 < σS) where (Xt, t ≥ 0) is a standard (d-
dimensional) Brownian motion. It is well-known that Q has a smooth (positive) density
q(x, y) in S × S w.r.t. the Lebesgue measure on S, which moreover has a continuous
extension to S × S which vanishes on ∂(S × S). Thus, if u ∈ B is an eigenfunction
for Q on B associated with an eigenvalue r > 0, then u = r−1Qu has a continuous
extension to S which vanishes on ∂S. Thus, u /∈ int(K) = {φ ∈ B,∃c > 0 s.t. φ ≥ c}
and therefore [69, (2) in Theorem 7] (see also [69, (2) in Theorem 1]) as well as [35,
Theorem 1.2] cannot hold. Notice that one would naturally then want to work with
K1 = {φ ∈ C(S), φ ≥ 0, φ = 0 on ∂S}, but K1 has empty interior. Note also that Q
satisfies (1)→(4).

We start the proof of Theorem 4.3 with the following lemma.

Lemma 4.3. Let Q be a bounded (resp. and Feller) kernel with rsp(Q|bB(S)) = 1. Then,

(a) For any λ in the resolvent set ρ(Q|bB(S)) with |λ| > ress(Q|bB(S)),

R(λ) := (λI −Q)−1

is a bounded (resp. and Feller) kernel.
(b) If Q is Feller, rsp(Q|Cb(S)) = rsp(Q|bB(S)), and ress(Q|Cb(S)) = ress(Q|bB(S)).
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Proof. (a). At first for λ > rsp(Q|bB(S)),

R(λ) =
+∞∑
n=0

1

λn+1
Qn

is a bounded (resp. Feller) kernel.
Now for any λ ∈ ρ(Q|bB(S)) with |λ| > ress(Q|bB(S)), there is a C1-curve t ∈ [0, 1] 7→

γ(t) ∈ C such that λ = γ(1) and γ(0) > rsp(Q|bB(S)) and such that Ran(γ) ⊂ ρ(Q|bB(S)).
It is enough to show that there is some (common) δ > 0 such that for any t0 ∈ [0, 1]
such that R(γ(t0)) is a bounded (resp. Feller) kernel, so is R(γ(t)) once if |t− t0| < δ.

To this end, let M = supt∈[0,1] ‖R(γ(t))‖bB(S) which is finite (where ‖R(γ(t))‖bB(S) is

the operator norm of R(γ(t)) on bB(S)). Let t ∈ [0, 1] such that |t− t0| ≤ 1
2M(|γ′|L∞+1)

,

so that |γ(t0)− γ(t)| ≤ 1
2M

. Then, for such t, we have

R(γ(t)) =
+∞∑
n=0

(γ(t0)− γ(t))nR(γ(t0))n+1

Thus R(γ(t)) is a bounded (resp. and Feller) kernel.

(b). The fact that rsp(Q|Cb(S)) = rsp(Q|bB(S)) follows by Gelfand’s formula for the
spectral radius and the fact that ‖Qn‖bB(S) = supx∈S Q

n(x,S) = ‖Qn‖Cb(S) (for all
n ≥ 0). The fact that the essential spectral radius of Q on bB(S) and on Cb(S) is the
same is proved in [84, Proposition 4.7]. �

Proof of Theorem 4.1. The proof of Theorem 4.1 is divided into several steps.

Step 1: reduction to W = 1.

Let us consider, for x ∈ S

QW(x, dy) :=
W(y)

W(x)
Q(x, dy).

Since by Hölder’s inequality (see also item (3) in Theorem 4.1), we have for x ∈ S,

QW(x) ≤ [Q1(x)]1/q[QWp(x)]1/p ≤ ‖Q1‖1/q
bB(S)C

1/pW(x)

where q = p/(p − 1), we obtain that QW1 ≤ ‖Q1‖1/q
bB(S)C

1/p, i.e. QW is a bounded

positive kernel on S.
Let us prove that Qk

W is again Feller for k ≥ N1, that is, for any f ∈ Cb(S), Qk(Wf)
is continuous (notice that Wf is continuous over S but not necessarily bounded on S).
To this end, let us introduce for any n ≥ 1 and f ∈ Cb(S),

fn :=
W ∧ n
W

f.

The function Qk(Wfn) is continuous by the Feller property of Qk. Now for any compact
K ⊂⊂ S, we have

sup
x∈K

∣∣Qk(Wf)(x)−Qk(Wfn)(x)
∣∣ ≤ sup

x∈K

[
(QkWp)(x)

]1/p
sup
x∈K

[
(Qk|fn − f |q)(x)

]1/q
.
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By assumption (3) in Theorem 4.1, supx∈K
[
(QkWp)(x)

]1/p ≤ Ck/p supx∈K W(x). Since
|fn − f | ≤ ‖f‖bB(S) and fn → f uniformly over compacts on S, by the tightness of
{Qk(x, dy); x ∈ K}, we have

sup
x∈K

(
Qk|fn − f |q

)
(x)→ 0.

Thus Qk(Wf) is continuous.
Finally letting MWf = Wf which is an isomorphism from bB(S) to bWB(S), we have

QW = M−1
W QMW, i.e. Q|bWB(S) is similar to QW|bB(S). Hence for this theorem, it is

enough to prove it for QW on bB(S) (note that it also satisfies Condition (2)).

From now on, we assume without loss of generality that W = 1 and rsp(Q|bB(S)) = 1
(otherwise consider Q/rsp(Q|bB(S))).

Step 2: existence of positive eigenfunction and eigen probability measure.

The fact that rsp(Q|bB(S)) (= 1 by assumption) is in the spectrum of Q|bB(S) is well
known (see [70, Chap.V, Proposition 4.1]). In addition, by condition (4), rsp(Q|bB(S)) /∈
σess(Q|bB(S)). We recall (see Section 3.1) that this implies that rsp(Q|bB(S)) is isolated
in the spectrum of Q|bB(S), its associated eigen-projection Ersp(Q|bB(S)) has finite rank,

and is a pole of the resolvent of Q|bB(S). We can thus use [70, Chap. V, Theorem 5.5
and its note] (cyclic property of the peripheral spectrum) to deduce that there exists
m ≥ max{N1, N2} such that

for any λ ∈ σ(Q|bB(S)) with |λ| = 1, λm = 1. (4.4)

For such a m, we have:

(1) ress(Q
m|bB(S)) < rsp(Q

m|bB(S)) = 1 (which follows from the fact that for all k ≥ 1,

rsp(Q
k|bB(S))

1/k = rsp(Q|bB(S)) = 1 and ress(Q
k|bB(S))

1/k = ress(Q|bB(S)) < 1).

(2) 1 = rsp(Q|mbB(S)) ∈ σ(Q|mbB(S)). In particular 1 is an isolated eigenvalue of Qm

and is a pole of the resolvent of Qm|bB(S).

(3) the peripheral spectrum of Qm|bB(S) is reduced to {1} (by (4.4) and the fact that
σ(Qm) = σ(Q)m), that is:{

λ ∈ C, |λ| = 1
}
∩ σ(Qm|bB(S)) = {1}.

Let Γ :=
{
λ ∈ C; |λ− 1| = δ

}
where δ > 0 is such that

{λ ∈ C; 0 < |λ− 1| ≤ δ} ⊂ ρ(Qm|bB(S)) ∩
{
λ, |λ| > ress(Q

m|bB(S))
}
. (4.5)

Let us denote by

Π =
1

2πi

∫
Γ

(λI −Qm|bB(S))
−1dλ. (4.6)

Using the Riesz decomposition theorem, Qm|bB(S) = Qm|bB(S)Π+Qm|bB(S)(I−Π) where
I − Π is the Riesz projector associated with the spectrum of Qm|bB(S) in {λ ∈ C, |λ| <
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1}, Π(I − Π) = (I − Π)Π = 0, Qm|bB(S) commutes with both Π and (I − Π), and
rsp(Q

m|bB(S)(I − Π)) < 1, i.e:

rsp
(
Qm|bB(S) −Qm|bB(S)Π|bB(S)

)
< 1. (4.7)

Notice that condition (2) still holds for all k > N2. Indeed condition (2) implies that
Q(x, ·) is positive measure for every x ∈ S (otherwise, if Q(x1,S) = 0 for some x1, then,
QN2(x1,S) = 0, which contradicts condition (2) in Theorem 4.1). Consequently for any
nonempty open subset O of S and for any x ∈ S,

Qk(x, O) =

∫
S
QN2(y, O)Qk−N2(x, dy) > 0.

By applying [61, Theorem 4.1.4 and its note]3 to Qm|Cb(S) there are some nonnegative
ϕ ∈ Cb(S) (with ϕ 6= 0) and some nonnegative ψ ∈ (Cb(S))∗ (with ψ 6= 0) such that

Qmϕ = ϕ and (Qm)∗ψ = ψ.

By [84, Proposition 4.3], ψ is a positive bounded measure µ on S. We may assume that
µ is a probability measure. We claim that µ charges all nonempty open subsets O of
S. Indeed, as µQm = (Qm)∗µ = µ,

µ(O) =

∫
S
Qm(x, O)µ(dx) > 0

since Qm(x, O) > 0 everywhere on S, proved before.
In the same way, for any x ∈ S, since ϕ 6= 0 is continuous, one has

ϕ(x) = Qmϕ(x) =

∫
S
ϕ(y)Qm(x, dy) > 0,

i.e. ϕ is everywhere positive on S.
By considering ϕ/µ(ϕ) if necessary, we may assume without loss of generality that

µ(ϕ) = 1.

Step 3: proof that the eigenspace Ker (I − Qm) ∩ Cb(S) is one-dimensional, i.e., gen-
erated by ϕ.

Let f ∈ Ker (I −Qm) ∩ Cb(S), i.e. f ∈ Cb(S) and Qmf = f . Then Qm|f | ≥ |f |. Since

µ(Qm|f |) = µ(|f |),
the function Qm|f | − |f | is non negative and continuous over S, and µ charges all
nonempty open subsets of S, one deduces that Qm|f | = |f | everywhere on S. In other
words |f | ∈ Ker (I −Qm) ∩ Cb(S), that is Ker (I −Qm) ∩ Cb(S) is a lattice.

If 0 6= f ∈ Ker (I − Qm) ∩ Cb(S) were linearly independent of ϕ, as f/ϕ is not
constant, we can find c ∈ R such that the open sets

O+ = {f > cϕ} and O− := {f < cϕ}
3Because 1 = rsp(Qm|Cb(S)) is a pole of the resolvent of Qm|Cb(S). Indeed, by (b) in Lemma 4.3,

1 = rsp(Qm|bB(S)) = rsp(Qm|Cb(S)). In addition, rsp(Qm|Cb(S)) ∈ σ(Qm|Cb(S)) (see [70, Chap.V, Propo-
sition 4.1]). Finally, 1 is a pole of the resolvent of Qm|Cb(S) because ress(Q

m|Cb(S)) = ress(Q
m|bB(S)) <

rsp(Qm|bB(S)) = rsp(Qm|Cb(S)) = 1.
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are both nonempty. Since (f − cϕ)+ ∈ Ker (I −Qm), we obtain for x ∈ O−,

0 = (f − cϕ)+(x) =

∫
S
(f − cϕ)+(y)Qm(x, dy) > 0.

This contradiction shows that Ker (I −Qm) ∩ Cb(S) is generated by ϕ.

Step 4: proof that the algebraic multiplicity and the geometric multiplicity of 1 of
Qm|bB(S) coincide.

Let us prove that (Qm|bB(S) − I)Π = 0. To this end, consider the Laurent series of
(λI −Qm|bB(S))

−1 in a neighborhood of 1 in C,

(λI −Qm|bB(S))
−1 = A−l(λ− 1)−l + · · ·+ A−1(λ− 1)−1 +

∞∑
k=0

Ak(λ− 1)k

where (see (4.6))
A−1 = Π

and A−k−1 = (Qm|bB(S)−I)kΠ ([85], Chap. VIII, §8). Notice that Π is a bounded Feller
kernel by Lemma 4.3 and its definition, and thus, so are A−2, . . . , A−l.

We must prove that l = 1. For any bounded and measurable function f over S such
that |f | ≤ cϕ for some c > 0, we have for any λ > 1,

|(λ− 1)(λI −Qm|bB(S))
−1f | =

∣∣∣(λ− 1)
+∞∑
n=0

1

λn+1
Qmnf

∣∣∣
≤ (λ− 1)

+∞∑
n=0

1

λn+1
Qmn

∣∣f ∣∣
≤ c(λ− 1)

+∞∑
n=0

1

λn+1
Qmnϕ = cϕ

i.e.
{

(λ − 1)(λI − Qm|bB(S))
−1f, λ > 1

}
is uniformly bounded. Letting λ → 1+, we

obtain A−kf = 0 for any k ≥ 2. Because A−k is a bounded kernel and A−kf(x) = 0 for
all x ∈ S and such f , it holds A−k = 0 for all k ≥ 2.

Step 5: proof of (4.3).

By (b) in Lemma 4.3 and (4.7),

rsp
(
(Qm −QmΠ)|Cb(S)

)
< 1.

Since QmΠ|Cb(S) = Π|Cb(S) by Step 4 (because A−2 = 0 implies QmΠ|bB(S) = Π|bB(S)),
one has rsp((Q

m−Π)|Cb(S))) < 1 and for all n ≥ 1, Qmn|Cb(S)−Π|Cb(S) = (Qm−Π)n|Cb(S).
Therefore, by Gelfand’s formula, there exist C ≥ 1 and r ∈]0, 1[ such that

‖Qmn − Π‖Cb(S) = ‖(Qm − Π)n‖Cb(S) ≤ Crn, ∀n ≥ 1.

Then Π is a nonnegative (Feller) kernel and µΠ = µ.
As Π|Cb(S) is a one-dimensional projection to {cϕ; c ∈ R} by Step 3 and Step 4, there

is some ψ ∈ (Cb(S))∗ such that for any f ∈ Cb(S),

Πf = ψ(f)ϕ.
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Integrating it w.r.t. µ and since µ(ϕ) = 1, we obtain µ(f) = ψ(f) for all f ∈ Cb(S), i.e.
Πf = µ(f)ϕ for all f ∈ Cb(S) (and thus also for all f ∈ bB(S)). In other words,

Π(x, dy) = ϕ(x)µ(dy).

In addition, we have
‖Qmn − Π‖bB(S) ≤ Crn, ∀n ≥ 1. (4.8)

because for a Feller kernel, such as Qmn − Π, its norm on bB(S) coincides with its
norm on Cb(S). This implies in particular that Ker (I − Qm|bB(S)) = {cϕ; c ∈ R} and
Ker (I − (Qm)∗|Mb(S)) = {cµ; c ∈ R}.

Now for any eigenfunction f of Q in bB(S) associated with 1, we have Qmf = f ,
then f = cϕ. Thus Qϕ = ϕ. Thus QΠ = Π on bB(S).

Finally the desired geometric convergence (4.3) follows by (4.8), because for 0 ≤ k ≤
m− 1,

‖Qmn+k − Π‖bB(S) = ‖Qk(Qmn − Π)‖bB(S) ≤ max
k≤m−1

‖Qk‖bB(S) · ‖(Qmn − Π)‖bB(S).

Step 6: Proofs of (a) and (b).

By (4.3), if ν ∈MbW(S) is such that νQ = λν, and ν(ϕ) 6= 0, we have

‖νQn − ν(ϕ)µ‖TV = ‖λnν − ν(ϕ)µ‖TV → 0

as n→ +∞. As ν(ϕ) 6= 0, λ = 1 and ν = ν(ϕ) · µ. That is part (a). In the same way
we get part (b). This concludes the proof of Theorem 4.1. �

5. Proof of Theorem 2.2

In this section, one proves Theorem 2.2 (see Section 5.2). We first start with preliminary
results.

5.1. Preliminary results. Let us start with the following proposition.

Proposition 5.1. If a < f ∈ De(L) where a ∈ [−∞,+∞[, then for any C2-concave
function ϕ :]a,+∞[→ R, ϕ ◦ f ∈ De(L) and

Lϕ ◦ f ≤ ϕ′(f)Lf. (5.1)

Proof. For t ≥ 0, let

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds

which is a local martingale. By Ito’s formula (Dellacherie-Meyer [28, p350, Théorème
27]), ϕ ◦ f ∈ De(L) and

dϕ ◦ f(Xt) = ϕ′(f)(Xt−)[Lf(Xt−)dt+ dMt] +
1

2
ϕ′′(Xt−)d[Mc,Mc]t + dSt

where Mc is the continuous martingale part of M , and

St =
∑

0<s≤t

(ϕ ◦ f(Xs)− ϕ ◦ f(Xs−)− ϕ′(f)(Xs−)[f(Xs)− f(Xs−)])

By the concavity of ϕ, dϕ◦f(Xt) ≤ ϕ′(f)(Xt−)[Lf(Xt)dt+dMt]. Thus (5.1) holds. �
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The following lemma establishes the strong Feller property of PDt on D for t ≥ t0.

Lemma 5.2. Under (C1) and (C4), PDt is strong Feller on D for all t ≥ t0.

Proof. Let (xn)n≥0 be a sequence of points in D converging to x ∈ D. Let us prove that
PDt f(xn) → PDt f(x) for any f ∈ bB(D) and t ≥ t0 fixed. Let K = {x, xn;n ≥ 0}. One
has:

βτ (1KP
D
t ) ≤ βτ (1KPt) = 0

by the strong Feller property of (Pt, t ≥ 0) on S, see (C1). In other words the family
{PDt (xn, ·);n ≥ 0} is relatively compact in the τ -topology. That is equivalent to say
that {

hn :=
dPDt (xn, ·)

dm
;n ≥ 0

}
is relatively compact in the weak topology σ(L1(m), L∞(m)), where m is the reference
measure given by

m(·) = PDt (x, ·) +
+∞∑
n=0

1

2n
PDt (xn, ·).

By the well known equivalence of the relative compactness and the sequential com-
pactness in σ(L1, L∞) (by the Dunford-Pettis theorem [27, Théorème 25 p. 43]) , we
have only to prove that the limit point in the τ -topology of PDt (xn, ·) is unique and
coincides with PDt (x, ·), i.e. if PDt (xnk

, ·) → ν in τ -topology for a subsequence (nk),
then ν = PDt (x, ·). By (C4), we have for any f ∈ A,

ν(f) = lim
k→∞

PDt f(xnk
) = PDt f(x)

By the measure-separability of A, ν = PDt (x, ·). �

5.2. Proof of the main result. We will formulate a weaker version of Theorem 2.2.

Theorem 5.3. Assume that (C1), (C2), (C3), (C4), and (C5) hold. Suppose
moreover that for some p > 1 and M > 0,

LWp ≤MWp. (5.2)

Then, all claims in Theorem 2.2 hold with W1/p replaced by W.

Admitting this result, we give at first the proof of Theorem 2.2.

Proof of Theorem 2.2. For any p > 1 fixed, by Proposition 5.1 and (C3), it holds:

LW1/p ≤ 1

p
W1/p−1LW ≤ −rn

p
W1/p +

bn
p
1Kn .

In other words, W̃ = W1/p satisfies (C3). Furthermore for each n,

L(W̃)p = LW ≤ bn1Kn ≤ bnW = bn(W̃)p. (5.3)

Thus applying Theorem 5.3 to W̃, we obtain Theorem 2.2. �

Let us now prove Theorem 5.3.
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Proof of Theorem 5.3. The proof of Theorem 5.3 is divided into several steps.

Step 1. Let t > 0 be arbitrary but fixed. Let us prove that PDt satisfies Assumptions
(1), (2), (3), and (4) in Theorem 4.1 with S = D there. First, reasoning as in (3.8),
one deduces using (5.2) together with the fact that PDt ≤ Pt, that for all x ∈ D,
PDt Wp(x) ≤ eMtWp(x). Thus PDt satisfies Assumption (3) in Theorem 4.1. In addition
(C5) implies that PDt satisfies Assumption (2) in Theorem 4.1. Recall that

PDt,W =
W(y)

W(x)
PDt (x, dy) ≤ W(y)

W(x)
Pt(x, dy) = Pt,W(x, dy)

and that PDt,W also satisfies (A1) (by (3.12) and (3.13)). Then, by Theorem 3.4, and in
view of (3.12),

ress(P
D
t |bWB(D)) = lim

n→∞

[
βw(PDnt,W)

]1/n

= 0.

Furthermore by Lemma 5.2, PDt is strong Feller on D for all t ≥ t0 (and thus PDt satisfies
in particular Assumption (1) in Theorem 4.1). This together with the topological
transitivity in (C5) implies that for any t > 0, PDt is m1-irreducible where m1 =∫ +∞
t0

e−sPDs (x1, ·)ds, for some x1 ∈ D. Indeed, let A ∈ B(D) such that m1(A) > 0. The

function g1(x) :=
∫ +∞
t0

e−sPDs (x, A)ds is continuous (since PDt is strong Feller on D for

all t ≥ t0) and positive at x1 (by choice of A). Then, by (C5), we have once if Nt ≥ t0,

PDNtg1(x) > 0, ∀x ∈ D.
By Nummelin [63, Theorem 3.2],

rsp(P
D
t |bWB(D)) = lim

n→+∞

(
sup
x∈D

Ex[W(Xnt)1nt<σD ]

W(x)

)1/n

> 0.

Thus, we have proved that PDt satisfies the Assumption (4) in Theorem 4.1.

Step 2. Let λD := − log rsp(P
D
1 |bWB(D)). Applying Theorem 4.1 to Q = PD1 on bWB(D),

there is a unique couple (µD, ϕ) where µD is a probability measure on D with µD(W) <
+∞, ϕ ∈ CbW(S) positive everywhere on D, µD(ϕ) = 1 and

µDP
D
1 = e−λDµD, P

D
1 ϕ = e−λDϕ,

and for all f ∈ bWB(D) and n ≥ 1∥∥enλDPDn f − µD(f)ϕ
∥∥
bWB(D)

≤ Ce−δn‖f‖bWB(D). (5.4)

where C ≥ 1 and δ > 0 are independent of f and n. In addition for any t > 0,
since (µDP

D
t )PD1 = (µDP

D
1 )PDt = e−λDµDP

D
t and Ker (e−λDI − (PD1 )∗) in MbW(D) is

one dimensional and µDP
D
t ∈ MbW(D), one deduces that µDP

D
t = λ(t)µD. By the

semigroup property, λ(t+ s) = λ(t) · λ(s). As λ(1) = e−λD , one obtains that:

λ(t) = e−λDt, t ≥ 0.

By (a) in Theorem 4.1,
rsp(P

D
t |bWB(D)) = λ(t) = e−λDt.

Since
PµD(t < τD) = µDP

D
t 1 = e−λDtµD(1) = e−λDt
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then λD ≥ 0 and

PµD(Xt ∈ ·|t < τD) = eλDtµDP
D
t (·) = µD,

i.e. µD is a QSD. Let us now prove the uniqueness of the QSD of (Xt, t ≥ 0) in D in
the set of measures ν such that ν(W) < +∞. To this end, let us consider νD a QSD
satisfying νD(W) < +∞. Then for all t ≥ 0

νDP
D
t = λ(t)νD, λ(t) = PνD(t < σD).

By (a) in Theorem 4.1, this implies necessarily that

λ(t) = rsp(P
D
t |bWB(D)) = e−λDt and νD = µD,

which conludes the proof of the uniqueness. Finally for any t = n + s with s ∈ [0, 1[,
by (5.4) we have for all f ∈ bWB(D)∥∥e(n+s)λDPDn+sf − esλDµD(PDs f)ϕ

∥∥
bWB(D)

≤ CrnesλD‖PDs f‖bWB(D).

As esλDµD(PDs f) = µD(f) and sups∈[0,1] ‖PDs ‖bWB(D) ≤ sups∈[0,1] ‖PsW‖bWB(D) ≤ eb1 (by
the proof in Step 1 of Theorem 3.5 and (C3)), we obtain for all f ∈ bWB(D),∥∥etλDPDt f − µD(f)ϕ

∥∥
bWB(D)

≤ C ′e−δt‖f‖bWB(D), δ := − log r, C ′ = Ceb1eλD . (5.5)

Thus, one has for all f ∈ bWB(D) and all measures ν ∈MbW(D):∣∣Eν [f(Xt)|t < σD]− µD(f)
∣∣ =

∣∣∣eλDtν(PDt f)

eλDtν(PDt 1)
− µD(f)

∣∣∣
=

∣∣∣∣µD(f)ν(ϕ) +O1(e−δt)ν(W)‖f‖bWB(D)

ν(ϕ) +O2(e−δt)ν(W)‖f‖bWB(D)

− µD(f)

∣∣∣∣
=

∣∣∣∣∣µD(f) +O1(e−δt)ν(W)
ν(ϕ)
‖f‖bWB(D)

1 +O2(e−δt)ν(W)
ν(ϕ)
‖f‖bWB(D)

− µD(f)

∣∣∣∣∣
≤ O3(t)

ν(W)

ν(ϕ)
‖f‖bWB(D),

where for all k = 1, 2, 3 and for all t ≥ 0, |Ok(t)| ≤ Ce−δt, for some constant C
independent of ν and f . That yields:∣∣Eν [f(Xt)|t < σD]− µD(f)

∣∣ ≤ Ce−δt
ν(W)

ν(ϕ)
‖f‖bWB(D), ∀f ∈ bWB(D), t > 0.

Step 3. We have proved that λD ∈ [0,+∞). Let us now prove that λD > 0. If
in contrary λD = 0, then for all t ≥ 0, µD(PDt 1) = µD(1) = 1. This implies that
PDt 1(x) = 1 for all x ∈ D and t > 0, due to the fact that the function 1 − PDt 1 is
nonnegative and continuous over D (by the Feller property of PDt ) and that µD charges
all nonempty open subsets of D. That is in contradiction with the second assumption
in (C5). Then λD > 0. Now for every x ∈ D, it holds by (5.5) with f = 1:

Px(σD = +∞) = lim
t→+∞

e−λDteλDtPx(t < σD) = 0× ϕ(x)µD(1) = 0.



QSD FOR STRONGLY FELLER MARKOV PROCESSES BY LYAPUNOV FUNCTIONS 23

Next PµD(t < σD) = µD(PDt 1) = e−λDt. It remains to prove the independence of XσD

and σD, under PµD . For any f ∈ bB(∂D), letting for x ∈ D,

u(x) = Ex[f(XσD)],

we have by the strong Markov property

EµD [f(XσD)1t<σD ] = µD(PDt u) = e−λDtµD(u) = e−λDtEµD [f(XσD)], t ≥ 0,

which is the desired independence. This concludes the proof of Theorem 5.3. �

Remark 5.4 (On Step 3 in the proof of Theorem 5.3)). To prove that λD > 0, it
is also possible to use the standard result [60, Proposition 2]. In addition, it is also
standard that XσD and σD are PµD -independent as soon as µD is a QSD, see indeed [60,
Proposition 2].

6. Application to hypoelliptic damped Hamiltonian systems

In this section, we apply Theorem 2.2 to hypoelliptic damped Hamiltonian systems on
R2d (see (6.1)) when D = O× Rd (O ⊂ Rd, see more precisely (6.25)). To this end, we
first define the setting we consider and then, we check that the assumptions required
to apply Theorem 2.2 are satisfied for such processes (namely (C1)-(C5)): these are
the purposes of Sections 6.1 and 6.2 respectively. Finally, in Section 6.3, we state the
main result of this section which is Theorem 6.9.

6.1. Framework and assumptions. Let d ≥ 1. Let (Ω,F , (Ft)t≥0,P) be a filtered
probability space. Let (Xt = (xt, vt), t ≥ 0) be the solution of the following hypoelliptic
stochastic differential equation on R2d:{

dxt = vtdt,

dvt = −∇V (xt)dt− c(xt, vt)vtdt+ Σ(xt, vt)dBt,
(6.1)

where (Bt, t ≥ 0) is a standard d-dimensional Brownian motion on (Ω,F , (Ft)t≥0,P).
Here the state space is S = R2d. Equation (6.1) describes a system of N particles
(in this case d = 3N) moving under interaction forces which are subject to random
collisions. The function c is the damping (or friction) coefficient and V is the particle
interaction potential function. We refer for instance to [75, 83, 59], and to the review
of the literature [56] for the study of such processes in R2d. Let us define the following
assumptions on V and c:

(Av1) V : Rd → R is C1 and V is lower bounded on Rd.
(Ac1) c : R2d → Rd×d is continuous. In addition, there exist η > 0 and L > 0, such

that

∀v ∈ Rd, |x| ≥ L :
1

2

[
c(x, v) + cT (x, v)

]
≥ η IRd .

Finally, for all N > 0,

sup
|x|≤N,v∈Rd

‖c(x, v)‖H.S < +∞,

where ‖c(x, v)‖H.S is the Hilbert-Schmidt norm of matrix and where cT is the
the transpose matrix of c.
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(AΣ) Σ : R2d → R a C∞ function, uniformly Lipschitz over R2d, and such that for
some Σ0 > 0 and Σ∞ > 0,

∀x ∈ R2d, Σ0 ≤ Σ(x) ≤ Σ∞.

For some results below, (Ac1) can be replaced by the less stringent assumption:

(Ac0) c : R2d → Rd×d is continuous and

∃A ≥ 0,∀x, v ∈ Rd :
1

2

[
c(x, v) + cT (x, v)

]
≥ −AIRd .

This will allow us to consider in particular the hypoelliptic damped Hamiltonian systems
with unbounded v-dependent damping coefficient:

for some `0 > 0, ∀x, v ∈ Rd, c(x, v) = |v|`0 (6.2)

and fast growing potential, in the sense that there exist n0 > 2, r0 > 0, and r > 0, for
all |x| ≥ r0,

V satisfies (Av1), r−1|x|n0 ≤ V (x) ≤ r|x|n0 and r−1|x|n0 ≤ x · ∇V (x). (6.3)

Notice that when (6.2) holds, Assumption (Ac1) is not satisfied but (Ac0) is satisfied.
The condition that n0 > 2 is justified in item (2) in Proposition 6.5 below.

Remark 6.1. Condition (6.3) is satisfied for instance for a C1 function V over Rd which
equal a polynomial function with leading terms a|x|2n, with n ≥ 2 and a > 0, outside
a compact set of Rd.

When V , c, and Σ satisfy respectively (Av1), (Ac0), and (AΣ), there is a unique
weak solution to (6.1) by [83, Lemma 1.1], which is thus a strong Markov process. We
will thus always assume at least (AΣ), (Av1) and (Ac0) in what follows.

For t ≥ 0, we recall that (Pt, t ≥ 0) denotes the semigroup of the process (Xt, t ≥ 0),
that is Pt(x, A) = Px(Xt ∈ A), where A ∈ B(R2d) and x = (x, v) ∈ R2d. In the following,
we denote by (X0

t (x), t ≥ 0) the process (Xt, t ≥ 0) when X0 = x. Let us also denote by

L0 =
Σ2(x, v)

2
∆v + v.∇x −∇V (x).∇v − c(x, v)v.∇v, (6.4)

the infinitesimal generator of the diffusion (6.1). Let us recall that De(L) denotes the
extended domain of the generator of the semigroup (Pt, t ≥ 0) of the process (6.1)
(see (2.4) for the definition).

Let us check that the assumptions required to apply Theorem 2.2 are satisfied for
the process (6.1) when D = O×Rd (O ⊂ Rd, see more precisely (6.25)), by prescribing
if necessary, more assumptions on V , c, and `0.

6.2. On the assumptions (C1)-(C5).
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6.2.1. On the assumptions (C1) and (C2). One has the following result from [83].

Lemma 6.2. Assume that V , c, and Σ satisfy respectively (Av1), (Ac0), and (AΣ).
Then, (C1) and (C2) are satisfied for the process (6.1).

Proof. Let us first prove that (Pt, t ≥ 0) satisfies (C1). Introduce the process (X0
t =

(x0
t , v

0
t ), t ≥ 0) solution (in the strong sense) to the stochastic differential equation over

R2d: {
dx0

t = v0
t dt,

dv0
t = Σ(x0

t , v
0
t )dBt.

(6.5)

That is (X0
t , t ≥ 0) is the process (6.1) when V = 0 and c = 0. Let (P 0

t , t ≥ 0)
be the semigroup of process (6.5). Under (AΣ), for t > 0, P 0

t has a smooth density
(x, y) ∈ R2d 7→ p0

t (x, y) with respect to the Lebesgue measure dy by the Hörmander’s
theorem. Therefore, when (xn)n converges to x ∈ R2d as n→ +∞, p0

t (xn, y)→ p0
t (x, y).

Since for all n,
∫
R2d p

0
t (xn, y)dy =

∫
R2d p

0
t (x, y)dy = 1, it follows by Scheffé’s Lemma

that p0
t (xn, y) → p0

t (x, y) in L1(R2d, dy) as n → +∞. Hence for any f ∈ bB(R2d),
P 0
t f(xn) =

∫
R2d f(y)p0

t (x, y)dy →
∫
R2d f(y)p0

t (x, y)dy = P 0
t f(x). That is, P 0

t is strong
Feller for t > 0.

When V and c satisfy (Av1) and (Ac0), using the same arguments as in the proof
of [83, Proposition 1.2], we deduce that, for t > 0, Pt is strong Feller and thus satis-
fies (C1).

Moreover, for any T > 0, the mapping

x ∈ R2d 7→ Px(X[0,T ] ∈ ·) ∈M1(C0([0, T ],R2d))

is continuous with respect to the weak convergence of measures on C0([0, T ],R2d)
(equipped with the uniform convergence topology). Indeed, the weak limit of the weak
solutions of (6.1) with starting point xn converges to the solution of the martingale
problem with starting point x, as xn → x ∈ R2d, by the continuity of the coefficients
in (6.1) and the uniqueness of the weak solution of (6.1) (see [83, Lemma 1.1]). Thus
(C2) is satisfied for the process (6.1). �

6.2.2. On the assumption (C3). Let us define the following last assumptions on V
and c.

(Av2) There exists a C1 function G : Rd → Rd such that G and ∇G are bounded over
Rd, and such that

∇V (x) ·G(x)→ +∞ as |x| → +∞.
(Ac2) There exists some C2 lower bounded function U : Rd → R such that

sup
x,v∈Rd

|cT (x, v)G(x)−∇U(x)| < +∞.

Remark 6.3. Let us recall some examples of functions V and c satisfying (Av1),
(Av2), (Ac1), and (Ac2) ([83, Remark 3.2]):

(1) If the damping coefficient c satisfies (Ac1) with moreover

sup
x,v∈Rd

‖c(x, v)‖H.S < +∞,
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then (Ac2) is satisfied with U = 0.
(2) Assume that V satisfies (Av1) and that:

(a) lim|x|→+∞
x·∇V (x)
|x| = +∞. Then, (Av2) is satisfied with

x 7→ G(x) =
x

|x|
(1− χ),

where χ : Rd → R is C∞, has compact support, χ = 1 in a neighborhood
of 0 in Rd.
In particular, (Av2) and (Ac2) are satisfied when V : Rd → R is a C1

function such that ∇V (x) · x ≥ c0|x|2k (k ∈ N∗, c0 > 0) outside a compact
subset of Rd and c(x, v) = c1|x|2q (q ∈ N∗, c1 > 0) on R2d (choose indeed G
as above and U(x) = c1(1− χ)|x|2q+1/(2q + 1)).

(b) There exists r > 0, |x| > r 7→ eV (x) = ∇V (x)/|∇V (x)| is C1, bounded, and
with bounded derivatives, and lim|x|→+∞ |∇V (x)| = +∞. Then, (Av2) is
satisfied with

x 7→ G(x) = eV (x)(1− χ),

where χ : Rd → R is C∞, has compact support, and χ = 1 on B(0, r + 1).

Notice that when d = 1, lim|x|→+∞
x·∇V (x)
|x| = +∞, (Ac2), and lim|x|→+∞ |∇V (x)| =

+∞ are equivalent (under (Av1)).
(3) When d = 1, the case when there exist c1, c2, w0 > 0, such that

∀x, v ∈ R, c(x, v) = c1x
2 − c2 and V (x) =

1

2
w2

0x
2, (6.6)

corresponds to the the noisy Van Der Pol oscillator. Then, (Av1), (Av2),
(Ac1), and (Ac2) are satisfied withG(x) = x(1−χ)/|x|, and U(x) =

[
c1|x|3/3−

c2|x|](1 − χ), where χ : R → R is C∞, has compact support, and χ = 1 in a
neighborhood of 0 (see [83, Section 5.3]).

The Hamiltonian of the process (6.1) is, for x, v ∈ Rd,

H(x, v) = V (x) +
1

2
|v|2.

Assume that (AΣ), (Av1), (Av2), (Ac1), and (Ac2) hold. Let us introduce for
(x, v) ∈ R2d, the modified Hamiltonian [83, Eq. (3.3)],

F1(x, v) = aH(x, v) + v · (bG(x) +∇w(x)) + b U(x) (6.7)

where G, U are as (Av2) and (Ac2), a > 0, b > 0, and w : Rd → R is a compactly
supported C2 function. Define, for all x, v ∈ Rd:

W1(x, v) = exp
[
F1(x, v)− inf

R2d
F1

]
≥ 1. (6.8)

We now give a concrete upper bound on W1 which is useful to verify the integrability
condition in Theorem 2.2.

Lemma 6.4. Assume that V satisfies (Av1) and (Av2). Then limx→+∞ V (x) = +∞.
Let c be such that (Ac1) and (Ac2) hold with lim|x|→+∞ U(x)/V (x) = 0. Then, for

any ε > 0, there exists R > 0 such that if |x|+ |v| ≥ R, W1(x, v) ≤ ea(1+ε)H(x,v).
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Proof. Let us prove that limx→+∞ V (x) = +∞. Assume without loss of assumption that
V ≥ 0. Notice that (sinceG is bounded) there exists C > 0 such that 1/|G| ≥ C over Rd.
In addition, in view of (Av2), there exists r0 > 0 such that |G(x)| > 0 for all |x| ≥ r0.
Let R0 > r0 and C0 > 0 be such that ∇V (y) · G(y) ≥ C0 for |y| ≥ R0 (see (Av2)).
Consider for |x| > R0, the curve γ(x) solution to γ̇t(x) = −G(γt(x))/|G(γt(x))| with
γ0(x) = x, for all t ∈ [0, T0(x)], where T0(x) = inf{t ≥ 0, γt(x) = R0} ∈ R∗+ ∪ {+∞}.
Notice that T0(x) ≥ |x| −R0. It then holds, if T0(x) < +∞,

V (x) ≥
∫ T0(x)

0

∇V (γs(x)) ·G(γs(x))

|G((γs(x))|
ds ≥ CC0(|x| −R0).

The case T0(x) = +∞ is not possible since it would imply that V (x) ≥ CC0t, for all t ≥
0. Thus limx→+∞ V (x) = +∞. The proof of the upper bound on W1 is a consequence
of the fact that, for any a, b > 0 fixed, v · (bG(x) +∇w(x)) + b U(x) = o(aH(x, v)) as
|x|+ |v| → +∞. �

Let us mention that because W1 ∈ C1,2(Rd ×Rd) (i.e. W1 is C1 in the variable x and
C2 in the variable v), W1 ∈ De(L) and LW1 = L0W1 quasi-everywhere (see (2.4)).

Let us now check that (C3) is satisfied for (Pt, t ≥ 0) under the above assumptions
on V and c. This is the purpose of the next proposition.

Proposition 6.5. Assume that Σ satisfies (AΣ). Assume that:

(1) The functions V and c satisfy (Av1), (Av2), (Ac1), and (Ac2). Then, for a
well chosen function w ∈ C2

c (Rd,R), and well chosen constants a > 0 and b > 0
(see [83, Eq. (3.4) → Eq. (3.9)] for explicit conditions), Assumption (C3) is
satisfied for the process (6.1) with the function W1 defined in (6.8).

(2) The functions c and V satisfy respectively (6.2) and (6.3). Then, Assump-
tion (C3) is satisfied for the process (6.1) if

`0 < n0 − 2 (6.9)

with the continuous bounded Lyapunov function W2 : R2d → R defined below
in (6.12).

Let us mention that W1 (see (6.8)) and W2 (see (6.12)) in Proposition 6.5 are not
unique by construction (see indeed [83, Eq. (3.4) → Eq. (3.9)] and the proof of
item (2) of Proposition 6.5 below). Moreover, let us notice that W1 is not bounded over
R2d. Concerning item (1) in Proposition 6.5, we also refer to [83, Section 5] for other
Lyapunov functions in explicit examples like the noisy Van Der Pol oscillator.

Proof. Item (1) in Proposition 6.5 is proved in [83, Section 3] (see more precisely
Eq. (3.9) there). Let us thus prove item (2) in Proposition 6.5. Assume that c and V
satisfy respectively (6.2) and (6.3). Recall that the Hamiltonian of (6.1) is

(x, v) ∈ R2d 7→ |v|
2

2
+ V (x).

The infinitesimal generator of the process (6.1) is in this case (see (6.4), (6.2), and (6.3)):

L0 =
Σ2(x, v)

2
∆v + v · ∇x −

[
∇V (x) + |v|`0v

]
· ∇v.
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Let us construct a Lyapunov function for such a process. To avoid any problem of
regularity at 0 in the upcoming computations, let us actually consider

(x, v) ∈ R2d 7→ H2(x, v) =
|v|2

2
+ V (x) + k0,

where k0 > 0 is such that V (x) + k0 ≥ 1 for all x ∈ Rd (see (6.3)). Let

a > 0, α > 0, b > 0, and β > 0.

be positive real numbers. Assume that (recall n0 > 2),

0 < β − α ≤ 1

2
− 1

n0

, (6.10)

so that the function

(x, v) ∈ R2d 7→ F2(x, v) = −aH−α2 (x, v) + b x · vHβ−α−1
2 (x, v),

is bounded. Indeed, aH−α2 is a bounded function over R2d. For the other term, set
λ = β − α, and use Young’s inequality with q = 2(1− λ) > 1 (λ < 1/2, see (6.10)) and
p = q/(q − 1) = 2(1− λ)/(1− 2λ), to get

|x · v|
H2(x, v)1−λ ≤

xp

pH2(x, v)1−λ +
vq

qH2(x, v)1−λ . (6.11)

The function x, v 7→ |x · v|H2(x, v)λ−1 is thus bounded if p ≤ n0(1− λ) (see (6.3)), that
is 2(1 − λ)/(1 − 2λ) ≤ n0(1 − λ) which writes 2 ≤ n0 − 2λn0 which is precisely (6.10).
Then set, for x, v ∈ Rd,

(x, v) ∈ R2d 7→ W2(x, v) = exp
[
F2(x, v)− inf

R2d
F2

]
, (6.12)

which belongs to C1,2(Rd×Rd) (thus W2 ∈ De(L)). For ease of notation, in the following,
we will simply denote F2 (resp. H2, W2) by F (resp. H, W). It holds, ∂xW

W
= ∇xF,

∂xW
W

= ∇xF, and ∆vW
W

= ∆vF + |∇vF|2. Thus, one has:

L0W

W
=

1

2
Σ2∆vF +

1

2
Σ2|∇vF|2 + v · ∇xF−

[
∇V + |v|`0v

]
∇vF, (6.13)

where we recall that Σ : R2d → R is smooth and bounded, by assumption. One has,

∇xF = aα∇V H−α−1 + bvHβ−α−1 − b(α + 1− β)x · v∇V Hβ−α−2,

and
∇vF = aαvH−α−1 + bxHβ−α−1 − b(α + 1− β)x · v vHβ−α−2.

We then have

v · ∇xF−
[
∇V + |v|lv

]
∇vF = H−α−1

[
− aα|v|`0+2 + b|v|2Hβ − bx · ∇V Hβ

− b|v|`0x · vHβ + b(α + 1− β)x · v|v|`0+2Hβ−1
]
. (6.14)

Moreover, it holds:

∆vF = aαH−α−1 − aα|v|2(α + 1)H−α−2 + b(β − α− 1)x · vHβ−α−2

− (d+ 1)b(α + 1− β)x · vHβ−α−2 − b(α + 1− β)(β − α− 2)x · v|v|2Hβ−α−3.
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The functions (x, v) 7→ aαH−α−1 and (x, v) 7→ |v|2H−α−2 are clearly bounded over R2d.
In addition, since H−1 is bounded over R2d, there exist C > 0, such that

|x · v|Hβ−α−2 ≤ C|x · v|Hβ−α−1 = C|x · v|Hλ−1,

and from the analysis led in (6.11) above (see (6.10) and recall that λ = β−α), (x, v) 7→
|x · v|Hβ−α−2 is bounded over R2d. Finally, (x, v) 7→ |x · v||v|2|Hβ−α−3 is also bounded
over R2d since (see also (6.11) and (6.10)), |x ·v||v|2Hβ−α−3 = |x ·v|Hλ−1×|v|2H−2. One
then obtains that

Σ2∆vF is bounded over R2d.

Similarly, the functions |v|H−α−1, |x|Hβ−α−1 = |x|Hλ−1 (recall that λ < (n0 − 1)/n0 so
that n0(1−λ) > 1, see (6.10)), and |x ·v||v||Hβ−α−2 = |x ·v|Hλ−1×|v|H−1, are bounded,
and then deduces that

Σ2|∇vF|2 is bounded over R2d.

Consequently, from (6.13) and (6.14), one has, for some C > 0 independent of x and v,

L0W

W
≤ C + H−α−1

[
− aα|v|`0+2 + b|v|2Hβ − bx · ∇V Hβ

− b|v|`0x · vHβ + b(α + 1− β)x · v|v|`0+2Hβ−1
]
. (6.15)

Let us now give a lower bound on the term inside the bracket in (6.15), that we denote
by M. Let us assume that

β < 1.

Then, it holds, for all s ≥ 0 and t ≥ 0, 2β−1(sβ + tβ) ≤ (s + t)β ≤ sβ + tβ. Since there
exists r1 > 0 such that so that for all x, v ∈ R:

2β−1V β
0 (x) +

v2β

2
≤ Hβ(x, v) ≤ V β

0 (x) +
v2β

2β
,

where for all x ∈ Rd we set:

V0(x) = V (x) + k0,

which satisfies (see (6.3)), for some r > 0 and C > 0, and all |x| > r,

C−1|x|n0 ≤ V0(x) ≤ C|x|n0 and C−1|x|n0 ≤ x · ∇V0(x). (6.16)

Therefore, since b(α + 1− β) > 0,

M ≤ −aα|v|`0+2 + b|v|2V β
0 +

b

2β
|v|2+2β − 2β−1b|x · ∇V0|V β

0 −
b

2
|x · ∇V0||v|2β

+ 1x·v≤0b |x|V β
0 |v|`0+1 +

1x·v≤0

2β
b |x||v|`0+1+2β

+ 1x·v≥0b(α + 1− β)
|x|V β

0 |v|`0+3

V0 + |v|2/2
+

1x·v≥0

2β
b(α + 1− β)

|x||v|3+`0+2β

V0 + |v|2/2
. (6.17)

Let us now find conditions such that −aα|v|`0+2 and −2β−1bx · ∇V0 V
β

0 are dominant
in the right hand side of (6.17). From (6.16), for |x| ≥ r,

C−1|x|n0+n0β ≤ |x · ∇V0(x)|V β
0 (x) = V β

0 (x)x · ∇V0(x), (6.18)
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for some C > 0 independent of x. Assume that

β < `0/2, (6.19)

so that |v|2+2β = o(|v|`0+2) as |v| → +∞. In addition, for 0 < ε < λ0, using Young’s
inequality with pε = (`0 + 2− ε)/2 > 1 and qε = pε/(pε − 1) = 1 + 2/(`0 − ε):

|v|2V β
0 ≤ p−1

ε |v|`0+2−ε + q−1
ε V

β(1+2/(`0−ε))
0 .

From (6.19), for ε > 0 small enough β < (`0 − ε)/2 and thus n0β(1 + 2/(`0 − ε)) <

n0β + n0. Then, for such ε > 0, |v|`0+2−ε = o(|v|`0+2) as |v| → +∞ and V
β(1+2/(`0−ε))

0 =
o(|x|n0+βn0)→ +∞ as |x| → +∞ (see (6.16)). For ε� 1, using again Young’s inequality
with pε = (`0 + 2 − ε)/(`0 + 1) = 1 + (1 − ε)/(`0 + 1) > 1 and qε = pε/(pε − 1) =
(`0 + 2− ε)/(1− ε) = 1 + (`0 + 1)/(1− ε):

|v|`0+1|x|V β
0 ≤ p−1

ε |v|`0+2−ε + q−1
ε |x|V

β[1+(`0+1)/(1−ε)]
0 .

Let us check that (1 + n0β)[1 + (`0 + 1)/(1 − ε)] < n0β + n0. This is equivalent to
n0β < (n0 − 1)(1 − ε)/(`0 + 1) − 1. Notice that from (6.9), (n0 − 1)/(`0 + 1) > 1 and
thus for ε > 0 small enough (n0 − 1)(1− ε)/(`0 + 1) > 1. Then, assume that

n0β < (n0 − 1)/(`0 + 1)− 1 (6.20)

so that for ε > 0 small enough, |x|V β[1+(`0+1)/(1−ε)]
0 = o(|x|n0+n0β). Assume also that

β < 1/2 (6.21)

so that, for ε > 0 small enough, pε = (`0 + 2− ε)/(`0 + 1 + 2β) > 1. Then,

|x||v|`0+1+2β ≤ p−1
ε |v|`0+2−ε + q−1

ε |x|(`0+2−ε)/(1−ε−2β).

Assume that
`0 + 2 < (n0β + n0)(1− 2β),

which is satisfied if β > 0 is small enough since `0 + 2 < n0 (see (6.9)). Then for ε > 0
small enough, (`0 + 2− ε)/(1− ε− 2β) < n0β+ n0 and |x|(`0+2−ε)/(1−ε−2β) = o(|x|n0β+n0).
Moreover, for β > 0 small enough, it holds n0/(1 + n0β) > 1 and thus, V0 + v2/2 ≥
C−1V

1/n0+β
0 v3/2−2β, for some C > 0. Then, because |x|V −1/n0

0 is a bounded function
(see (6.16)), it holds for some M > 0 independent of x and v,

|x|1+n0β|v|`0+3

V0 + v2/2
≤M |v|`0+3/2+2β. (6.22)

If β < 1/4, then the left hand side of (6.22) is equal to o(|v|`0+2) as |v| → +∞. Finally,

since V0 + |v|2/2 ≥ C−1V
1/n0

0 |v|2(n0−1)/n0 , for some M > 0 independent of x and v,

|x||v|`0+3+2β

V0 + v2/2
≤M |v|`0+1+2β+2/n0 .

Taking β > 0 such that 2β+2/n0 < 1 (this is possible because 2/n0 < 1 by assumption),
the left hand side of the previous inequality is equal to o(|v|`0+2) as |v| → +∞. In
conclusion, all the previous estimates together with (6.18) imply that there exists η
(depending on `0 and n0) such that if

0 < β < η, (6.23)
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then (recalling also that 0 < α < β and η ≤ `0, see (6.10) and (6.19)), there exists
C > 0 and a continuous function x, v ∈ Rd 7→ K(x, v) such that (see (6.15))

L0W

W
≤ C − K(x, v), (6.24)

with K(x, v)→ +∞ if |x|+ |v| → +∞. This ends the proof of Proposition 6.5. �

Let us now consider O, a nonempty subdomain of Rd (not necessarily bounded), that is
O is a connected open subset of Rd. As explained in the introduction, we are interested,
for applications in statistical physics, in the existence of quasi-stationary distributions
for the processes (6.1) in

D = O× Rd. (6.25)

Of course, other domains might be considered with our techniques. Recall that σD
(see (2.1)) is the first exit time from D for the process (6.1):

σD(x) = inf
{
t ≥ 0, Xt(x) /∈ D

}
= inf

{
t ≥ 0, xt(x) /∈ O

}
, (6.26)

where we recall that (Xt(x), t ≥ 0) stands for the process (Xt, t ≥ 0) when X0 = x ∈
R2d. Let us now check the other assumptions on (PDt , t ≥ 0) (the semigroup of the
process (6.1) killed when exiting D, see (2.2) and (6.26)) needed to apply Theorem 2.2.

6.2.3. The semigroup (PDt , t ≥ 0) is topologically irreducible.

Lemma 6.6. Assume that V , c and Σ satisfy (Av1), (Ac0), and (AΣ). Then,
(PDt , t ≥ 0) is topologically irreducible. If the open set Rd \O is not empty, then for all
x ∈ D and t > 0,

Px(σD < t) > 0,

which implies in particular that Px(σD < +∞) > 0 (thus (C5) is satisfied for the
process (6.1) when D = O× Rd).

Proof. We will apply the Stroock-Varadhan support theorem.

Step 1: the case when V = 0 and c = 0.

Recall that the process (X0
t = (x0

t , v
0
t ), t ≥ 0) is the solution (in the strong sense) to the

stochastic differential equation (6.5). Denote by (X0
t (x), t ≥ 0) the process (X0

t , t ≥ 0)

when X0
0 = x. Let (PD,0t , t ≥ 0) denote the semigroup of the process (6.5) killed when

exiting D. Denote by σ0
D the first time the process (X0

t = (x0
t , v

0
t ), t ≥ 0) exits D

(see (6.26)). The stochastic differential equation (6.5) writes in the Stratonovich formdx
0
t = v0

t dt,

dv0
t = −1

2
Σ(x0

t , v
0
t )∇vΣ(x0

t , v
0
t ) + Σ(x0

t , v
0
t ) ◦ dBt.

Let O1 be a nonempty open subset of O and O2 be a nonempty open subset of Rd.
Consider x0 = (x0, v0) ∈ D and x1 = (x1, v1) ∈ O1×O2. Let t > 0 and γ : [0, t]→ O be
a C1 and piecewise C2 curve such that γ(0) = x0, γ̇(0) = v0, γ(t) = x1, and γ̇(t) = v1.
The construction of such a γ can be done by a local cubic interpolation in time as it
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is done for instance in [54, Lemma 4.2] (their arguments also hold though O is not
bounded4). For s ∈ [0, t], set

Y(s) =

(
Y1(s)
Y2(s)

)
where Y1(s) = γ(s) and Y2(s) = γ̇(s).

Then, define the piecewise continuous function h : [0, t]→ Rd by:

h(s) =
1

Σ(γ(s), γ̇(s))

[
γ̈(s) +

1

2
Σ(γ(s), γ̇(s))∇vΣ(γ(s), γ̇(s))

]
, s ∈ [0, t].

Clearly, h ∈ L2([0, t],Rd), Y(0) = x0, and for all s ∈ [0, t],Ẏ1(s) = Y2(s),

Ẏ2(s) = −1

2
Σ(Y1(s),Y2(s))∇vΣ(Y1(s),Y2(s)) + Σ(Y1(s),Y2(s)) h(s).

By the Stroock-Varadhan support theorem [73] (see also [7, Theorem 4]), for all ε > 0
and t > 0,

Px0

(
sup
s∈[0,t]

|X0
s − Y(s)| < ε

)
> 0.

Since for all s ∈ [0, t], Y(s) = (γT (s), γ̇T (s))T ∈ O × Rd = D and O is open, for ε > 0
small enough, if sups∈[0,t] |X0

s − Y(s)| < ε, then X0
s = (xs, vs) ∈ D for all s ∈ [0, t]

(in particular t < σ0
D by continuity of the trajectories), and xt ∈ B(x1, 2ε) ⊂ O1 and

vt ∈ B(v1, 2ε) ⊂ O2. Thus

PD,0
t (x0,O1 ×O2) = Px0(X

0
t ∈ O1 ×O2, t < σ0

D) ≥ Px0

(
sup
s∈[0,t]

|X0
s − Y(s)| < ε

)
> 0,

which is precisely the topological irreducibility of (PD,0t , t ≥ 0). If the open set Rd \ O
is not empty, then choosing O1 such that O1 ⊂ Rd \ O, one deduces with the same
arguments as above5 that for all x0 ∈ D and t > 0,

Px0(σ
0
D < +∞) ≥ Px0(σ

0
D < t) ≥ Px0(X

0
t ∈ O1 × Rd) > 0.

Step 2: the case when V 6= 0 and c 6= 0.

Let us now come back to the case when V 6= 0 and c 6= 0. Pick f ∈ bB(D). Since
V and c satisfy (Av1) and (Ac0), from [83, Lemma 1.1] (and the remark on page 7
there), for x ∈ R2d and t > 0, the law of (Xs(x), s ∈ [0, t]) is equivalent to the law of
(X0

s (x), s ∈ [0, t]). In particular, for all t > 0 and all x ∈ D,

Px(Xt ∈ O1 ×O2, t < σD) > 0 if and only if Px(X
0
t ∈ O1 ×O2, t < σ0

D) > 0,

and
Px(σD < t) > 0 if and only if Px(σ

0
D < t) > 0.

4Let η : [0, t]→ O be a C0 curve such that η(0) = x0 and η(t) = x1 (O is path-connected because it
is connected and locally path-connected, since it is open). Then, apply [54, Lemma 4.2] with (using the
notation there) K = {x0, x1}, δK = 1

2distRd(Ran η, ∂O) > 0, K ′ = {(x, v) ∈ R2d,distRd(x,Ran η) ≤
δK/2, |v| ≤ max(|v0|, |v1|)} (which is a compact and connected subset of D), and ε = δK/2.

5In this case, consider γ : [0, t]→ Rd be a smooth curve such that γ(0) = x0, γ̇(0) = v0, γ(t) = x1,
and γ̇(t) = v1. Such a curve can be simply constructed by a (global) cubic interpolation in time.
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This ends the proof of Lemma 6.6. �

6.2.4. Weak Feller property of PDt .

Proposition 6.7. Assume that V , c, and Σ satisfy respectively the assumptions (Av1),
(Ac0), and (AΣ). Assume that O is a C2 subdomain of Rd such that Rd \ O is
nonempty. Then, for t > 0, PDt is strong Feller on D (and thus weakly Feller on
D). Thus, assumption (C4) is satisfied for PDt .

Proof. The proof of Proposition 6.7 is divided into several steps.

Step 1: properties of the process (X0
t , t ≥ 0), see (6.5).

Step 1a: Proof of (6.27).

In this step, we prove that, for y = (xy, vy) ∈ ∂D, if

n(xy) · vy ≥ 0,

then almost surely, for all t > 0, there exists u ∈ (0, t], such that

x0
u(y) ∈ Rd \ O. (6.27)

Equation (6.27) has been very recently proved in [54, (i) in Proposition 2.8] for the
process (6.1) when Σ is constant (that is, Σ is independent of x and v). The proof
of (6.27) requires further analysis when Σ is not constant. When vy · n(xy) > 0, the
proof of (6.27) is straightforward. Indeed, because ∂O is C2, in a neighborhood U of
xy ∈ ∂O in Rd, O is given by {Ψ < 0} for some C2 function Ψ : Rd → R such that
n(xy) = ∇Ψ(xy) and ∂O is given by {Ψ = 0}. Then, for t ≥ 0 (sufficiently small, say
t ≤ t∗(y), so that x0

t (y) ∈ U for all t ∈ [0, t∗(y)]),

Ψ(x0
t (y)) =

∫ t

0

∇Ψ(x0
s(y)) · v0

s(y) ds.

In addition, since
∇Ψ(x0

0(y)) · v0
0(y) = vy · n(xy) > 0

and because s ≥ 0 7→ ∇Ψ(x0
s(x)) · v0

s(x) is continuous almost surely, one deduces that
for all t > 0 small enough,

Ψ(x0
t (y)) > 0,

which concludes the proof of (6.27) when vy · n(xy) > 0. Let us now prove (6.27) when
vy · n(xy) = 0. One has uniformly in x ∈ U (recall that ∇Ψ is of regularity C1),

∇Ψ(x) = n(xy) +O(|x− xy|),
so that, using in addition that v0

s(y) · n(x0
0(y)) = vy · n(xy) = 0, for t ∈ [0, t∗(y)],

Ψ(x0
t (y)) =

∫ t

0

[
vy +

∫ s

0

Σ((x0
u(y), v

0
u(y)))dBu

]
·
[
n(xy) +O(|x0

s(y)− xy|︸ ︷︷ ︸
=|

∫ s
0 v

0
u(y)du|

)
]
ds

=

∫ t

0

Msds+O(t2) sup
s∈[0,t]

|v0
s(y)|2 (6.28)
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where we set for s ≥ 0,

Ms =

∫ s

0

Σ(x0
u(y), v

0
u(y))dωu

and where (ωu, u ≥ 0) is a standard one dimensional Brownian motion (ωu = Bu ·n(xy)).
Then, to prove (6.27) and in view of the previous estimate, we have to study the sign

of
∫ t

0
Msds (for small t > 0). To this end, it is sufficient to show that

lim sup
t→0+

∫ t
0

Msds

L(T−1(t))
> 0 almost surely, (6.29)

where L(r) =
√

2/3 r3/2
√

log log(1/r) (for r > 0), and where for s ≥ 0,

T (s) =

∫ s

0

Σ2(x0
u(y), v

0
u(y))du,

which is (almost surely) a strictly increasing and continuously differentiable function
from R+ → R+ with T (s) =

∫ s
0

Σ2(x0
u(y), v

0
u(y))du ≥ Σ2

0×s→ +∞ as s→ +∞. Notice
that because for all s ≥ 0, Σ0s ≤ T (s) ≤ Σ∞s, it holds for all u ≥ 0,

Σ−1
∞ u ≤ T−1(u) ≤ Σ−1

0 u.

Thus for some C > 0, it holds, for t ≥ 0 large enough,

C−1L(t) ≤ L(T−1(t)) ≤ CL(t).

Consequently, t2/L(T−1(t)) → 0 as t → 0 and thus, in view of (6.28), (6.29) im-
plies (6.27). Thus, let us prove (6.29). By assumption on Σ, (Ms, s ≥ 0) is a continuous
martingale and [M]s = T (s) → +∞ as s → +∞. Then, using the Dambis-Dubins-
Schwarz theorem, there exists a standard one dimensional Brownian motion (Vt, t ≥ 0)
such that for all s ≥ 0,

Ms = V[M]s .

Since (T−1)′(u) = 1/T ′(T−1(u)) = Σ−2(x0
T−1(u), v

0
T−1(u)),∫ t

0

Msds =

∫ t

0

VT (s)ds =

∫ T−1(t)

0

Vu Σ−2(x0
T−1(u)(y), v

0
T−1(u)(y)) du. (6.30)

Then, setting κ = T−1(t) (t > 0), (6.29) is equivalent to

lim sup
κ→0+

∫ κ
0

VuΣ
−2(x0

T−1(u)(y), v
0
T−1(u)(y)) du

L(κ)
> 0 almost surely. (6.31)

The proof of (6.31) is the purpose of the next step.

Step 1b: Proof of (6.31).

By assumption on Σ and since ∇Σ−2 = −2(∇Σ) Σ−3, uniformly on x, z ∈ R2d, one has:

Σ−2(x) = Σ−2(z) +O(|x− z|).
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Thus, using also that x0
T−1(u)(y) = xy +

∫ T−1(u)

0
v0
s(y)ds and T−1(u) ≤ T−1(t) = κ (for

0 ≤ u ≤ t), one has:∫ κ

0

VuΣ
−2(X0

T−1(u)) du = Σ−2(xy, vy)

∫ κ

0

Vu du

+O
(∫ κ

0

|Vu|
[
|x0
T−1(u)(y)− xy|+ |v0

T−1(u) − vy|
]
du
)

= Σ−2(xy, vy)

∫ κ

0

Vu du

+ sup
u∈[0,κ]

|Vu|O
[ ∫ κ

0

|x0
T−1(u)(y)− xy|du+ κ sup

u∈[0,κ]

|v0
u(y)− vy|

]
= Σ−2(xy, vy)

∫ κ

0

Vu du

+ sup
u∈[0,κ]

|Vu|O
[ ∫ κ

0

u sup
u∈[0,κ]

|v0
u(y)|du+ κ sup

u∈[0,κ]

|v0
u(y)− vy|

]
= Σ−2(xy, vy)

∫ κ

0

Vu du

+ sup
u∈[0,κ]

|Vu|
[

sup
u∈[0,κ]

|v0
u(y)|O

(
κ2
)

+ sup
u∈[0,κ]

|v0
u(y)− vy|O

(
κ
)]
,

where we have used that T−1(u) ≤ Σ−1
0 u. Using Watanabe’s the law of the iterated

logarithm [82] for
∫ κ

0
Vu du (see also [50, (2) in Theorem 1]), it holds:

lim sup
κ→0+

Σ−2(xy, vy)
∫ κ

0
Vu du

L(κ)
= Σ−2(xy, vy) > 0 almost surely.

Using Khinchin’s law of the iterated logarithm of supu∈[0,κ] |Vu| (see e.g. [41]), it holds:

lim sup
κ→0+

supu∈[0,κ] |Vu|
P(κ)

= 1 almost surely,

where P(κ) =
√

2κ
√

log log(1/κ). Thus, since P(κ)
L(κ)
∼
√

3/κ, one has almost surely as

κ→ 0+:

κ sup
u∈[0,κ]

|v0
u(y)− vy|

supu∈[0,κ] |Vu|
L(κ)

=
supu∈[0,κ] |Vu|

P(κ)

κP(κ)

L(κ)
sup
u∈[0,κ]

|v0
u(y)− vy| → 0,

because almost surely, supu∈[0,κ] |v0
u(y) − vy| → 0 as κ → 0+. This concludes the proof

of (6.31) (with more precisely lim supκ→0+

∫ κ
0

VuΣ
−2(X0

T−1(u)) du/L(κ) = Σ−2(xy, vy)

almost surely), and thus of (6.29) and then of (6.27).

Step 1c: Proof of (6.32).

Let (xn)n be a sequence of elements of D such that xn → x ∈ D as n → +∞. Let us
prove that for t > 0,

as n→ +∞, 1t<σ0
D(xn) → 1t<σ0

D(x) in P-probability. (6.32)
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Let us prove (6.32). Let us pick t > 0 and a sequence xn = (xn, vn)n converging to some
x = (x, v) ∈ D.

First of all, recall that under (AΣ), for t > 0, P 0
t has a density p0

t over R2d with
respect to the Lebesgue measure. It then holds:

Px(σD = t) ≤ Px(x
0
t ∈ ∂O) =

∫
∂O×Rd

p0
t (x, x, v)dxdv = 0, (6.33)

since ∂O has Lebesgue measure 0. Indeed, because ∂O is C1, for any x ∈ ∂O, there
exists εx > 0, such that the open subset ∂O ∩ B(x, εx) of ∂O has Lebesgue measure 0.
Moreover these open subsets of ∂O clearly cover ∂O and because ∂O is Lindelöf (due to
the fact that Rd is Lindelöf and ∂O = O∩ (Rd \O) is closed), ∂O ⊂ ∪i∈NB(xi, εxi)∩∂O.
Thus ∂O has Lebesgue measure 0. This proves (6.33).

Let us come back to the proof of (6.32). For n ≥ 0, denote by dn(t) = max
{
|X0

s (xn)−
X0
s (x)|, s ∈ [0, t]

}
. We have using [40, Lemma 3.3] (Assumption (A) there is satisfied

for the process (6.5), see indeed (AΣ)):

for any r > 0, lim
n→+∞

P(dn(t) > r) = 0. (6.34)

Let {n′} ⊂ N be a subsequence. By (6.34), dn′(t) → 0 in P-probability as n′ → +∞,
and thus there exists a subsequence {n′′} ⊂ {n′} such that

lim
n→+∞

dn′′(t) = 0 a.s. as n′′ → +∞. (6.35)

Let us prove that

1t<σ0
D(xn′′ )

→ 1t<σ0
D(x) a.s. as n′′ → +∞. (6.36)

In view of (6.33), we only have to prove (6.36) on the events {t < σ0
D(x)} and {t >

σ0
D(x)}.
On the event {t < σ0

D(x)}, x0
s(x) ∈ O for all s ∈ [0, t]. By (6.35) and since O is

open, there exists n′′0 such that for all n′′ ≥ n′′0, x0
s(xn′′) ∈ O for all s ∈ [0, t]. Thus, for

all n′′ ≥ n′′0, t < σ0
D(xn′′). We have therefore proved that on the event {t < σ0

D(x)},
1t<σ0

D(xn′′ )
→ 1 = 1t<σ0

D(x) as n′′ → +∞.

Let us now prove (6.36) on the event {t > σ0
D(x)}. In this case, necessarily, since

x ∈ D, it holds almost surely, n(x0
σ0
D(x)

) · v0
σ0
D(x)
≥ 0. Set α = (t − σ0

D)/2 ∈ (0, t − σ0
D).

Then, from (6.27), and by the strong Markov property of the process (6.1), there exists
u ∈ (0, α] such that x0

σ0
D(x)+u

(x) ∈ Rd \ O. By (6.35) and since Rd \ O is open, there

exists n′′0 such that for all n′′ ≥ n′′0, x0
σ0
D(x)+u

(xn′′) ∈ Rd \ O. Thus, by continuity of the

trajectories of for the process (6.5), for all n′′ ≥ n′′0, σ0
D(xn′′) < σ0

D(x) + u < t. We have
proved that on the event {t > σ0

D(x)}, 1t<σ0
D(xn′′ )

→ 0 = 1t<σ0
D(x) as n′′ → +∞. This

concludes the proof of (6.36).
We now conclude the proof of (6.32). If (6.32) does not holds, there exists r > 0,

γ > 0, and {n′} ⊂ N such that for all n′, P(|1t<σ0
D(xn′ )

− 1t<σ0
D(x)| > r) > γ. However,

there exists {n′′} ⊂ {n′} such that (6.36) holds, a contradiction. The proof of (6.32) is
complete.

Step 2: End of the proof of Proposition 6.7.
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Pick f : D → R a measurable and bounded function (i.e. f ∈ bB(D)). Extend f by 0
outside D, so that f ∈ bB(R2d). From [83, Lemma 1.1], it holds for x ∈ D and t > 0:

Ex

[
f(Xt)1t<σD

]
= E

[
f(X0

t (x)) 1t<σ0
D(x) Mt(x)

]
,

where

Mt = exp
[
−
∫ t

0

Σ−1(x0
s, v

0
s)
(
c(x0

s, v
0
s)v

0
s +∇V (x0

s)
)
dBs

− 1

2

∫ t

0

∣∣Σ−1(x0
s, v

0
s)[c(x

0
s, v

0
s)v

0
s +∇V (x0

s)]
∣∣2ds].

Let (xn)n be a sequence of elements of D such that xn → x ∈ D as n → +∞. Then,
from the proof of [83, Proposition 1.2], f(X0

t (xn)) → f(X0
t (x)) in P-probability and

Mt(xn)→ Mt(x) in L1(Ω,P), as n→ +∞. Then, using (6.32), in P-probability,

f(X0
t (xn))1t<σ0

D(xn) → 1t<σ0
D(x)f(X0

t (x)) as n→ +∞.

Thus, Exn

[
f(Xt)1t<σD

]
→ Ex

[
f(Xt)1t<σD

]
as n → +∞, that is PDt is strong Feller for

t > 0. This ends the proof of Proposition 6.7. �

Remark 6.8. If D = O× V, where V is a smooth bounded subdomain of Rd, we refer
to [13] for the strong Feller property of PDt .

6.3. Quasi-stationary distributions for hypoelliptic damped Hamiltonian sys-
tems (6.1). With all the previous results (see Lemma 6.2, Proposition 6.5, Lemma 6.6,
and Proposition 6.7), one deduces from Theorem 2.2, the following theorem for the
existence and uniqueness of the quasi-stationary distribution of the process (6.1) in
D = O× Rd.

Theorem 6.9. Assume that Σ satisfies (AΣ). Let O be a C2 subdomain of Rd, such
that Rd \ O is nonempty. Assume that

(1) The functions V and c satisfy (Av1), (Av2), (Ac1), and (Ac2). Then, there
exist parameters w ∈ C2

c (Rd,R), a > 0, and b > 0 (see [83, Eq. (3.4) → Eq.
(3.9)] for explicit conditions on w, a, and b) such that Theorem 2.2 is valid for
the process (6.1) with D = O× Rd and with the Lyapunov function W1 defined
in (6.8). We refer to Remark 6.3 for concrete examples of functions V and c
satisfying these assumptions, and to Lemma 6.4 for an upper bound on W1.

(2) The functions c and V satisfy respectively (6.2) and (6.3), and (6.9) holds.
Then, Theorem 2.2 is valid for the process (6.1) with D = O× Rd and with the
bounded Lyapunov function W2 defined in (6.12). Let us emphasize that since
W2 is bounded (see item (2) in Proposition 6.5), item (b) in Theorem 2.2 holds
and item (d) in Theorem 2.2 is satisfied for any initial distribution ν in D.

In other words, if (AΣ) holds, when D = O×Rd (where O is as in Theorem 6.9), there
exists a unique QSD in D for the process (6.1) in:

(1) For all p > 1, the space Mp = {ν ∈ M1(D), ν(W
1/p
1 ) < +∞} when (Av1),

(Av2), (Ac1), and (Ac2) hold. In addition, in this case, Equation (2.7) holds
for all ν ∈Mp.



38 A. GUILLIN, B. NECTOUX, AND L. WU

(2) The whole space of probability measuresM1(D) onD when (6.2), (6.3), and (6.9)
hold. Moreover, in this case, (2.7) holds for all ν ∈M1(D).
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sions. In Annales de l’IHP Probabilités et statistiques, volume 30, pages 415–436, 1994.
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des Ponts ParisTech, 2020.

[69] D.W. Sasser. Quasi-positive operators. Pacific Journal of Mathematics, 14(3):1029–1037, 1964.
[70] H.H. Schaefer. Banach Lattices. In Banach Lattices and Positive Operators, pages 46–153.

Springer, 1974.
[71] M.R. Sorensen and A.F. Voter. Temperature-accelerated dynamics for simulation of infrequent

events. Journal of Chemical Physics, 112(21):9599–9606, 2000.
[72] D. Steinsaltz and S.N. Evans. Quasi-stationary distributions for one-dimensional diffusions with

killing. Transactions of the American Mathematical Society, 359(3):1285–1324, 2007.
[73] D.W. Stroock and S.R.S. Varadhan. On the support of diffusion processes with applications to

the strong maximum principle. In Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), volume 3, pages 333–
359, 1972.

[74] M. Takeda. Existence and uniqueness of quasi-stationary distributions for symmetric markov
processes with tightness property. Journal of Theoretical Probability, 32(4):2006–2019, 2019.

[75] D. Talay. Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and
discretization by the implicit Euler scheme. Markov Processes and Related Fields, 8(2):163–198,
2002.

[76] R.L. Tweedie. Quasi-stationary distributions for Markov chains on a general state space. Journal
of Applied Probability, 11(4):726–741, 1974.

[77] R.L. Tweedie. R-theory for Markov chains on a general state space I: solidarity properties and
R-recurrent chains. The Annals of Probability, pages 840–864, 1974.

[78] R.L. Tweedie. R-theory for Markov chains on a general state space II: r-subinvariant measures for
r-transient chains. The Annals of Probability, pages 865–878, 1974.

[79] D. Villemonais. General approximation method for the distribution of Markov processes condi-
tioned not to be killed. ESAIM: Probability and Statistics, 18:441–467, 2014.

[80] A.F. Voter. A method for accelerating the molecular dynamics simulation of infrequent events.
Journal of Chemical Physics, 106(11):4665–4677, 1997.

[81] A.F. Voter. Parallel replica method for dynamics of infrequent events. Physical Review B,
57(22):R13 985, 1998.

[82] H. Watanabe. An asymptotic property of Gaussian processes. I. Transactions of the American
Mathematical Society, 148(1):233–248, 1970.

[83] L. Wu. Large and moderate deviations and exponential convergence for stochastic damping Hamil-
tonian systems. Stochastic Processes and their Applications, 91(2):205–238, 2001.

[84] L. Wu. Essential spectral radius for Markov semigroups (I): discrete time case. Probability Theory
and Related Fields, 128(2):255–321, 2004.

[85] K. Yosida. Functional analysis, 1980. Spring-Verlag, New York/Berlin, 1971.
[86] J. Zhang, S. Li, and R. Song. Quasi-stationarity and quasi-ergodicity of general Markov processes.

Science China Mathematics, 57(10):2013–2024, 2014.



42 A. GUILLIN, B. NECTOUX, AND L. WU
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