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Asymptotic normality of wavelet covariances and multivariate
wavelet Whittle estimators

Irène Gannaz
Univ Lyon, INSA Lyon, UJM, UCBL, ECL, ICJ, UMR5208, 69621 Villeurbanne, France

Abstract

Multivariate processes with long-range dependence properties can be encountered in
many fields of application. Two fundamental characteristics in such frameworks are
long-range dependence parameters and correlations between component time series. We
consider multivariate long-range dependent linear processes, not necessarily Gaussian.
We show that the covariances between the wavelet coefficients in this setting are
asymptotically Gaussian. We also study the asymptotic distributions of the estimators
of the long-range dependence parameter and the long-run covariance by a wavelet-based
Whittle procedure. We prove the asymptotic normality of the estimators, and we provide
an explicit expression for the asymptotic covariances. An empirical illustration of this
result is proposed on a real dataset of rat brain connectivity.

Keywords: Multivariate processes, long-range dependence, covariance, wavelets,
asymptotic normality, cerebral connectivity

1. Introduction

Univariate long-range dependent processes are processes with an autocovariance function
with a power-law decay or equivalently a spectral density diverging at the zero frequency
with a power-law rate. Univariate long-range dependence (LRD) has encountered much
interest and is used widely in applications. See, for example, [1, 2, 3] and references
therein.

Data is often recorded by multiple sensors where multivariate modeling brings better
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representation and can increase the consistency of inference. Multivariate processes with
LRD properties are found in a wide range of applications, such as geoscience [4], finance
[5], or neuroscience [6]. Extensions of univariate LRD models to multivariate frameworks
were initiated by [7], and this topic has met great interest over the last decades. Several
models have been proposed, such as multivariate autoregressive fractionally integrated
moving average (ARFIMA) models [8, 9, 10]. In [10], Kechagias and Pipiras provide
properties in the time and spectral domains of linear representations of multivariate long-
range dependent processes. A nonlinear example of multivariate long-range dependent
processes was also proposed by Didier and Pipiras in [11], where a multivariate Brownian
motion was defined.

The specificity of the multivariate setting is that, in addition to LRD properties, it
helps identify the correlation structure between the processes. The coupling between
each component is characterized by the long-run covariance matrix [7]. A key point
for real data application is the development of statistical tests on LRD parameters and
on long-run covariance. For example, as illustrated here on a real data example, these
characteristics are intrinsically related to the brain activity recordings in neuroscience.
Some work has shown that their distributions can be modified by pathologies (see e.g.
[12] and [13]). A statistical test may be useful to rigorously assess such observations.

We focus on semiparametric estimators, which are more robust to model
misspecification [7]. A common estimation procedure in this framework is Whittle
estimation, which is based on a Fourier decomposition of the processes [14, 15, 16].
The authors prove the consistency and the asymptotic distribution of their estimators.
More recently, the asymptotic normality of estimators has been provided by Baek et
al. [17], in prolongation of [18], in a multivariate framework where components can be
co-integrated. An estimation with a Lasso penalty is also proposed in this setting by
Pipiras et al. [19], and Düker and Pipiras [20] establish the asymptotic normality of this
procedure.

As an alternative to Fourier, wavelet-based estimators can be used. Wavelet transforms
are interesting especially because wavelet analysis performs an implicit differentiation,
which offers the possibility to consider non-stationary processes. Wavelet-based Whittle
estimation was introduced by Moulines et al. in [21] for univariate long-range dependent
time series. It was generalized to the multivariate setting by Achard and Gannaz
[6]. Estimators are consistent and have theoretical rates comparable to Fourier-based
estimators. The numerical performances of wavelet-based and Fourier-based estimators
are also similar, as illustrated in [22].
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This paper considers linear processes, not necessarily Gaussian, with long-range
dependence. The two main characteristics we are interested in are the long-range
dependence parameters, which measure the LRD behavior of the processes, and long-run
covariance, which captures the dependence structure between the components. Long-
range dependence parameters and long-run covariance are estimated jointly with the
procedure described in [6]. The aim of this paper is to establish the asymptotic normality
of these estimators. Roueff and Taqqu [23] prove that this asymptotic normality is
acquired in the univariate setting, but no result exists for wavelet-based estimation in
the multivariate setting.

We first state that the sample covariances between the wavelet coefficients at a given
scale are asymptotically Gaussian. We recover the univariate results of [23] but also
provide the behavior of sample wavelet covariance between two processes, with possible
different LRD parameters.

Asymptotic distributions of the estimators of long-range dependence parameters and
long-run covariance of [6] are then obtained. The results highlight that multivariate
estimation of LRD parameters decreases variance with respect to an estimation of LRD
parameters component by component. Long-run covariance can be estimated by the
sample wavelet correlation at a unique scale or by wavelet-based Whittle procedure,
which aggregates the sample wavelet covariance at numerous scales. We highlight
that, not surprisingly, Whittle estimation converges at a better rate. We also prove
the asymptotic normality of the Whittle estimator. Moreover, test procedures can be
built from the asymptotic normality theorems, for LRD parameters, and for long-run
covariance.

The paper is organized as follows. Section 2 introduces the specific framework of
our study. The LRD properties of the processes are described, and assumptions on
a linear representation of the time series are given. The properties of the wavelet
representation of the processes are also synthesized. The asymptotic behavior of the
covariance between wavelet coefficients is provided in Section 3. Wavelet-based Whittle
estimation is considered in Section 4. The asymptotic normality of the estimators is
established. Section 5 illustrates the asymptotic normality of the estimators on a real
data example, with the study of functional magnetic resonance images (fMRI) of a dead
rat and a live rat.
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2. The semiparametric multivariate long-range dependence framework

Let X = {Xa(k), k ∈ Z, a = 1, . . . , p} be a multivariate stochastic process. We consider a
process X with long-range dependence parameters d = (d1, d2, . . . , dp). The stationary
framework corresponds to LRD parameters di ∈ (−1.2, 1/2). In this case, following
[14, 15], we suppose that the cross-spectral density satisfies: for all λ ∈ [−π, π],

for all (a, b) , fa,b(λ) =
1

2π
Ωa,b(1− e−iλ)−da(1− eiλ)−dbfSa,b(λ).

The functions fSa,b(·) correspond to the short-range dependence behavior of the process.
This modelling is semiparametric since, if it imposes the LRD behavior, short-range
dependence is left nonparametric through functions fS(·). Some assumptions on fS(·)
are needed, which will be detailed below.

The LRD parameters, d, model the long-run dynamics of the process. This model is
a multivariate extension of a scalar fractionally integrated process (the so-called I(d)
process), and for any a ∈ {1, . . . , p}, the time series Xa exhibits long-range dependence
whenever 0 < da < 1/2. The case −1/2 < da < 0 corresponds to antipersistence, where
the spectral density fa(·) tends toward 0 at the origin. The case da = 0 is the weak-
dependence case, where the spectral density fa(·) tends toward a positive constant at
the origin. See [14, 15]. For simplicity, the term LRD is used throughout the paper,
regardless of the values of d.

Wavelet analysis performs an implicit differentiation, which offers the possibility to
consider non stationary processes, that is, LRD parameters di possibly higher than 1/2.
Let L denote the difference operator, LX(t) = X(t + 1) − X(t). The kth difference
operator, Lk, k ∈ N, is defined by k recursive applications of L. Introduce D ∈ Np.
We suppose that the multivariate process Z =

{
LDaXa(k), k ∈ Z, a = 1, . . . , p

}
is

covariance stationary with a spectral density matrix given by, for all λ ∈ [−π, π]:

for all (a, b) ∈ {1, . . . , p}2 , f
(Da,Db)
a,b (λ) =

1

2π
Ωa,b(1− e−iλ)−d

∗
a(1− eiλ)−d∗bfSa,b(λ),

where the long-range dependence parameters of Z are given by d∗a ∈ (−1/2, 1/2) for all
a = 1, . . . , p.

Let the overline be the conjugate operator and ◦ be the Hadamard product. For any
vector υ ∈ Rp, diag(υ) stands for the p× p matrix with entries υ in the diagonal and 0
elsewhere.
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The LRD assumption can be expressed as follows:

(M1) The generalized spectral density of the multivariate process X is, for all λ ∈
[−π, π],

f(λ) = Ω ◦ (Λ0(d)fS(λ)Λ0(d)), with Λ0(d) = diag((1− e−iλ)−d), (1)

where d = D + d∗, D ∈ Np, d∗ ∈ (−1/2, 1/2)p.

The matrix Ω is called fractal connectivity by [24] or long-run covariance matrix by
[25]. Similar to [26, 6] we introduce some regularity assumptions on the short-range
dependence, modeled by function fS(·).

The space Hp(β, L) is defined as the class of non-negative symmetric functions g(·) :
[π, π]→ Cp×p such that g(0) = 1p×p and such that

sup
λ∈(−π,π)

|g(λ)− 1p×p| 6 L|λ|β,

with 1p×p the p × p matrix with all entries equal to 1. We suppose that the following
assumption is fulfilled:

(M2) fS(·) ∈ Hp(β, L) with 0 < β 6 2 and 0 < L.

Assumption (M2) imposes that fS(0) has constant entries equal to 1. This assumption
is necessary to make Ω identifiable in (M1).

When λ tends toward 0, the spectral density matrix can be approximated at the first
order by

f(λ) ∼ Λ̃(d)ΩΛ̃(d), with Λ̃(d) = diag(|λ|−de−iπd/2), (2)

where ∼ means that the ratio of the left- and right-hand sides converges to one.

Lobato [14] uses Λ̃(d) = diag(λ−d) as an approximation of f(·) whereas Shimotsu [15]
chooses to approximate f(·) using Λ̃(d) = diag(λ−de−i(π−λ)d/2), which corresponds to a
second-order approximation due to the remaining term λ in the exponential. We refer to
[6, Section 2.1] and references therein for examples of processes satisfying approximation
(2).
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2.1. Linear decomposition

We suppose hereafter that the multivariate process admits a linear representation.

(M3) There exists
a sequence {A(D)(u)}u∈Z in Rp×p such that

∑
u∈Z maxa,b=1,...,p |A(D)

a,b (u)|2 < ∞
and

∀t ∈ Z,
(
LDaXa(t)

)
a=1,...,p

=
∑
u∈Z

A(D)(t+ u)ε(u)

with ε(t) weak white noise process, in Rp. Let Ft−1 denote the σ-field of events
generated by {ε(s), s 6 t − 1}. Assume that ε satisfies E[ε(t)|Ft−1] = 0,
E[εa(t)εb(t)|Ft−1] = 11a=b and E[εa(t)εb(t)εc(t)εd(t)|Ft−1] = µa,b,c,d with |µa,b,c,d| 6
µ∞ <∞, for all a, b, c, d = 1, . . . , p.

Define for all λ ∈ R, A(D)∗(λ) =
∑

t∈Z A(D)(t)eiλ t the Fourier series associated to
{A(D)(u)}u∈Z. That is, A(D)∗(λ) =

(
A

(D)∗
a,b (λ)

)
a,b=1,...,p

with

A
(D)∗
a,b (λ) = (2π)−1/2

∑
t∈Z

A
(D)
a,b (t)e−iλt , λ ∈ R .

We add the following assumption:

(M4) For all (a, b) ∈ {1, . . . , p}2, for all λ ∈ R, the sequence (2−j da|A(D)∗
a,b (2−jλ)|)j>0 is

convergent as j goes to infinity.

This assumption is necessary for technical reasons. It does not seem restrictive.

An example of a process that satisfies these assumptions is the causal multivariate linear
representations with trigonometric power law coefficients proposed in [10].

2.2. Wavelet representation

We introduce a discrete wavelet transform. Write L2(R) the set of square-integrable
functions with respect to the Lebesgue measure. Let φ(·) and ψ(·) be two functions
of L2(R). Their Fourier transforms are given by φ̂(λ) =

∫∞
−∞ φ(t)e−iλtdt and ψ̂(λ) =∫∞

−∞ ψ(t)e−iλtdt, for all λ ∈ R. We suppose that φ(·) and ψ(·) satisfy the following
assumptions:
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(W1) The functions φ(·) and ψ(·) are integrable, have compact supports,
∫
R φ(t)dt = 1

and
∫
R ψ

2(t)dt = 1.

(W2) There exists α > 1 such that supλ∈R |ψ̂(λ)|(1 + |λ|)α < ∞.

(W3) The mother wavelet ψ(·) has M > 1 vanishing moments.

(W4) The function
∑

k∈Z k
`φ(·− k) is polynomial with degree ` for all ` = 1, . . . ,M − 1.

(W5) For all i = 1, . . . , p, (1 + β)/2− α < di 6 M .

Recall that β in (W5) is the regularity of the short-range dependence behavior
introduced in (M2).

These assumptions are the same as the ones considered in [26, 21, 6]. Assumptions
(W1)–(W4) are usual when considering that φ(·) and ψ(·) are respectively the scaling-
function and the wavelet-function associated with a multiresolution analysis [27]. They
are satisfied, for example, by Daubechies wavelets. These wavelets are parametrized by
the number of vanishing moments M . Assumption (W2) holds with α an increasing
function of M going to infinity (see [28]). Assumptions (W1)–(W5) are fulfilled by
Daubechies wavelet basis with sufficiently large M .

Assumption (W3) implies that the wavelet transform performs an implicit differentiation
of order M and makes it possible to consider nonstationary processes. In Fourier
analysis, tapering procedures are necessary to consider nonstationary frameworks, see
e.g. [29, 30], and references therein.

At a given resolution j > 0, for k ∈ Z, we define the dilated and translated functions
φj,k(·) = 2−j/2φ(2−j · −k) and ψj,k(·) = 2−j/2ψ(2−j · −k). The wavelet coefficients of the
process X are defined by

W(j, k) =

∫
R

X̃(t)ψj,k(t)dt j > 0, k ∈ Z,

where X̃(t) =
∑

k∈Z X(k)φ(t − k). For given j > 0 and k ∈ Z, W(j, k) is a p-
dimensional vector W(j, k) =

(
W1(j, k) W2(j, k) . . . Wp(j, k)T

)
where Wa(j, k) =∫

R X̃a(t)ψj,k(t)dt, a = 1, . . . , p. Throughout the paper, we adopt the same convention as
in [26] and [21]; that is, large values of the scale index j correspond to coarse scales (low
frequencies). The index k is a location parameter, and W(j, k) captures information at
scale j and location k on the behavior of the process X.
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In practice, let X(1), . . .X(NX) denote the observations of the process X. Since the
wavelets have a compact support, only a finite number nj of coefficients are non-null at
each scale j. Suppose without loss of generality that the support of ψ(·) is included in
[0, Tψ] with Tψ > 1. For every j > 0, define

nj := max (0, 2−j(NX − Tψ + 1)− Tψ + 1).

At each scale j, the non-zero coefficients belong to {W(j, k), k = 0, . . . , nj}.

Let j0 be the minimal scale and j1 = j0 + ∆ the maximal scale which are considered
in the estimation procedure. Following [21, 6], the asymptotic behavior is given for
NX and j0 going to infinity. Results obtained in [21, 6, 22] state that optimal rates in
estimation are obtained when j0 is high enough to remove the scales affected by low-
range dependence. In practice, the number of scales ∆ is finite. Yet, considering the
asymptotic behavior, two cases may be distinguished: either the number of scales ∆ is
finite and fixed when j0 goes to infinity, or ∆ = j1 − j0 goes to infinity. The latter case
seems natural, for example, when one takes all available scales above j0 in estimation.

In the following, n will denote the number of wavelet coefficients used for estimation
and < J > the mean of scales, that is,

n =

j1∑
j=j0

nj and < J >=
1

n

j1∑
j=j0

nj j .

Define also

η∆ :=
∆∑
u=0

u
2−u

2− 2−∆
and κ∆ :=

∆∑
u=0

(u− η∆)2 2−u

2− 2−∆
.

These sequences converge respectively to 1 and to 2 when ∆ goes to infinity [21, Lemma
13].

Moulines et al. state that under assumptions (W1)–(W5), the wavelet coefficient process
{W(j, k), k ∈ Z} is covariance stationary for any given j > 0 [26]. Let

Du,τ (λ; δ) =
∑
t∈Z

|λ+ 2tπ|−δψ̂(λ+ 2tπ) 2u/2ψ̂(2u(λ+ 2tπ)) e−i2uτ(λ+2tπ) ,

D̃u,∞(λ; δ) =
2−u−1∑
τ=0

Du,τ (λ; δ) . (3)
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Moulines, Roueff and Taqqu [26] establish that Du,τ (λ; δ) is an approximation
of the cross-spectral density between wavelet coefficients {W(j, k), k ∈ Z} and
{W(j + u, 2uk + τ), τ = 0, . . . , 2u − 1, k ∈ Z}. The parameter δ captures the
long-range dependence of the processes. Indeed, the cross-spectral density of
(Wa(j, k),Wb(j + u, 2jk′ + τ)) is approximated by Du,τ (λ; da + db). Function D̃u,∞(λ; δ)
allows us to consider between-scales dependence.

For u > 0, (δ1, δ2) ∈ (−α,M)2, define

Iu(δ1, δ2) =

∫ π

−π
D̃u,∞(λ; δ1)D̃u,∞(λ; δ2) dλ , (4)

where D̃u,∞(λ; δ2) is defined in (3). Iu(δ1, δ2) will naturally appear when studying the
covariance between sample wavelet covariances.

3. Asymptotic normality of sample wavelet covariances and correlations

Define σ̂a,b(j) as the empirical covariance of the wavelet coefficients at a given scale
j > 0, between components a and b, and let σa,b(j) denote the theoretical covariance,

σ̂a,b(j) =
1

nj

nj−1∑
k=0

Wa(j, k)Wb(j, k),

σa,b(j) = E[Wa(j, k)Wb(j, k)].

Let Σ̂(j) = (σ̂a,b(j))a,b=1,...,p and Σ(j) = (σa,b(j))a,b=1,...,p be the two associated matrices
in Rp×p. In the following, for any matrix M ∈ Cp×p, the maximal entry will be denoted
by ‖M‖∞ = maxa,b=1,...,p|Ma,b|.

Proposition 2 in [6] proposes an approximation of the wavelet covariance at a given
scale. It is recalled below.

Proposition 1 ([6]). Suppose assumptions (M1)–(M2) and (W1)–(W5) hold. For all
j > 0, for all λ ∈ (−π, π),∥∥Λ(j)(d)−1Σ(j)Λ(j)(d)−1 −G

∥∥
∞ 6 CL2−β j. (5)
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with constant C depending on β, min` d`, max` d`, max`,m |Ω`,m|, φ and ψ and

Λj(d) = diag
(
2jd
)
, (6)

Ga,b = Ωa,b cos(π(da − db)/2)K(da + db), a, b = 1, . . . , p, (7)

K(δ) =

∫ ∞
−∞
|λ|−δ|ψ̂(λ)|2dλ, δ ∈ (−α,M).

For u > 0, (δ1, δ2) ∈ (−α,M)2, let us introduce Ĩu(δ1, δ2) as

Ĩu(δ1, δ2) = 2π
Iu(δ1, δ2)

K(δ1)K(δ2)
,

with Iu(δ1, δ2) defined in (4). We also define G � Ĩ �G(u) ∈ Rp2×p2 as:

G � Ĩ �G(u, u′) = diag
(

vec
(
Λu∧u′(d)−1GΛu∧u′(d)−1

))
(̃I|u−u′|(da + db, da′ + db′)(a,b),(a′,b′))∈{1,...,p2} diag

(
vec
(
Λu∧u′(d)−1GΛu∧u′(d)−1

))
. (8)

Remark 1. Observe that

Ĩ0(δ1, δ2) =
2π
∫ π
−π gψ(λ; δ1)gψ(λ; δ2)dλ(∫ π

−π gψ(λ; δ1)dλ
)(∫ π

−π gψ(λ; δ2)dλ
)

where gψ(λ; δ) =
∑

t∈Z|λ+2tπ|−δ|ψ̂(λ+2tπ)|2. It is straightforward that Ĩ0(δ1, δ2) 6 2π.
Cauchy-Schwarz’s inequality on the denominator also provides Ĩ0(δ1, δ1) > 1.

Here and subsequently, L−→ denotes a convergence in distribution. The asymptotic
distribution of the sample wavelet covariance process is given in the following theorem.

Theorem 2. For all j0 > 0, u > 0, define

T̂(j0 + u) = vec
(
2−(j0+u)(da+db)σ̂a,b(j0 + u), a, b = 1, . . . , p

)
~G = vec(Ga,b, a, b = 1, . . . , p)

where vec(M) denotes the operation which transforms a matrix M ∈ Rp1×p2 in a vector
of Rp1p2. Suppose assumptions (M1)–(M4) and (W1)–(W5) hold. Let 2−j0β → 0 and
N−1
X 2j0 → 0. Then for all ∆ ∈ N,{√

nj0+u

(
T̂(j0 + u)− ~G

)
, u = 0, . . . ,∆

}
L−→

j0→∞
{Q(u), u = 0, . . . ,∆},
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where Q(·) is a centered
Gaussian process with covariance function Cov (Qa,b(u), Qa′,b′(u

′)) = V(a,b),(a′,b′)(u, u
′)

where

V(a,b),(a′,b′)(u, u
′) = 2−|u−u

′|/2
(
G � Ĩ �G(a,a′),(b,b′)(u, u

′) + G � Ĩ �G(a,b′),(a′,b)(u, u
′)
)
, (9)

and G � Ĩ �G(u, u′) is defined in (8).

The proof is given in Appendix C. It is similar to the one of the univariate setting given
in [23, Theorem 2]. It relies on decimated processes and limit theorems developed in
[31].
Remark 2. In the univariate setting, we obtain the same result as [23, Theorem
2]. The authors use a different normalization, by

√
NX2−j0 rather than by √nj0+u.

The correspondence between the results follows first from the equivalence √nj0+u ∼√
NX2−j0−u and second from approximation (5) for the expectancy term.

The main difference in the multivariate case is that the LRD properties in two processes
can be different. It introduces a bias term through the presence of the cosinus term in
G (7) and slightly modifies the variance through terms Ĩu(·, ·) (8).
Remark 3. In [32], Whitcher et al. establish the asymptotic normality for wavelet
correlations of bivariate multivariate time series with long-range dependence. The
advantage of Theorem 2 is to provide an explicit form of the asymptotic variance.
Remark 4. As already pointed out by Roueff and Taqqu [23], the covariance of the
wavelet coefficients involves between-scales correlations which do not vanish when the
sample size goes to infinity. This fact contrasts with the behavior of Fourier periodogram
or Fourier-based Whittle estimation. In the variance formulation (9), these correlations
appear through quantities {Ĩu(δ1, δ2), u > 0, (a, b) ∈ {1, . . . , p}2}.

We can deduce the asymptotic normality for sample wavelet correlations by means of
delta method. We do not present here the multivariate result for the sake of brevity,
except when the matrix G is diagonal since formulas are more simple. We focus on the
pointwise result to highlight the specificity of our setting.

Corollary 3. Let (a, b) ∈ {1, . . . , p}2, a 6= b, and j > j0 > 0. Define

ρ̂a,b(j) =
σ̂a,b(j)√

σ̂a,a(j)σ̂b,b(j)
and ra,b =

Ga,b√
Ga,aGb,b

.
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Then, under conditions of Theorem 2,

√
nj (ρ̂a,b(j)− ra,b)

L−→
j→∞

N
(

0, V
(ρ)
a,b

)
with

V
(ρ)
a,b =

(
Ĩ0(2da, 2db) + Ĩ0(da + db, da + db)(r

2
a,b + r4

a,b)

−(Ĩ0(2da, 2db) + Ĩ0(2db, da + db)) 2 r2
a,b

−(Ĩ0(2da, 2da) + Ĩ0(2db, 2db)) r
2
a,b/2

)
. (10)

When all off-diagonal entries of G are equal to 0,

√
nj vec(ρ̂a,b(j), 1 6 a < b 6 p)

L−→
j→∞

Np(p−1)/2

(
0, diag

(
vec
(

2−j(2da+2db)Ĩ0(2da, 2db), 1 6 a < b 6 p
)))

.

Remark 5. Let ρ̂ denote the sample correlation of a bivariate-Gaussian-distributed n-
sample with correlation ρ. Then

√
n(ρ̂− ρ)

L−→
n→∞

N
(
0, (1− ρ2)2

)
; see e.g. [33, Theorem

4.2.4]. When parameters da and db are equal, Corollary 3 entails that

√
nj (ρ̂a,b(j)− ra,b)

L−→
j→∞

N
(

0, Ĩ0(2da, 2da)(1− r2
a,b)

2
)
.

We recover a similar form of the asymptotic distribution, up to a normalization constant.

Remark 6. In [32, Section 4.2.] Whitcher et al. use the convergence of the Fisher
transform of ρ̂a,b(j) to a standard Gaussian distribution at a rate √nj, when the
correlation ra,b(j) is equal to zero. The result is true if we suppose that between-
scale wavelet coefficients are independent, which is asymptotically satisfied when the
regularity of the wavelet goes to infinity [34]. Corollary 3 illustrates that an additional
normalization by Ĩ0(2da, 2db)

−1/2 of ρ̂a,b(j) is necessary.

Some computed values of Ĩ0(2da, 2db) are displayed in Table 1. It shows that Ĩ0(2da, 2db)
indeed decreases when the regularity increases. But between-scale wavelet coefficients
dependence may not be negligible if the regularity is not high enough. For example,
in the absence of long-range dependence, when da = db = 0, Ĩ0(0, 0) = 1.62 for
Daubechies wavelets with M = 4 vanishing moments. Hence, in real data application,
the approximation in [32] may lead to false positives.

12



d = (d1, d2)
(0, 0) (0, 0.1) (0, 0.2) (0, 0.3) (0, 0.4)

M= 1 α= 1.00 5.43 5.56 5.67 5.77 5.86
M= 2 α= 1.34 2.65 2.66 2.67 2.68 2.69
M= 3 α= 1.64 1.85 1.86 1.86 1.86 1.87
M= 4 α= 1.91 1.62 1.62 1.61 1.61 1.61
M= 5 α= 2.18 2.05 2.04 2.04 2.03 2.02
M= 6 α= 2.43 1.90 1.91 1.92 1.93 1.94
M= 7 α= 2.68 1.22 1.23 1.24 1.25 1.26
M= 8 α= 2.93 1.01 1.01 1.01 1.01 1.01

Table 1: Values of Ĩ0(2d1, 2d2) with respect to d = (d1, d2) for Daubechies’s wavelets with different
values of vanishing moments M in (W3). Parameter α characterizes the regularity of the wavelets in
(W2).

Remark 7. The wavelet correlation at a given scale is also known as wavelet coherence.
It is used in some applications, as in environmental studies by [32], or in neurosciences
in [35]. In such real data applications, the crucial point is the use of test procedures.
In particular, the test of the nullity of the correlations is essential. Corollary 3 shows
that the asymptotic distribution depends on the long-range dependence parameters d.
Plugging in a consistent estimator of parameter d in (10) allows for a test procedure to
be built. For instance, one can use the wavelet Whitlle estimator described in Section 4
below.

4. Asymptotic normality of the parameters estimates

For clarity, the true parameters are denoted with an exponent 0 in this part.

The wavelet-based local Whittle procedure proposes to estimate the parameters by
maximizing a pseudo-likelihood given by a Gaussian approximation of the wavelet
coefficients {W(j, k), j > 0, k = 0, . . . , nj}. Moulines et al. [21] and Achard and
Gannaz [6] prove that the wavelet-based Whittle approximation provides consistent
estimators even for non-Gaussian processes. The Whittle procedure can also be applied
in multivariate cases, which is not possible for example with the regression of the wavelet
log-scalogram [36, 24].
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Let d̂ and Ω̂ be the wavelet Whittle estimators as defined in [6, Section 3.3]. They
maximize the objective function

L(G(d),d) =
1

n

j1∑
j=j0

[
nj log det (Λj(d)G(d)Λj(d))

+

nj−1∑
k=0

WT
j,k (Λj(d)G(d)Λj(d))−1 Wj,k

]
,

where the superscript T denotes the transpose operator and Λj(d) and the matrix G(d)
are defined respectively in (6) and (7).

The function L(·, ·) corresponds to the negative log-likelihood of {W(j, k), j >
0, k = 0, . . . , nj} under a Gaussian assumption, where Proposition 1 is used for a
parametrization of the variance at each scale. The estimation of the vector of long-
range dependence parameters d satisfies d̂ = argmin

d∈Rp
R(d), with

R(d) = log det(Ĝ(d)) + 2 log(2)

(
1

n

j1∑
j=j0

j nj

)(
p∑
`=1

d`

)
. (11)

The covariance matrix Ω is estimated by

Ω̂a,b = Ĝa,b(d̂)/(cos(π(d̂a − d̂b)/2)K(d̂a + d̂b)), a, b = 1, . . . , p,

where Ĝ(d) =
1

n

j1∑
j=j0

njΛj(d)−1Σ̂(j)Λj(d)−1. (12)

We introduce

Id∆(δ1, δ2) =
2

κ∆

Ĩ0(δ1, δ2) (13)

+
2

κ2
∆

∆∑
u=1

(2uδ1 + 2uδ2) 2−u
2− 2−∆+u

2− 2−∆
((u+ η∆−u − η∆)(η∆−u − η∆) + κ∆−u) Ĩu(δ1, δ2)

if ∆ <∞,

Id∞(δ1, δ2) = Ĩ0(δ1, δ2) +
∞∑
u=1

(2uδ1 + 2uδ2) 2−u Ĩu(δ1, δ2) , if ∆ =∞. (14)
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Define also

G�Id�G(∆) = diag
(

vec
(
G0
))(
Id∆(d0

a+d
0
b , d

0
a′+d

0
b′)(a,b),(a′,b′)∈{1,...,p2}

)
diag

(
vec
(
G0
))
.

(15)

The asymptotic normality of the estimator of the long-range dependence parameters is
established by our next theorem.

Theorem 4. Suppose assumptions (M1)–(M4) and (W1)–(W5) hold. Let j0 < j1 6 jN
with jN = max{j, nj > 1} such that

j1 − j0 → ∆ ∈ {1, . . . ,∞}, log(NX)2(NX2−j0(1+2β) +N
−1/2
X 2j0/2)→ 0.

Then
√
n(d̂ − d0) converges in distribution to a centered Gaussian distribution with a

variance equal to

V(d)(∆) =
1

2 log(2)2
(G0−1 ◦G0 + Ip)

−1 Υ(∆) (G0−1 ◦G0 + Ip)
−1, (16)

where Ip is the identity matrix in Rp×p and with entry (a, a′) of Υ(∆), for (a, a′) ∈
{1, . . . , p}2, given by

Υa,a′(∆) =
∑

b,b′=1,...,p

(G0−1)a,b(G
0−1)a′,b′

(
G � Id �G(a,a′),(b,b′)(∆) + G � Id �G(a,b′),(a′,b)(∆)

)
(17)

where quantities G � Id �G(∆) are defined by (15).

The proof is given in Appendix F.

Remark 8. In the univariate setting, we recover [23, Theorem 5], using the equality

∆−u∑
v=0

2−v

2− 2−∆
(v − η∆)(u+ v − η∆) =

2− 2−∆+u

2− 2−∆
((u+ η∆−u − η∆)(η∆−u − η∆) + κ∆−u),

in (13). Observe that the result is also normalized by
√
n rather than

√
NX2−j0 .

Remark 9. The condition on j0 and j1, that is, log(NX)2(NX2−j0(1+2β) +N
−1/2
X 2j0/2)→ 0

is more restrictive than the condition required for the consistency of the estimators given
in [6, Theorem 6]. Roueff and Taqqu [23, Theorem 5] obtain a similar result in the
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univariate setting. As illustrated in [22], the condition log(NX)2N
−1/2
X 2j0/2 → 0 means

that the highest frequencies, which are affected by the short-range dependence, should
be removed from the estimation. The additional condition log(NX)2NX2−j0(1+2β) → 0

prevents us from choosing the scale j0 = N
1/(1+2β)
X giving the minimax rate [6, Corollary

7]. Yet a near minimax rate is possible, with only a logarithmic lost, choosing, for
example, j0 = log(NX)3N

1/(1+2β)
X .

Remark 10. If the vector d0 has all entries equal to d0, the resulting covariance is

1

4 log(2)2
I∆(2d0, 2d0)(G0−1 ◦G0 + Ip)

−1 .

We recognize a form of asymptotic variance similar to the ones given by [14], [15] and [20]
with Fourier-based Whittle estimators. Note that they use a different approximation of
spectral density at zero frequency. Lobato [14] and Shimotsu [15] consider respectively
G0
a,b = Ωa,be

iπ(da−db)/2 and G0 = Ω. Düker and Pipiras’s modelling in [20] is more general
and does not suppose a linear representation of the time series. Their result is valid for a
general form of matrix Ω. Additionally, Baek et al. [17] establish asymptotic normality
of estimators in a bivariate model with possible co-integration.

Remark 11. Consider the bivariate setting with Ω =

(
1 ρ
ρ 1

)
and d1 = d2 = d. Let

d̂U1 and d̂U2 be the wavelet Whittle estimators obtained by separately considering the
components {X1(k), k = 1, . . . , NX} and {X2(k), k = 1, . . . , NX} in. That is, for i = 1, 2,

d̂Ui = argmin
di∈R

Ri(di) with Ri(di) = log
( 1

n

j1∑
j=j0

nj2
−2jdiσ̂ii(j)

)
+ 2 log(2)

( 1

n

j1∑
j=j0

j nj

)
di.

According to Theorem 4 d̂Ui , i = 1, 2, are asymptotically normal, with the same
asymptotic variance σ2(d, j1 − j0) = V (d)(j1 − j0), given by (16).
Let now d̂ be the bivariate wavelet Whittle estimator defined in (11). Theorem 4
provides the asymptotic normality of d̂ with the asymptotic variance given by (16),
which is equal to

V(d)(j1− j0) = (G0−1 ◦G0 + Ip)
−1 2σ2(d, j1− j0) =

(
1− ρ2/2 ρ2/2
ρ2/2 1− ρ2/2

)
σ2(d, j1− j0).

This result proves that we reduce the entrywise variance when we perform multivariate
estimation instead of univariate estimation. A similar conclusion was obtained for
Fourier-based estimation by [14] and [16]. Achard and Gannaz [22] support this assertion
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on simulated data. In real data application, [37] also establishes that the multivariate
approach performs better than the univariate one, comparing their application on fMRI
data where subjects were scanned twice.

Remark 12. Quantities I∆(δ1, δ2) are computable for given δ1, δ2,∆. Hence, plugging in
(16)–(17) consistent estimators of d and G, for example d̂ and Ĝ(d̂) [6, Theorem 6], a
test procedure on parameters d can be built.

We now study the asymptotic behavior of the estimation of long-run covariance. We
show the asymptotic normality of Ĝ(d̂), defined in (12).

Write

IG∆(δ1, δ2) = Ĩ0(δ1, δ2) +
∆∑
u=1

(2uδ1 + 2uδ2)2−u
2− 2−∆+u

2− 2−∆
Ĩu(δ1, δ2) if ∆ <∞,

IG∞(δ1, δ2) = Ĩ0(δ1, δ2) +
∞∑
u=1

(2uδ1 + 2uδ2)2−u Ĩu(δ1, δ2) if ∆ =∞.

Let us also define

G�IG�G(∆) = diag
(

vec
(
G0
))(
IG∆(d0

a+d
0
b , d

0
a′+d

0
b′)(a,b),(a′,b′)∈{1,...,p2}

)
diag

(
vec
(
G0
))
.

(18)

We are now in a position to formulate the asymptotic distribution of Ĝ(d̂).

Theorem 5. Suppose Assumptions (M1)–(M4) and (W1)–(W5) hold. Let

j1 − j0 → ∆ ∈ {1, . . . ,∞}, log(NX)2(NX2−j0(1+2β) +N
−1/2
X 2j0/2)→ 0.

Then vec
(√

n
(
Ĝ(d̂)−G0

))
converges in distribution to a centered Gaussian

distribution with a variance equal to VG(∆), with

V
(G)

(a,b),(a′,b′)(∆) = G � IG �G(a,a′),(b,b′)(∆) + G � IG �G(a,b′),(a′,b)(∆) (19)

where quantities G � IG �G(∆) are defined by (18).
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The proof is given in Appendix G.

We can deduce a convergence result for correlations.

Corollary 6. Let (a, b) ∈ {1, . . . , p}2, a 6= b. Define

r̂a,b =
Ĝa,b(d̂)√

Ĝa,a(d̂)Ĝb,b(d̂)
and ra,b =

G0
a,b√

G0
a,aG

0
b,b

.

Then, under conditions of Theorem 5,

√
n (r̂a,b − ra,b)

L−→
j→∞

N
(

0, V
(r)
a,b (∆)

)
with

V
(r)
a,b (∆) = IG∆(2da, 2db) + IG∆(da + db, da + db)(r

2
a,b + r4

a,b)

− (IG∆(2da, 2db) + IG∆(2db, da + db)) 2 r2
a,b − (IG∆(2da, 2da) + IG∆(2db, 2db)) r

2
a,b/2.

When all off-diagonal entries of G are equal to 0,

√
n vec(r̂a,b, 1 6 a < b 6 p)

L−→
j→∞

Np(p−1)/2

(
0, diag

(
vec
(
ĨG∆(2da, 2db), 1 6 a < b 6 p

)))
.

(20)

The proof is based on delta method, and it is similar to the proof of Corollary 3. It is
thus omitted. The covariance structure of vec(r̂a,b, a, b = 1, . . . , p) can also be deduced
from Theorem 5, but it is not displayed here.

Remark 13. The result is very similar to the one presented in Corollary 3. For all
(a, b) ∈ {1, . . . , p}2, the sequence (

√
nj(ρa,b(j) − ra,b))j>0 converges in distribution as j

goes to infinity. The strength of Corollary 6 is that all the scales are used to estimate
ra,b, which reduces the variance. Indeed, (

√
n(r̂a,b − ra,b))j>0 converges in distribution

as j goes to infinity, with n =
∑j1

j=j0
nj.

Remark 14. When the LRD parameters are equal, i.e. da = db, Corollary 6 provides a
more simple form, which is

√
n(r̂a,b − ra,b)

L−→
j→∞

N
(
0, IG∆(2da, 2da)(1− r2

a,b)
2
)
.
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Remark 15. The asymptotic variances V(G)(∆) and V(r)(∆), given respectively in
Theorem 5 and Corollary 6, depend on parameters d. Test procedures can be built
by plugging in V(G)(∆) and V(r)(∆) the estimator d̂, which is consistent [6, Theorem
6].

Remark 16. In [20], Düker and Pipiras propose a global test for non-connectivity. That
is, a test of (H0) ∀a 6= b, ra,b = 0 against (H1) ∃a 6= b, ra,b 6= 0. A similar test can be
developed in our setting, based on (20). Another possibility is to perform the p(p−1)/2
tests of (H0 a,b) ra,b = 0 against (H1 a,b) ra,b 6= 0, for 1 6 a < b 6 p and to apply a
multiple testing correction on the p-values, for instance, Bonferroni’s or Sidak’s [38].
This approach may be less powerful than the previous one if we are interested in the
global test, but it provides information on which correlations are significant.

We can go further than Theorem 4 and Theorem 5 by giving the joint distribution of
estimators d̂ and Ĝ(d̂).

Proposition 7. Suppose assumptions of Theorem 5 hold.

Let T =
(
d̂− d0, vec

(
Ĝ(d̂)−G0

))
.

Then
√
nT converges in distribution to a centered Gaussian distribution.

A proof is given in Appendix H. An explicit form of the asymptotic covariance term is
given in (H.1)-(H.2). It is not displayed here to gain in clarity.

Remark 17. Baek et al. [17] and Düker and Pipiras [20] also find that the estimates
of long-range dependence parameters and long-run covariance converge jointly to a
Gaussian distribution in a Fourier-based Whittle estimation framework. As stated
before, they consider a more general model, allowing for a complex-valued matrix Ω.

5. Illustration on real data

We illustrate here the asymptotically Gaussian behavior on real data rather than on
simulations. We consider fMRI recordings on dead and live rats. The dataset is freely
available at https://zenodo.org/record/2452871 [39, 40]. The duration of scanning
is 30 minutes with a time repetition of 0.5 second so that NX = 3, 600 time points are
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available at the end of experience. After preprocessing as described in [41], we extracted
p = 51 time series, each one being associated with a brain region of the rat. fMRI
recordings of brain activity are based on the hemodynamic response to a magnetic field,
which may create some temporal and spatial dependence. They suffer from different
sources of noise, including system-related instabilities, subject motion, or physiological
fluctuations [42]. Additionally, during the preprocessing step, we aggregate the time
series of each voxel to obtain a unique time series for each brain region. This aggregation
step may create LRD properties [43]. Our claim is that long-range dependence and
long-run covariance are closely related to brain activity and not to recording artifacts
or preprocessing. We would like to check this assertion on the dataset. This means that
we expect d0 = 0 and a diagonal matrix G0 for a dead rat but not for a live one.

We estimate d and G by wavelet-based Whittle estimation, using multiwave
package [22]. We follow the procedure described in [22, Section 5.2] to choose the
scales. Estimation is performed taking j0 = 4 and j1 = 9, which is the maximal scale;
that is, we remove the frequencies above 0.12 Hz.

Based on Theorem 4, for each rat, we can test if the LRD parameters are significant for
each brain region. That is, for all a = 1, . . . , p, we test

(H
(d)
0 a ) da = 0 against (H

(d)
1 a ) da 6= 0 ,

replacing d and G respectively by d̂ and Ĝ(d̂) in V(d). We consider a level α′ = 5%
and apply Bonferroni’s multiple testing correction, i.e. each test is applied with a level
α′/p to ensure that the probability to have a false positive on the p tests is equal to α′.

Next Corollary 6 allows to test the significance of the long-run correlation between each
pair of brain regions. For all 1 6 a < b 6 p, we test

(H
(r)
0 a,b) ra,b = 0 against (H

(r)
1 a,b) ra,b 6= 0 .

Similarly, we apply Bonferroni’s multiple testing correction and we consider a level
α′/(p(p− 1)/2) for each test.

The tests have been applied on one dead rat and one live rat. The results are displayed
in Figure 1 as graphs. Figure 1 shows that, indeed, we can conclude that d0 = 0 and
that off-diagonal entries of G0 are equal to zero for the dead rat. For the live rat, six
brain regions (over 51) have a significant LRD parameter, and 483 correlations (over
1275 of {ra,b, 1 6 a < b 6 p}) are significant. These observations tend to confirm that
long-range dependence and long-run covariance result from brain activity.
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Figure 1: Inferred graphs of cerebral activity for a dead rat (left) and a live rat (right). Each vertex
of the graph corresponds to a brain region. Colored vertices are regions where the LRD parameter da
is significant, i.e. where the null hypothesis (H

(r)
0 a ) is rejected. Two vertices a, b are connected by an

edge if the long-run correlation is significant, i.e. if the null hypothesis (H(r)
0 a,b) is rejected.

Conclusion

In this paper, we consider a multivariate process with long-range dependence properties,
with a linear representation. We first establish that the covariance between wavelet
coefficients is asymptotically Gaussian. The variance is explicitely given, and the
convergence is established under mild assumptions on the wavelet transform and on the
process. The asymptotic normality for the wavelet-based Whittle estimators defined
in [6] is also established.

These results allow to perform statistical tests on the LRD parameters and on the long-
run covariance. We propose an application on fMRI data, where we have recordings on
a dead rat and alive one. The tests of significance on the LRD parameters and on the
long-run correlations highlight that these characteristics are intrinsically linked to brain
activity.
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Appendix A. Expression of wavelet coefficients

Let (a, b) ∈ {1, . . . , p}2. The objective is to study the asymptotic normality of the
sample wavelet covariance {σ̂a,b(j0 + u), u = 1, . . . ,∆} when j0 goes to infinity. To this
end, we introduce a new indexing of wavelet coefficients similar to that in [23, pages 543
and 544]. This new indexing enables to approximate the sequence of wavelet coefficients
with m-dependent variables and to use the results on linear decimated processes of [31].
The section is structured as follows. In Appendix A.1, we give a linear representation
of wavelet coefficients, the new indexing of the coefficients is defined in Appendix A.2.
Appendix A.3 finally introduces the approximation by a m-dependent process.

Appendix A.1. Linear representation of wavelet coefficients

Consider a scale j > 0 and k ∈ Z. Define, for all l ∈ Z, hj,l =
∫
R φ(t+ l)2−j/2ψ(2−jt)dt,

the discrete wavelet filter associated to (φ(·), ψ(·)). Then under (W1), the vector of
wavelet coefficients W(j, k) defined in Section 2.2 can be written as

W(j, k) =
∑
l∈Z

hj,2jk−lX(l),

with W(j, k) ∈ Rp. For all λ ∈ R let us denote

Hj(λ) =
∑
l∈Z

hj,le
−iλ l =

∫
R

∑
l∈Z

φ(t+ l)2−j/2ψ(2−jt)dt,

the discrete Fourier transform of {hj,l, l ∈ Z}.

Suppose that the multivariate process X = {Xa(k), k ∈ Z, a = 1, . . . , p} satisfies
Assumption (M3). To express wavelet coefficients, we introduce, for all λ ∈ (−π, π),

A∗(λ) = diag
(
(1− eiλ)−D

)
A(D)∗(λ), (A.1)

and {A(t), t ∈ Z} ∈ `2(Z) such that

A∗(λ) = (2π)−1/2
∑
t∈Z

A(t)eiλt.
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The function A∗(λ) satisfies

A∗(λ)A∗(λ)
T

= f(λ), (A.2)

where f(·) is defined in (M1).

For all λ ∈ (−π, π), let
A∗(j;λ) = Hj(λ)A∗(λ),

with A∗(λ) defined in (A.1). Let us also define {A(j; t), t ∈ Z} ∈ `2(Z) such that

A∗(j;λ) = (2π)−1/2
∑
t∈Z

A(j; t)eiλt.

Then, the wavelet coefficients can be written as

W(j, k) =
∑
l∈Z

A(j; 2jk − l)ε(l).

Implicit differentiation by wavelet representation. As the wavelet ψ admitsM vanishing
moments under (W3), Hj can be factorized as Hj(λ) = (1 − eiλ)MH̃j(λ), with H̃j

trigonometric polynomial, H̃j(λ) =
∑

t∈Z h̃j,te
itλ. It results that

Wa(j, k) =
∑
l∈Z

h̃j,2jk−l(LMXa)(l).

Appendix A.2. New indexing of wavelet coefficients

Let j > 0 and k ∈ {0, . . . , nj − 1}. We introduce the new indexing proposed by [23].
Let u = j − j0, u ∈ {0, . . . ,∆}, and define (i, s) such that k = 2∆−u(s − 1) + i, with
i ∈ {2∆−u, . . . , 2∆−u+1− 1} and s ∈ Z. We have 2jk = 2j1(s− 1 + 2u−∆i). Index i varies
from 1 to N = 2∆+1−1 and each couple (j, k) corresponds to a unique couple (i, s). We
can rewrite wavelet coefficients as

Λj0(d)−1W(j, k) =
∑
t∈Z

V (i,j0)(2j1s− t)ε(t)

with Λj0(d) is defined in (1) and

V (i,j0)(t) = Λj0(d)−1A(j; 2j(i− 2j1−j) + t), j = j1 − blog2(i)c,
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where blog2(i)c = ∆− u is the integer part of log2(i). Write

Z(i,s,j0) =
∑
t∈Z

V (i,j0)(2j1s− t)ε(t) = Λj0(d)−1W(j, 2−[log2(i)](s− 1) + i) .

W(j, k), V (i,j0), Z(i,s,j0) belong respectively to Rp, Rp×p and Rp.

For all u = 0, . . . ,∆, denoting j = j0 + u, the empirical variance satisfies

Λj0(d)−1Σ̂(j)Λj0(d)−1 =
1

nj

nj−1∑
k=0

Λj0(d)−1W(j, k) W(j, k)TΛj0(d)−1

=

√
nj1
nj

2∆−u+1−1∑
i=2∆−u

n
−1/2
j1

nj1−1∑
s=0

Y (i,s,j0)

︸ ︷︷ ︸
S(i,j0)

+n−1
j

Tψ (2∆−u−1)∑
i=2∆−u

Y (i,nj1 ,j0)

︸ ︷︷ ︸
R(j)

,(A.3)

with
Y (i,s,j0) = Z(i,s,j0)Z(i,s,j0)T = (Z(i,s,j0)

a Z(i,s,j0)
b )a,b=1,...,p .

Indeed, when s ∈ {0, . . . , nj1 − 1} and i ∈ {2∆−u, . . . , 2∆−u+1 − 1}, index k = 2∆−u(s−
1)+i varies in {0, . . . , 2∆−unj1−1}, and when s = nj1 and i ∈ {2∆−u, . . . , Tψ (2∆−u−1)},
index k varies from 2∆−unj1 to 2∆−u(nj1−1)+Tψ (2∆−u−1) = 2−j(NX−Tψ +1)−Tψ =
nj − 1. That is,

{k = 0, . . . , nj−1} = {k = 2∆−u(s−1)+i, s = 0, . . . , nj1−1, i = 2∆−u, . . . , 2∆−u+1−1}
∪ {k = 2∆−u(s− 1) + i, s = nj1 , i = 2∆−u, . . . , Tψ (2∆−u − 1)}.

The proof of Theorem 2 consists in establishing first the asymptotic normality of
{S(i,j0), i = 1, . . . , N}j0>0 when j0 goes to infinity, and second that (R(j))j>0 is
negligible. To prove the asymptotic normality of {S(i,j0), i = 1, . . . , N}j0>0, we will
need to approximate the variables {Y (i,j0), i = 1, . . . , N}j0>0 by m-dependent variables.

Appendix A.3. Approximation by a m-dependent process

Following [31], we introduce a non-negative infinitely differentiable function H(·) defined
on R such that H(0) = 1 and H(t) = 0 if |t| > 1/2. Write Ĥ(·) its Fourier transform,
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Ĥ(λ) =
∫∞
−∞H(t)e−iλ tdt. Since H is supposed infinitely derivable, when |λ| tends to

infinity, Ĥ(λ) decreases to 0 faster than any polynomial. Hence, there exists cH > 0 such
that |Ĥ(λ)| 6 cH |λ|−δv−1 for all |λ| > 1, with δv defined in Lemma 10. Additionally,
1

2π

∫∞
−∞ Ĥ(λ) dλ = H(0) = 1.

Let us define, for all t ∈ R, for all λ ∈ R,

V (i,j0)(m)(t) = H(2−j1t/m)V (i,j0)(t) ,

V (i,j0)(m)∗(λ) = (2π)−1/2
∑
t∈Z

V (i,j0)(m)(t)e−iλt =
m

2π

∫ ∞
−∞

Ĥ(mξ)V (i,j)∗(λ− 2−j1ξ) dξ ,

Z(i,s,j0)(m) =
∑
t∈Z

V (i,j)(m)(2j1s− t)ε(t) .

Then for all a, b = 1, . . . , p,

vectors Z(s,j0)(m)
a,b =

(
Z(1,s,j0)(m)
a , . . . ,Z(N,s,j0)(m)

a ,Z(1,s,j0)(m)
b , . . . ,Z(N,s,j0)(m)

b

)T
∈ RN are

m-dependent relatively to index s. That is, for all q > 1, for all (s1, . . . , sq) such that
sr+1 > sr +m for r = 1, . . . , q, vectors Z(s1,j0)(m)

a,b , . . . , Z(sq ,j0)(m)
a,b are independent.

We will next study sequences {S(i,j0)(m), i = 1, . . . , N}j0>0 which are defined as follows:

Y (i,s,j0)(m) = Z(i,s,j0)(m)Z(i,s,j0)(m)T , (A.4)

S(i,j0)(m) = n
−1/2
j1

nj1−1∑
s=0

Y (i,s,j0)(m). (A.5)

The outline of the proof of Theorem 2 is first to prove the asymptotic normality of
{S(i,j0)(m), i = 1, . . . , N}j0>0 with the use of the results on decimated m-dependent
processes of [23]. Next a similar result for {S(i,j0), i = 1, . . . , N}j0>0 is deduced by
letting m go to infinity.

Appendix B. Notations and technical lemmas

This section provides some technical results on the quantities introduced in the wavelet
representation and in the approximation by a m-dependent process, respectively in
Appendix A.2 and Appendix A.3. These results will be used for the proof of Theorem 2.

25



Appendix B.1. Useful inequalities concerning the linear wavelet representation

We first give two lemmas, respectively on the behavior of the spectral density f(·) and
of the function A∗(·).

Lemma 8. Suppose (M1)–(M2) hold. Then there exists Cf > 0 depending on L, β and
Ω such that for all a, b = 1, . . . , p, for all λ ∈ (−π, π),

|fa,b(λ)| 6 Cf |λ|−da−db .

Proof. Let (a, b) ∈ {1, . . . , p}2 and λ ∈ (−π, π). By (M1),

|fa,b(λ)| 6 max
`,m
|Ω`,m|

∣∣1− eiλ
∣∣−da−db ∣∣fSa,b(λ)

∣∣ .
From Assumption (M2),

∣∣fSa,b(λ)
∣∣ 6 L(1 + πβ). Additionally,

∣∣1− eiλ
∣∣ =

∣∣2 sin
(
λ/2
)∣∣ 6

|λ|. Lemma 8 follows with Cf = L(1 + πβ) maxa,b=1,...,p |Ωa,b|.

Lemma 9. Suppose (M1)–(M3) hold. Then there exists CA > 0 depending on L, β and
Ω such that for all (a, b) ∈ {1, . . . , p}2,∣∣∣∣(A∗(λ)A∗(λ)

T
)
a,b

∣∣∣∣ 6 CA |λ|−da−db .

Proof. The lemma is straightforward combining (A.2) and Lemma 8.

Appendix B.2. Preliminary results on (V (i,j0))

Define
V (i,j0)∗(λ) = (2π)−1/2

∑
t∈Z

V (i,j0)(t)e−iλt , λ ∈ R .

Observe that [V (i,j0)(2j1s− t)]∗(λ) = V (i,j0)∗(λ)e−i 2j1sλ.

For all i, i′ = 1, . . . , N , for all λ ∈ R, let us define also W (i,i′)∗(λ) = (W(i,i′)∗
a,b (λ))a,b=1,...,p

with

W (i,i′)∗(λ) = 2(u−∆)/2+(u′−∆)/2 ψ̂(2u−∆λ) ψ̂(2u
′−∆λ) ei( 2u−∆(i−1)− 2u

′−∆(i′−1))λ

diag
(
|λ|−de−i sgn(λ)πd/2)Λ∆(d) Ω Λ∆(d) diag

(
|λ|−dei sgn(λ)πd/2), (B.1)
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where u = ∆− blog2(i)c, u′ = ∆− blog2(i′)c.

We begin by providing some results on the behavior of (V (i,j0)∗(·)) in a sequence of
lemmas.

Lemma 10. Suppose assumptions of Theorem 20 hold. Suppose ∆ < ∞. Then there
exists δv > 1/2 such that for all j > j0, j − j0 6 ∆, we have

sup
|λ|<π

∥∥∥∥V (i,j0)∗(λ)V (i,j0)∗(λ)
T
∥∥∥∥
∞
6 Cv 2j(1 + 2j|λ|)−2δv ,

with j = j0 + ∆− blog2(i)c and Cv = CAC
2
H1 2∆(da+db) <∞, depending on L, β, Ω, d,

∆, φ(·) and ψ(·).

Proof. Recall that the Fourier transform A∗(·) was defined in (A.1). Observe that

V (i,j0)∗(λ)V (i,j0)∗(λ)
T

= (2π)−1 |Hj(λ)|2 Λj0(d)−1A∗(λ)A∗(λ)
T
Λj0(d)−1 .

Lemma 9 yields∣∣∣∣(V (i,j0)∗(λ)V (i,j0)∗(λ)
T )

a,b

∣∣∣∣ 6 CA (2π)−1 |Hj(λ)|2 2(j−j0)(da+db)
∣∣2jλ∣∣−da−db .

From (I.1) we get, for all a, b = 1, . . . , p,∣∣∣∣(V (i,j0)∗(λ)V (i,j0)∗(λ)
T )

a,b

∣∣∣∣
6 CAC

2
H1 2(j−j0)(da+db) 2j

(
2j |λ|

1 + 2j |λ|

)2M−da−db
(1 + 2j |λ|)−2α−da−db .

Therefore, since da + db < 2M and 0 6 2j |λ|
1+2j |λ| 6 1,∣∣∣∣(V (i,j0)∗(λ)V (i,j0)∗(λ)

T )
a,b

∣∣∣∣ 6 CAC
2
H1 2(j−j0)(da+db) 2j(1 + 2j|λ|)−2α−da−db .

Lemma 10, hence, holds with Cv = CAC
2
H1 2(j−j0)M and δv = α + maxa=1,...,p da.

Assumption (W5) ensures that δv > 1/2.

The following lemma provides some convergence results on (V (i,j0)∗(·)).
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Lemma 11. For all i = 1, . . . , N , for all λ ∈ R, there exist Φ(i,j0)(λ) ∈ (−π, π)p×p and
V (i,∞)∗(λ) ∈ Cp×p, such that

2−j1/2V (i,j0)∗(2−j1λ)e−iΦ(i,j0)
(2−j1λ) −→

j0→∞
V (i,∞)∗(λ) , (B.2)

2−j1V (i,j0)∗(2−j1λ)V (i′,j0)∗(2−j1λ)
T

−→
j0→∞

W (i,i′)∗(λ) , (B.3)

where W (i,i′)∗(λ) is defined in (B.1).

Proof.

Proof of (B.2). Let Φ(i,j0)(λ) be the arguments of V (i,j0)∗(λ). Let (a, b) ∈ {1, . . . , p}2.
From (I.2), we have∣∣∣2−j1/2V(i,j0)∗

a,b (2−j1λ)e−iΦ
(i,j0)
a,b (2−j1λ) − 2−∆/2+∆da

∣∣∣φ̂(2−j1λ)ψ̂(2u−∆λ)2−j1daA∗a,b(2
−j1λ)

∣∣∣∣∣∣
6 CH22j(1/2−α−M)+(u−∆)M |λ|M2−∆/2+∆da

∣∣2−j1daA∗a,b(2−j1λ)
∣∣ .

Lemma 9 gives the inequality

∣∣2−j1daA∗a,b(2−j1λ)
∣∣2 6 2−2 j1da

p∑
a′=1

∣∣A∗a,a′(2−j1λ)
∣∣2 6 CA|λ|−2da ,

for all a, b = 1, . . . , p. Hence,∣∣∣2−j1/2V(i,j0)∗
a,b (2−j1λ)e−iΦ

(i,j0)
a,b (2−j1λ) − 2−∆/2+∆da

∣∣∣φ̂(2−j1λ)ψ̂(2u−∆λ)2−j1daA∗a,b(2
−j1λ)

∣∣∣∣∣∣
6 CH2CA|λ|M−2da2−∆/2+∆da+(u−∆)M 2j(1/2−α−M).

Since 1/2 − α − M < 0, we obtain that the right-hand side goes to 0 when j0 goes
to infinity. By continuity,

∣∣∣φ̂(2−j1λ)
∣∣∣ tends to

∣∣∣φ̂(0)
∣∣∣ = 1 when j0 goes to infinity. We

conclude (B.2) by Assumption (M4), which supposes that 2−j1 daA∗a,b(2
−j1λ) converges

when j1 goes to infinity.
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Proof of (B.3). By equality (A.2), we get∥∥∥2−j1V (i,j0)∗(2−j1λ)V (i′,j0)∗(2−j1λ)
T

− 2−j1+j/2+j′/2|φ̂(2−j1λ)|2 ψ̂(2j−j1λ)ψ̂(2j
′−j1λ)

Λj0(d)−1f(2−j1λ)Λj0(d)−1ei( 2u−∆i− 2u
′−∆i′)λ

∥∥∥
∞

6 2−j1
∥∥∥Hj(2

−j1λ)Hj′(2−j1λ)

−2j/2+j′/2|φ̂(2−j1λ)|2 ψ̂(2j−j1λ)ψ̂(2j
′−j1λ) Λj0(d)−1f(2−j1λ)Λj0(d)−1

∥∥∥
∞

Inequality (I.3) gives that the right-hand side can be bounded by

CH3 2−j12(j+j′)(1/2−α−M)2(u+u′−2∆)M |λ|2M
∥∥Λj0(d)−1f(2−j1λ)Λj0(d)−1

∥∥
∞ .

With Lemma 8, the bound becomes

max
a,b=1,...,p

CH3Cf 2−(2j0+u+u′)(α+M) 2(u+u′−2∆)(M+1/2) 2∆(da+db) |λ|2M−da−db .

This term goes to 0 when j0 goes to infinity uniformly for λ ∈ (−π, π).

As
∣∣∣φ̂(2−j1λ)

∣∣∣ −→
j0→∞

∣∣∣φ̂(0)
∣∣∣ = 1 and as f(2−j1λ) satisfies approximation (2), we obtain

convergence (B.3).

We introduce some useful notations. For (i, i′) ∈ {1, . . . , N}2, t ∈ Z, λ ∈ R, let

Ṽ
(i,∞)

(t) =
1√
2π

∫
V (i,∞)∗(λ)eiλ tdλ,

W̃
(i,i′)∗

(λ) =
∑
t∈Z

W (i,i′)∗(λ+ 2tπ), (B.4)

where V (i,∞)∗(·) and W (i,i′)∗(·) have been defined respectively in (B.2) and in (B.1). We
also define, for (s, s′) ∈ {1, . . . , N}2, (a, b, a′, b′) ∈ {1, . . . , p}4,

Θ((i,s),(i′,s′)) =

∫ ∞
−∞

W (i,i′)∗(λ)e−i(s−s′)λdλ, (B.5)

Γ
(i,i′)
(a,b),(a′,b′) = 2π

∫ π

−π
W̃

(i,i′)∗
a,a′ (λ)W̃

(i,i′)∗
b,b′ (λ)dλ+2π

∫ π

−π
W̃

(i,i′)∗
a,b′ (λ)W̃

(i,i′)∗
b,a′ (λ)dλ. (B.6)
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We can first state a result on Θ. This result is useful to show that Γ(i,i′) is the
asymptotic covariance matrix of (S(i,j0),S(i′,j0)) as j0 goes to infinity. This will be
proved in Lemma 16.

Lemma 12. For all (i, i′) ∈ {1, . . . , N}2,

∀j0 > 0,∀a = 1, . . . , p, sup
s∈Z

∑
t∈Z

p∑
a′=1

V(i,j0)
a,a′ (2j1s− t)2 <∞ , (B.7)

∀(s, s′) ∈ Z2,
∑
t∈Z

V (i,j0)(2j1s− t)V (i′,j0)(2j1s′ − t)T −→
j0→∞

Θ((i,s),(i′,s′)) , (B.8)

with Θ((i,s),(i′,s′)) defined in (B.5).

Moreover, for all (a, b) ∈ {1, . . . , p}2, for all i ∈ {1, . . . , N},

sup
t∈Z

∑
s∈Z

V(i,j0)
a,b (2j1s− t)

2
−→
j0→∞

0 . (B.9)

Proof.

Proof of (B.7). By Parseval’s identity and a change of variable, for all (a, a′) ∈
{1, . . . , p}2,∑

t∈Z

V(i,j0)
a,a′ (2j1s− t)2 =

∫ π

−π
|V(i,j0)∗

a,a′ (λ)|2 dλ 6 Cv

∫ ∞
−∞

(1 + |λ|)−2δv dλ ,

which implies (B.7).

Proof of (B.8). Applying Parseval’s theorem and the change of variable λ → 2j1λ, we
get the equality∑

t∈Z

V (i,j0)(2j1s− t)V (i′,j0)(2j1s′ − t)T

=

∫ 2j1π

−2j1π

2−j1V (i,j0)∗(2−j1λ)V (i′,j0)∗(2−j1λ)
T

ei(s−s′)λ dλ.

The function under the integral converges to W (i,i′)∗(λ)ei(s−s′)λ by (B.3). Convergence
under the integral can be applied thanks to dominated convergence, by Lemma 10. This
gives (B.8).
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Proof of (B.9). Observe that

V(i,j0)
a,b (2j1s− t) =

1√
2π

∫ π

−π
V(i,j0)∗
a,b (λ)e−i(2j1s+t)λdλ.

Since the function λ→ V(i,j0)∗
a,b (λ) is 2π-periodic,[31, Lemma 4], leads to

V(i,j0)
a,b (2j1s− t) =

1√
2π

∫ π

−π
2−j1

2j−1∑
l=0

V(i,j0)∗
a,b 2−j1(λ+ 2πl))e−i(2j1s−t)(2−j1 (λ+2πl)dλ

=
1√
2π

∫ π

−π

[
2−j1

2j1−1∑
l=0

V(i,j0)∗
a,b 2−j1(λ+ 2πl))e−i t 2−j1 (λ+2πl)

]
eisλdλ.

Parseval’s identity entails that

∑
s∈Z

∣∣∣V(i,j0)
a,b (2j1s− t)

∣∣∣2 =

∫ π

−π

∣∣∣2−j1 2j1−1∑
l=0

V(i,j0)∗
a,b (2−j1(λ+ 2πl))e−i t 2−j1 (λ+2πl)

∣∣∣2dλ.

Hence,

∑
s∈Z

∣∣∣V(i,j0)
a,b (2j1s− t)

∣∣∣2 6 2−j1
∫ π

−π

(2j1−1∑
l=0

2−j1/2
∣∣∣V(i,j0)∗

a,b (2−j1(λ+ 2πl))
∣∣∣)2

dλ.

Lemma 10 implies that

∑
s∈Z

∣∣∣V(i,j0)
a,b (2j1s− t)

∣∣∣2 6 Cv 2−j1
∫ π

−π

(2j1−1∑
l=0

(1 + |λ+ 2πl|)−δv
)2

dλ.

We can deduce the following inequalities

∑
s∈Z

∣∣∣V(i,j0)
a,b (2j1s− t)

∣∣∣2 6 Cv 2−j1
∫ π

−π

(
1 +

2j1−2∑
l=0

(1 + |2πl|)−δv
)2

dλ

6 Cv 2−j1 2π
(

1 +

∫ 2j1−2

0

(1 + |2πξ|)−δvdξ
)2

6 Cv 2−j1 2π
(

1 + (1 +
∣∣2π 2j1

∣∣)1−δv
)2

6 Cv4π2−j1
(

1 + (2π)2 2j1(2−2δv)
)
.

The right-hand side goes to 0 when j1 goes to infinity since δv > 1/2.
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Appendix B.3. Preliminary results on the m-dependent processes

We define similar quantities than in Appendix B.2 in the m-dependent setting. That is,

V (i,∞)(m)(t) = H(2−j1t/m)V (i,∞)(t) ,

V (i,∞)(m)∗(λ) = (2π)−1/2
∑
t∈Z

V (i,∞)(m)(t)e−iλt ,

W (i,i′)(m)∗(λ) = V (i,∞)(m)∗(λ)V (i′,∞)(m)∗(λ)
T

,

W̃
(i,i′)(m)∗

(λ) =
∑
t∈Z

W (i,i′)∗(λ+ 2tπ). (B.10)

We also denote
Θ((i,s),(i′,s′))(m) =

∫ ∞
−∞

W (i,i′)(m)∗(λ) e−i(s−s′)λ dλ, (B.11)

Γ
(i,i′)(m)
(a,b),(a′,b′) = 2π

∫ π

−π
W̃

(i,i′)(m)∗
a,a′ (λ)W̃

(i,i′)(m)∗
b,b′ (λ)dλ+2π

∫ π

−π
W̃

(i,i′)(m)∗
a,b′ (λ)W̃

(i,i′)(m)∗
b,a′ (λ)dλ.

(B.12)
We will prove in Appendix C.3 that Γ(i,i′)(m) is the asymptotic covariance matrice of
(S(i,j0)(m),S(i′,j0)(m)) as j0 goes to infinity.

We now provide some general results on the behavior of (V (i,j0)(m)) and (V (i,j0)(m)∗), in
much the same way as in Lemma 10, Lemma 11 and Lemma 12 for (V (i,j0)) and (V (i,j0)∗).

Lemma 13. Suppose assumptions of Theorem 20 hold. Suppose ∆ < ∞. Then there
exists δv > 1/2 such that for all j > j0, j − j0 6 ∆, we have∥∥∥V (i,j0)(m)∗(λ)

∥∥∥
∞
6 Cvm 2j/2 (1 + 2j|λ|)−δv .

with j = j0 + ∆ − blog2(i)c and Cvm < ∞, depending on m, L, β, Ω, d, ∆, φ(·) and
ψ(·).

Proof. The lemma follows from Lemma 10 and [31, Lemma 5].

Lemma 14. Suppose assumptions of Theorem 20 hold. For all i = 1, . . . , N , for all
m > 1, sequences {V(i,j0)(m)

a,b , a, b = 1, . . . , p, j0 > 0} verify the following properties:

∀j0 > 0, ∀a = 1, . . . , p,
∑
t∈Z

p∑
a′=1

V(i,j0)(m)
a,a′ (2j1s− t)2 <∞ ,
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for all (a, b) ∈ {1, . . . , p}2, for all i ∈ {1, . . . , N},

sup
t∈Z

∑
s∈Z

V(i,j0)(m)
a,b (2j1s− t)

2
−→
j0→∞

0 .

Moreover for all m > 1, for all (a, b) ∈ {1, . . . , p}2, for all (i, i′) ∈ {1, . . . , N}2 and
(s, s′) ∈ {0, . . . , nj1 − 1}2,∑

t∈Z

V (i,j0)(m)(2j1s− t)V (i′,j0)(m)(2j1s′ − t)T −→
j0→∞

Θ((i,s),(i′,s′))(m) , (B.13)

with Θ((i,s),(i′,s′))(m) defined in (B.11).

The proof is similar to that of Lemma 12 and it is thus omitted.

Appendix B.4. Asymptotic variance of (S(i,j0), i = 1, . . . , N)j0>0

Lemma 15 below studies the behavior of {Θ((i,s),(i′,s′)), i, i′ = 1, . . . , N, s, s′ > 0} and
{Θ((i,s),(i′,s′))(m), i, i′ = 1, . . . , N, s, s′ > 0} when summing over the parameters (s, s′). It
is used next to prove Lemma 16 which establishes that the asymptotic covariances of
(S(i,j0), i = 1, . . . , N)j0>0 are equal to (Γ(i,i′), i, i′ = 1, . . . , N) when j0 goes to infinity.

Lemma 15. Suppose conditions of Theorem 2 hold. For all (a, b, a′, b′) ∈ {1, . . . , p}4,
for all (i, i′) ∈ {1, . . . , N},

lim
`→∞

`−1
∑

s,s′=0,...,`−1

Θ
((i,s),(i′,s′))
a,b Θ

((i,s),(i′,s′))
a′,b′ = 2π

∫ π

−π
W̃

(i,i′)∗
a,b (λ)W̃

(i,i′)∗
a′,b′ (λ)dλ, (B.14)

lim
`→∞

`−1
∑

s,s′=0,...,`−1

Θ
((i,s),(i′,s′))(m)
a,b Θ

((i,s),(i′,s′))(m)
a′,b′ = 2π

∫ π

−π
W̃

(i,i′)(m)∗
a,b (λ)W̃

(i,i′)(m)∗
a′,b′ (λ)dλ,

(B.15)

where W̃
(i,i′)∗
a′,b′ (·) and W̃

(i,i′)(m)∗
a′,b′ (·) are defined respectively in (B.4) and in (B.10).

Proof. We only prove (B.14), since the proof of (B.15) is similar. Quantity Θ((i,s),(i′,s′))

can be written as

Θ((i,s),(i′,s′)) =

∫ π

−π
W̃

(i,i)∗
(λ) e−i (s−s′)λ dλ,
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Hence, setting v = s− s′,

`−1
∑

s,s′=0,...,`−1

Θ
((i,s),(i′,s′))
a,b Θ

((i,s),(i′,s′))
a′,b′

=
∑
v∈Z

`−1(`− |v|)+

(∫ π

−π
W̃

(i,i′)∗
a,b (λ) e−i v λ dλ

)(∫ π

−π
W̃

(i,i′)∗
a′,b′ (λ) e−i v λ dλ

)
,

with (`− |v|)+ = `− |v| if `− |v| > 0 and 0 otherwise. Lemma 33 entails that, when `
goes to infinity, the above term converges to

2π

∫ π

−π
W̃

(i,i′)∗
a,b (λ)W̃

(i,i′)∗
a′,b′ (λ)dλ .

This is precisely the assertion of the lemma.

We can deduce from Lemma 15 that for all i, i′ = 1, . . . , N , Γ(i,i′) is the asymptotic
covariance between S(i,j0) and S(i′,j0).

Lemma 16. For all m > 1, for all (a, b, a′, b′) ∈ {1, . . . , p}4, for all (i, i′) ∈ {1, . . . , N}2,

lim
j0→∞

Cov(S(i,j0)
a,b ,S(i′,j0)

a′,b′ ) = Γ
(i,i′)
(a,b),(a′,b′) ,

with Γ(i,i′) defined in (B.6).

Proof. We first decompose Cov(S(i,j0)
a,b ,S(i′,j0)

a′,b′ ) in two terms and next study separately
the two terms.

Step 1. Decomposition of Cov(S(i,j0)
a,b ,S(i′,j0)

a′,b′ ). Easy calculation shows that

Cov(Y (i,s,j0),Y (i′,s′,j0)) = T
((i,s),(i′,s′),j0)
(a,a′),(b,b′) + T

((i,s),(i′,s′),j0)
(a,b′),(b,a′) −R((i,s),(i′,s′),j0)

(a,b),(a′,b′) ,

with

T
((i,s),(i′,s′),j0)
(a,a′),(b,b′) =

(∑
t1∈Z

(
V(2j1s− t1)V (i′,j0)(2j1s′ − t1)T

)
a,a′

)
(∑
t2∈Z

(
V (i,j0)(2j1s− t2)V (i′,j0)(2j1s′ − t2)T

)
b,b′

)
,
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a similar expression for T (i,i′,s,s′,j0)
(a,b′),(b,a′) , and

R
((i,s),(i′,s′),j0)
(a,b),(a′,b′)

=
∑

a1,a2,a3,a4=1,...,p

µa1,a2,a3,a4

∑
t∈Z

V(i,j0)
a,a1

(2j1s− t)V(i,j0)
b,a2

(2j1s− t)V(i′,j0)
a′,a3

(2j1s′ − t)

V(i′,j0)
b′,a4

(2j1s′ − t)

−
∑

a1,a2=1,...,p

∑
t∈Z

V(i,j0)
a,a1

(2j1s− t)V(i,j0)
b,a1

(2j1s− t)V(i′,j0)
a′,a2

(2j1s′ − t)V(i′,j0)
b′,a2

(2j1s′ − t)

−
∑

a1,a2=1,...,p

∑
t∈Z

V(i,j0)
a,a1

(2j1s− t)V(i,j0)
b,a2

(2j1s− t)V(i′,j0)
a′,a1

(2j1s′ − t)V(i′,j0)
b′,a2

(2j1s′ − t)

−
∑

a1,a2=1,...,p

∑
t∈Z

V(i,j0)
a,a1

(2j1s− t)V(i,j0)
b,a2

(2j1s− t)V(i′,j0)
a′,a2

(2j1s′ − t)V(i′,j0)
b′,a1

(2j1s′ − t) .

Hence,

Cov(S(i,j0),S(i′,j0)) =
1

nj1

nj1−1∑
s=0

nj1−1∑
s′=0

T
((i,s),(i′,s′),j0)
(a,a′),(b,b′) +

1

nj1

nj1−1∑
s=0

nj1−1∑
s′=0

T
((i,s),(i′,s′),j0)
(a,b′),(b,a′)

− 1

nj1

nj1−1∑
s=0

nj1−1∑
s′=0

R
((i,s),(i′,s′),j0)
(a,b),(a′,b′) . (B.16)

We shall now study separately the terms in the right-hand side.

Step 2. Study of R((i,s),(i′,s′),j0)
(a,b) . Let us study first R((i,s),(i′,s′),j0)

(a,b),(a′,b′) . Cauchy-Schwarz’s
inequality yields to:

1

`

`−1∑
s=0

`−1∑
s′=0

|R((i,s),(i′,s′),j0)
(a,b),(a′,b′) |

6 (µ∞ + 3)
∑

a1,a2,a3,a4=1,...,p

sup
t∈Z

(∑
s∈Z

V(i,j0)
a,a1

(2j1s− t)2

)1/2

sup
t∈Z

(∑
s∈Z

V(i,j0)
b,a2

(2j1s− t)

)1/2

sup
s′∈Z

(∑
t∈Z

V(i′,j0)
a′,a3

(2j1s′ − t)2

)1/2

sup
s′∈Z

(∑
t∈Z

V(i′,j0)
b′,a4

(2j1s′ − t)2

)1/2

.
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The right-hand side does not depend on `. Results (B.7) and (B.9) in Lemma 12 imply
that it converges to 0 when j0 goes to infinity. Hence,

1

nj1

nj1−1∑
s=0

nj1−1∑
s′=0

∣∣∣R((i,s),(i′,s′),j0)
(a,b),(a′,b′)

∣∣∣ −→
j0→∞

0. (B.17)

Step 3. Study of T ((i,s),(i′,s′),j0)
(a,b) . First observe that∑

t1∈Z

V(2j1s− t1)V (i,j0)(2j1s′ − t1)T

=

∫ π

−π
2−j1V (i,j0)∗(λ)V (i′,j0)∗(λ)

T

ei2j1 (s−s′)λ dλ

=
1√
2π

∫ π

−π
(2π)1/22−j1

2j1−1∑
q=0

V (i,j0)∗(2−j1(λ+ 2πq))V (i′,j0)∗(2−j1(λ+ 2πq))
T

ei2j1 (s−s′)λdλ.

Last equality was obtained by [31, Lemma 4], since the function λ →
V (i,j0)∗(2−j1(λ+ 2π q))V (i′,j0)∗(2−j1(λ+ 2π q))

T

ei2j1 (s−s′)λ is 2π-periodic.

For all functions g1, g2 in L2(−π, π), Q ∈ N, set

LQ(g1, g2) =
∑
q∈Z

(
1− |q|

Q

)
+

(∫ π

−π
g1(λ)dλ

)(∫ π

−π
g1(λ)dλ

)
.

For all ` ∈ N,
1

`

`−1∑
s=0

`−1∑
s′=0

T
((i,s),(i′,s′),j0)
(a,b),(a′,b′) = L`(g

(j0)
a,a′ , g

(j0)
b,b′ ),

where

g
(j0)
a,a′ (λ) = (2π)1/22−j1

2j1−1∑
q=0

(
V(i,j0)∗(2−j1(λ+ 2π q))V(i′,j0)∗(2−j1(λ+ 2π q))

T )
a,a′
,

and a similar definition of g(j0)
b,b′ (λ). We omit the dependence on i, i′ temporally to

simplify notations.
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Introduce
g

(∞)
a,a′ (λ) = (2π)1/2W̃a,a′(λ) = (2π)1/2

∑
q∈Z

Wa,a′(λ+ 2π q).

We have∣∣∣L`(g(j0)
a,a′ , g

(j0)
b,b′ )− L`(g

(∞)
a,a′ , g

(∞)
b,b′ )

∣∣∣
=
∣∣∣L`(g(j0)

a,a′ − g
(∞)
a,a′ , g

(j0)
b,b′ − g

(∞)
b,b′ ) + L`(g

(∞)
a,a′ , g

(j0)
b,b′ − g

(∞)
b,b′ ) + L`(g

(j0)
a,a′ − g

(∞)
a,a′ , g

(∞)
b,b′ )

∣∣∣
6M`(g

(j0)
a,a′ − g

(∞)
a,a′ )M`(g

(j0)
b,b′ − g

(∞)
b,b′ ) +M`(g

(∞)
a,a′ )M`(g

(j0)
b,b′ − g

(∞)
b,b′ )

+M`(g
(j0)
a,a′ − g

(∞)
a,a′ )M`(g

(∞)
b,b′ ),

with MQ(g1) defined in Lemma 32. Last inequality results from Cauchy-Schwarz’s
inequality, which entails that LQ(g1, g2) 6MQ(g1)MQ(g2).

Applying Lemma 32,

M`(g
(∞)
a,a′ ) 6

(∫ π

−π

∣∣∣g(∞)
a,a′ (λ)

∣∣∣2 dλ

)1/2

, (B.18)

M`(g
(j0)
a,a′ − g

(∞)
a,a′ ) 6

(∫ π

−π

∣∣∣g(j0)
a,a′ (λ)− g(∞)

a,a′ (λ)
∣∣∣2 dλ

)1/2

. (B.19)

The two bounds in (B.18) and (B.19) do not depend on `. The right-hand side
of (B.18) is finite since by (B.3) and Lemma 10, |ga,a′(λ)| = (2π)1/2

∣∣∣W̃a,a′(λ)
∣∣∣ 6

(2π)1/2Cv(1 + |λ|)−2δv , with δv > 1/2. Next, notice that∫ π

−π

∣∣∣g(j0)
a,a′ (λ)− g(∞)

a,a′ (λ)
∣∣∣2 dλ

= 2π

∫ ∞
−∞

∣∣∣∣2−j1(V (i,j0)∗(2−j1λ)V (i,j0)∗(2−j1λ)
T )

a,a′
−W(i,i′)∗

a,a′ (λ)

∣∣∣∣2 dλ.

Convergence (B.3) and inequality (B.19) ensure that the integral goes to 0 when j0 goes
to infinity by dominated convergence. Therefore, the right-hand side of (B.19) goes to 0
when j0 goes to infinity. It results that

∣∣∣L`(g(j0)
a,a′ , g

(j0)
b,b′ )− L`(g

(∞)
a,a′ , g

(∞)
b,b′ )

∣∣∣ can be bounded
by a quantity which is independent of ` and which goes to 0 when j0 goes to infinity.
Consequently,

∣∣∣Lnj1 (g
(j0)
a,a′ , g

(j0)
b,b′ )− Lnj1 (g

(∞)
a,a′ , g

(∞)
b,b′ )

∣∣∣ −→
j0→∞

0.

37



Observe that

Lnj1 (g
(j0)
a,a′ , g

(j0)
b,b′ ) = n−1

j1

nj1−1∑
s=0

nj1−1∑
s′=0

T
((i,s),(i′,s′),j0)
(a,a′),(b,b′)

Lnj1 (g
(∞)
a,a′ , g

(∞)
b,b′ ) = n−1

j1

nj1−1∑
s=0

nj1−1∑
s=0

Θ
((i,s),(i′,s′))
a,a′ Θ

((i,s),(i′,s′))
b,b′

−→
j0→∞

2π

∫ π

−π
W̃

(i,i′)∗
a,a′ (λ)W̃

(i,i′)∗
b,b′ (λ)dλ,

where the last convergence is given by Lemma 15. Hence,

n−1
j1

nj1−1∑
s=0

nj1−1∑
s′=0

T
((i,s),(i′,s′),j0)
(a,a′),(b,b′) −→

j0→∞
2π

∫ π

−π
W̃

(i,i′)∗
a,a′ (λ)W̃

(i,i′)∗
b,b′ (λ)dλ. (B.20)

Similarly,

n−1
j1

nj1−1∑
s=0

nj1−1∑
s′=0

T
((i,s),(i′,s′),j0)
(a,b′),(b,a′) −→

j0→∞
2π

∫ π

−π
W̃

(i,i′)∗
a,b′ (λ)W̃

(i,i′)∗
b,a′ (λ)dλ. (B.21)

Step 4. End of the proof. Lemma 16 follows from (B.16), (B.17), (B.20) and (B.21).

Appendix B.5. Convergence of Γ(m) to Γ

We proceed to show that Γ(i,i′)(m) goes to Γ(i,i′) when m goes to infinity, for all
i, i′ = 1, . . . , N . That is, the asymptotic variance of S(·,j0)(m) when j0 goes to infinity
converges to the asymptotic variance of S(·,j0).

Lemma 17. For all i, i′ = 1, . . . , N ,

lim
m→∞

Γ(i,i′)(m) = Γ(i,i′).

Proof. To study the limit of Γ
(i,i′)(m)
a,b when m goes to infinity, we will first prove that

Γ(i,i′) satisfies Γ(i,i′) = limj0→∞ limm→∞ Γ̂
(i,i′,j0)(m)

, where
(
Γ̂

(i,i′,j0)(m)
(a,b),(a′,b′)

)
a,b,a′,b′

are defined
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by

Γ̂
(i,i′,j0)(m)
(a,b),(a′,b′) = 2π

∫ π

−π

˜̂W(i,i′,j0)(m)∗

a,a′ (λ)W̃
(i,i′,j0)(m)∗
b,b′ (λ)dλ

+ 2π

∫ π

−π

˜̂W(i,i′,j0)(m)∗

a,b′ (λ)
˜̂W(i,i′,j0)(m)∗

b,a′ (λ)dλ,

with

˜̂W (i,i′,j0)(m)∗
(λ) =

∑
t∈Z

Ŵ
(i,i′,j0)(m)∗

(λ+ 2tπ),

Ŵ
(i,i′,j0)(m)∗

(λ) = 2−j1V (i,j0)(m)∗(2−j1λ)V (i′,j0)(m)∗(2−j1λ)
T

.

Notice that∫ π

−π

˜̂W(i,i′,j0)(m)∗

a,a′ (λ)W̃
(i,i′,j0)(m)∗
b,b′ (λ)dλ =

∫ ∞
−∞
Ŵ

(i,i′,j0)(m)∗
a,a′ (λ)W(i,i′,j0)(m)∗

b,b′ (λ)dλ.

When j0 goes to infinity, Ŵ
(i,i′,j0)(m)∗

(λ) converges to W (i,i′)(m)∗(λ). The convergence
under the integral is obtained by dominated convergence thanks to Lemma 10. It results
that limj0→∞ Γ̂

(i,i′,j0)(m)
= Γ(i,i′)(m).

Let us now study the convergence of (Γ̂
(i,i′,j0)(m)

) with respect to m. We introduce

Ŵ
(i,i′,j0)∗

(λ) = 2−j1V (i,j0)∗(2−j1λ)V (i′,j0)∗(2−j1λ)
T

,˜̂W (i,i′,j0)∗
(λ) =

∑
t∈Z

Ŵ
(i,i′,j0)∗

(λ+ 2tπ),

and

Γ̂
(i,i′,j0)
(a,b),(a′,b′) = 2π

∫ π

−π

˜̂W(i,i′,j0)∗

a,a′ (λ)
˜̂W(i,i′,j0)∗

b,b′ (λ)dλ+2π

∫ π

−π

˜̂W(i,i′,j0)∗

a,b′ (λ)
˜̂W(i,i′,j0)∗

b,a′ (λ)dλ.

(B.22)

Since V (i,s,j0)∗(·) is continuous, we can apply a convergence under the integral. Hence,
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for all λ ∈ R,

V (i,j0)(m)∗(λ) =
1

2π

∫ π

−π
Ĥ(u)V (i,j0)∗(λ− u/m) du

−→
m→∞

V (i,j0)∗(λ)
1

2π

∫ π

−π
Ĥ(u)du = V (i,j0)∗(λ) .

Additionally Lemma 13 entails that

∀j0 > 0, sup
m>1

sup
|λ|<π

2−j/2
∥∥∥V (i,s,j0)(m)∗(λ)

∥∥∥
∞

(1 + 2j |λ|)δv <∞ .

Consequently, Γ̂
(i,i′,j0)(m)

converges uniformly in m to Γ̂
(i,i′,j0)

. Moreover, Γ̂
(i,i′,j0)

converges to Γ(i,i′) when j0 goes to infinity, the convergence under the integral being
obtained by continuity.

It results that

lim
m→∞

lim
j0→∞

Γ̂
(i,i′,j0)(m)

= lim
j0→∞

lim
m→∞

Γ̂
(i,i′,j0)(m)

= Γ(i,i′).

Convergence of Lemma 17 follows.

Appendix B.6. Sums of Γ(i,i′)

Due to decomposition (A.3), we will have to manipulate sums of covariances of
{S(i,j0), i = 1, . . . , N}. By Lemma 16, the covariances are equal to {Γ(i,i′), i, i′ =
1, . . . , N}. The objective of this section is to give some results on these sums. Rather
than using expressions (B.6), we use convergence (B.14). We first need the following
Lemma on quantities {Θ((i,s),(i′,s′))

a,b , i, i′ = 1, . . . , N, s, s′ > 0}.

Lemma 18. Suppose conditions of Theorem 2 hold. Let (a, b) ∈ {1, . . . , p}2, (i, i′) ∈
{1, . . . , N}2, (s, s′) ∈ N2. Introduce

Ξ
((u,s),(u′,s′))
a,b = 2(∆−u)(1−da−db)

∫ ∞
−∞

gu′−u(λ; da + db) e−i (k−2u
′−uk′)λdλ,

with gu′−u(ξ; δ) = ψ̂(λ) ψ̂(2u
′−uλ)|λ|−δ, and k = i+ 2∆−u(s− 1), k′ = i′ + 2∆−u′(s′ − 1).

Then, under assumptions of Theorem 20,

Θ
((i,s),(i′,s′))
a,b = Ωa,b cos

(
π(da − db)/2

)
2(u−∆)/2+(u′−∆)/2+∆ (da+db)Ξ

((u,s),(u′,s′))
a,b .

40



Proof. Recall that {Θ((i,s),(i′,s′))
a,b , a, b = 1, . . . , p, i = 1, . . . , N, s = 0, . . . , nj1 − 1} are

defined in (B.5). For all (a, b) ∈ {1, . . . , p}2,

Θ
((i,s),(i′,s′))
a,b = Θ

((i′,s′),(i,s))
b,a =

1

2

(
Θ

((i,s),(i′,s′))
a,b + Θ

((i,s),(i′,s′))
b,a

)
.

Hence,

Θ((i,s),(i′,s′)) =

∫ ∞
−∞

1

2

(
W (i,i′)∗(λ) + W (i′,i)∗(λ)

T )
e−i(s−s′)λdλ.

Replacing W (i,i′)∗(λ) and W (i′,i)∗(λ) by their expression (B.1), we get

Θ
((i,s),(i′,s′))
a,b = Ωa,b cos

(
π(da − db)/2

)
2(u−∆)/2+(u′−∆)/2+∆ (da+db)Ξ

((u,s),(u′,s′))
a,b

with

Ξ
((u,s),(u′,s′))
a,b

=

∫ ∞
−∞

ψ̂(2u−∆λ) ψ̂(2u
′−∆λ)|λ|−da−db e−i( 2u−∆(i−1)− 2u

′−∆(i′−1))λ e−i(s−s′)λdλ,

= 2(∆−u)(1−da−db)
∫ ∞
−∞

ψ̂(λ) ψ̂(2u
′−uλ)|λ|−da−db e−i (i+2∆−us)λ+i (2∆−u′s′+i′)2u

′−uλ dλ.

We are now in a position to give a useful result on Γ. Namely, we consider the sum of
{Γ(i,i′), i = 2∆−u, . . . 2∆−u+1 − 1, i′ = 2∆−u′ , . . . , 2∆−u′+1 − 1}, which corresponds to the
contribution of the scales (j, j′) = (j0 + u, j0 + u′) to the asymptotic variance V of the
sample wavelet covariance.

Lemma 19. Suppose conditions of Theorem 2 hold. For all (a, b, a′, b′) ∈ {1, . . . , p}4,
for all ∆ ∈ N, (u, u′) ∈ {0, . . . ,∆}2,

2∆−u+1−1∑
i=2∆−u

2∆−u′+1−1∑
i′=2∆−u′

Γ
(i,i′)
(a,b),(a′,b′) = 2∆−u (G � Ĩ �G(a,a′),(b,b′)(u) + G � Ĩ �G(a,b′),(a′,b)(u)

)
,

where G � Ĩ �G(u) is defined in (8).
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Proof. Quantities Γ
(i,i′)
(a,b),(a′,b′) can be expressed as:

Γ
(i,i′)
(a,b),(a′,b′) = lim

`→∞
`−1
∑̀
s=0

∑̀
s′=0

(
Θ

((i,s),(i′,s′))
a,a′ Θ

((i,s),(i′,s′))
b,b′ +Θ

((i,s),(i′,s′))
a,b′ Θ

((i,s),(i′,s′))
b,a′

)
, (B.23)

where {Θ((i,s),(i′,s′))
a,b , a, b = 1, . . . , p, i = 1, . . . , N, s = 0, . . . , nj1 − 1} are noted in (B.5).

Lemma 18 yields

Θ
((i,s),(i′,s′))
a,b = Ωa,b cos

(
π(da − db)/2

)
2(u−∆)/2+(u′−∆)/2+∆ (da+db)Ξ

((u,s),(u′,s′))
a,b , (B.24)

with
Ξ

((u,s),(u′,s′))
a,b = 2(∆−u)(1−da−db)

∫ ∞
−∞

gu′−u(λ; da + db) e−i (k−2u
′−uk′)λdλ,

and gu′−u(ξ; δ) = ψ̂(λ) ψ̂(2u
′−uλ)|λ|−δ, k = i+ 2∆−u(s− 1), k′ = i′ + 2∆−u′(s′ − 1).

To get all values in Z from k − 2u
′−uk′, we introduce τ ∈ {0, . . . , 2−(u′−u) − 1}. Then,

when i, i′, s and s′ vary respectively in {2∆−u, . . . 2∆−u+1 − 1}, {2∆−u′ , . . . 2∆−u′+1 − 1},
{0, . . . `−1} ad {0, . . . `−1}, quantity q = k−2u

′−uk′+ 2u
′−uτ takes all relative integers

values in {−Q, . . . , Q}, with Q = 2∆−u(`− 1).

We have

2∆−u+1−1∑
i=2∆−u

2∆−u′+1−1∑
i′=2∆−u′

`−1

`−1∑
s=0

`−1∑
s′=0

Ξ
((u,s),(u′,s′))
a,b Ξ

((u,s),(u′,s′))
a′,b′

=
Q

`

∑
−Q6q6Q

(
1− q

Q

)
+

2(∆−u)(2−da−db−da′−db′ )
(∫ ∞
−∞

2−(u′−u)−1∑
τ=0

g(λ; da + db)e
−i (q−2u

′−uτ)λ)dλ
)

(∫ ∞
−∞

2−(u′−u)−1∑
τ=0

g(λ; da′ + db′) e−i (q−2u
′−uτ)λdλ

)
= 2∆−u

∑
−Q6q6Q

(
1− q

Q

)
+

2(∆−u)(2−da−db−da′−db′ )
(∫ π

−π
2−(u′−u)/2D̃u′−u,∞(λ; da + db)e

i qλdλ
)

(∫ π

−π
2−(u′−u)/2D̃u′−u,∞(λ; da + db) ei qλdλ

)
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since D̃u′−u;∞(λ; da+db) =
∑2u

′−u−1
v=0 2(u′−u)/2

∑
t∈Z gu′−u(λ+2tπ)ei 2u

′−uτ(λ+2tπ). Applying
Lemma 33, we obtain

lim
`→∞

2∆−u+1−1∑
i=2∆−u

2∆−u′+1−1∑
i′=2∆−u′

`−1
∑̀
s=0

∑̀
s′=0

Ξ
((u,s),(u′,s′))
a,b Ξ

((u,s),(u′,s′))
a′,b′

= 2∆−u 2(∆−u)(2−da−db−da′−db′ )+u−u′(2π)

∫ π

−π
D̃u′−u;∞(λ; da + db)D̃u′−u;∞(λ; da′ + db′) dλ

= 2∆−u′+(∆−u)(2−da−db−da′−db′ ) Ĩu′−u(da + db, da′ + db′)K(da + db)K(da′ + db′). (B.25)

Lemma 19 results from (B.23), (B.24) and (B.25).

Appendix C. Proof of Theorem 2

The asymptotic normality is given by Theorem 20 below. Proposition 1 enables
to approximate {2−j(da+db)σa,b(j), a, b = 1, . . . , p, j > 0} by G and hence entails
Theorem 2.

Theorem 20. Suppose Assumptions (M1)–(M4) and (W1) to (W5) hold. Let 2−j0β → 0
and N−1

X 2j0 → 0. Then{√
nj0+u vec

(
Λj0(d)−1

(
Σ̂(j0 + u)−Σ(j0 + u)

)
Λj0(d)−1

)
, u = 0, . . . ,∆

}
L−→

j0→∞
{Q(u), u = 0, . . . ,∆}

where Q(·) is the centered Gaussian process defined in Theorem 2.

The construction of the proof is adapted from that of [23, Theorem 2]. The proof
has been structured as follows. Appendix A proposes a writing of wavelet coefficients
as decimated linear processes, and provides an approximation by a m-dependent
decimated linear processes, m > 0. Notations and technical results on the decimated
decompositions are stated in Appendix B. They are useful for applying the propositions
of [31], which lead to the asymptotic normality described in Theorem 20. The current
section deals with this step.
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Let us use the notations introduced in Appendix A.2. The sample wavelet covariances
satisfy (A.3). It results that the vector of empirical covariances at different scales can
be written as

2−j0 (da+db)

σ̂a,b(j0)
...

σ̂a,b(j1)

 =
√
nj1 Bj0

S
(1,j0)
a,b
...

S(N,j0)
a,b

+

Ra,b(j0)
...

Ra,b(j1)

 (C.1)

with

Bj0 =


0 . . . . . . . . . 0

2∆ times︷ ︸︸ ︷
n−1
j0
. . . n−1

j0

0 . . . . . . 0

2∆−1 times︷ ︸︸ ︷
n−1
j0+1 . . . n

−1
j0+1 0 . . . 0

...
...

...
n−1
j1

0 . . . . . . . . . . . . 0


.

The objective is to show that vec(σ̂a,b(j), a, b = 1, . . . , p) is asymptotically Gaussian
when j goes to infinity. The proof is divided into the following steps:

• Appendix C.1 establishes that the vector vec(Sa,b(i, j0), a, b = 1, . . . , p)i=1,...,N

is asymptotically Gaussian when j0 goes to infinity; the proof is base on the
approximation by m-dependent processes introduced in Appendix A.3.

• Appendix C.2 proves that the terms vec(Ra,b(j), a, b = 1, . . . , p)j06j6j1 are
negligible.

Appendix C.3 compiles all elements above to prove Theorem 20.

Appendix C.1. Asymptotic normality of S(i,j)

The asymptotic normality of vec
(
S(i,j0)

)
is given by the following proposition.

Proposition 21. Under conditions of Theorem 20,{
vec
(
S(i,j0)

)
, i = 1, . . . , N

}
L−→

j0→∞
{QS(i), i = 1, . . . , N},

where QS(·) is a centered Gaussian process with covariance function
Cov (QS

a,b(i), Q
S
a′,b′(i

′)) = Γ
(i,i′)
(a,b),(a′,b′) defined in (B.6).
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Recall that S(i,j0) = 1
nj1

∑nj1−1

s=0 Y (i,s,j0). The steps of the proof of the asymptotic

normality of vec
(
S(i,j0)

)
are the following:

• We approximate {Y(i,·,j)
a,b , i = 1, . . . N} by the m-dependent process {Y(i,·,j)(m)

a,b , i =

1, . . . N} defined in Appendix A.3. We establish that {Y(i,·,j)(m)
a,b , i = 1, . . . N} is

asymptotically normal when j goes to infinity, using [31, Proposition 2].

• We obtain the asymptotic normality of∑
a,b=1,...,p ua,bS

(i,j0)(m)
a,b = n−1

j

∑nj−1
s=0 Y

(i,s,j)(m)
a,b , thanks to [31, Proposition 3].

• The asymptotic normality for
∑

a,b=1,...,p νa,bS
(i,j0)
a,b is obtained by letting m goes to

infinity, using [44, Theorem 3.2].

Appendix C.1.1. First step, approximation by a m-dependent process

We study variables (Y (i,s,j0)(m))i=1,...,N defined in (A.4), in Appendix A.3. The objective
of this step is to prove that variables (Y (i,s,j0)(m))i=1,...,N are asymptotically Gaussian.
They are defined from variables (Z(i,s,j0)(m)

a , a = 1, . . . , p)i=1,...,N by Y (i,s,j0)(m) =
Z(i,s,j0)(m)Z(i,s,j0)(m)T . We will study first the behavior of (Z(i,s,j0)(m))i=1,...,N and next
deduce that variables (Y (i,s,j0)(m))i=1,...,N are asymptotically Gaussian.

For all a = 1, . . . , p and s ∈ N, let

Z(s,j0)(m)
a =

(
Z(1,s,j0)(m)
a , Z(2,s,j0)(m)

a , . . . , Z(N,s,j0)(m)
a

)T
.

(Z(i,s,j0)(m)
a , a = 1, . . . , p)i=1,...,N are m-dependent decimated linear processes in RN . By

[31, Proposition 2], we get that vec
(
Z(s,j0)(m)
a , a = 1, . . . , p

)
converges in distribution

to vec
(
Z(s,∞)(m)
a , a = 1, . . . , p

)
, which follows a centered Gaussian distribution with

Z(s,∞)(m)
a = (Z(i,s,∞)(m)

a )i=1,...,N and

Cov
(
Z(i,s,∞)(m)
a ,Z(i′,s′,∞)(m)

b

)
= Θ

((i,s),(i′,s′))(m)
a,b .

For s ∈ N, ν ∈ Rp×p, write

Y(s,j0)(m)
a,b =

(
Y(1,s,j0)(m)
a,b , . . . , Y(N,s,j0)(m)

a,b

)T
Y(s,j0)(m)(ν) =

∑
a,b=1,...,p

νa,bY(s,j0)(m)
a,b =

(
Y (1,s,j0)(m)(ν), . . . , Y (N,s,j0)(m)(ν)

)T
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The continuous mapping theorem implies that, when j0 goes to infinity,
(Y(s,j0)(m)(ν))s=0,...,nj1−1 converges in distribution to

(
Y(s,∞)(m)(ν)

)
s=0,...,nj1−1

given by

Y(s,∞)(m)(ν) =
∑

a,b=1,...,p

νa,bY(s,∞)(m)
a,b =

(
Y (1,s,∞)(m)(ν), . . . , Y (N,s,∞)(m)(ν)

)T
,

with Y(s,∞)(m)
a,b = (Y(i,s,∞)(m)

a,b )i=1,...,N and Y(i,s,∞)(m)
a,b = Z(i,s,∞)(m)

a Z(i,s,∞)(m)
b .

Appendix C.1.2. Second step: asymptotic normality of S(i,s,j0)(m)

We first prove that conditions of [31, Proposition 3] are satisfied by {Y(s,j0)(m), s ∈
N, j0 > 0}.

Lemma 22. For all m > 1, for all ν ∈ Rp×p,

sup
i=1,...,N

sup
s>0

sup
j0>0

E[Y (i,s,j0)(m)(ν)] <∞, (C.2)

∀s, s′ > 0, lim
j0→∞

Cov(Y(s,j0)(m)(ν),Y(s′,j0)(m)(ν)) = Cov(Y(s,∞)(m)(ν),Y(s′,∞)(m)(ν)),

(C.3)

lim
`→∞

lim
j0→∞

Cov(`−1/2

`−1∑
s=0

Y(s,j0)(m)(ν)) = Γ(m)(ν), (C.4)

with Γ(m)(ν) =
∑

a,b=1,...,p

∑
a′,b′=1,...,p νa,bνa′,b′

(
Γ

(i,i′)(m)
(a,b),(a′,b′)

)
i,i′=1,...,N

and Γ(m) defined in
(B.12).

Proof.

Proof of (C.2). Assertion (C.2) follows from the fact that E[Y(s,∞)(m)(ν)] =∑
a,b=1,...,p νa,b

(
Θ

((i,s),(i,s))(m)
a,b

)
i=1,...,N

.
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Proof of (C.3). Vector
(
Z(s,∞)(m)
a , Z(s,∞)(m)

b , Z̃(s′,∞)(m)
a′ , Z(s′,∞)(m)

b′

)T
follows a

centered Gaussian distribution. We can therefore use Isserlis’s theorem. We get

E(Y (i,s,∞)(m)(ν)Y (i,s′,∞)(m)(ν))

=
∑

a,b,a′,b′=1,...,p

νa,bνa′,b′E(Z(i,s,∞)(m)
a Z(i,s,∞)(m)

b Z(i,s′,∞)(m)
a′ Z(i,s′,∞)(m)

b′ )

=
∑

a,b,a′,b′=1,...,p

νa,bνa′,b′
[
Θ

((i,s),(i,s))(m)
a,b Θ

((i′,s′),(i′,s′))(m)
a′,b′

+Θ
((i,s),(i′,s′))(m)
a,a′ Θ

((i,s),(i′,s′))(m)
b,b′ + Θ

((i,s),(i′,s′))(m)
a,b′ Θ

((i,s),(i′,s′))(m)
b,a′

]
.

It results that:

Cov(Y (i,s,∞)(m)(ν), Y (i′,s′,∞)(m)(ν))

=
∑

a,b,a′,b′=1,...,p

νa,bνa′,b′
[
Θ

((i,s),(i′,s′))(m)
a,a′ Θ

((i,s),(i′,s′))(m)
b,b′ + Θ

((i,s),(i′,s′))(m)
a,b′ Θ

((i,s),(i′,s′))(m)
b,a′

]
.

We deduce that it is sufficient to prove that, when j0 goes to infinity,
Cov(Y (i,s,j0)(m)(ν), Y (i′,s′,j0)(m)(ν)) converges to∑

a,b,a′,b′=1,...,p

νa,bνa′,b′
[
Θ

((i,s),(i′,s′))(m)
a,a′ Θ

((i,s),(i′,s′))(m)
b,b′ + Θ

((i,s),(i′,s′))(m)
a,b′ Θ

((i,s),(i′,s′))(m)
b,a′

]
to obtain equality (C.3).

Following the proof of Lemma 16, we can write Cov(Y (i,s,j0)(m)(ν), Y (i′,s′,j0)(m)(ν)) as

Cov(Y (i,s,j0)(m)(ν), Y (i′,s′,j0)(m)(ν))

=
∑

a,b,a′,b′=1,...,p

νa,bνa′,b′
[
T

(i,i′,s,s′,j0)(m)
(a,a′),(b,b′) + T

(i,i′,s,s′,j0)(m)
(a,b′),(b,a′) −

nj1−1∑
s′=0

νa,bνa′,b′R
(i,i′,s,s′,j0)(m)
(a,b),(a′,b′)

]
,

(C.5)

with

T
(i,i′,s,s′,j0)(m)
(a,a′),(b,b′) (ν) =

(∑
t1∈Z

(
V (i,j0)(m)(2j1s− t1)V (i′,j0)(m)(2j1s′ − t1)T

)
a,a′

)
(∑
t2∈Z

(
V (i,j0)(m)(2j1s− t2)V (i′,j0)(m)(2j1s′ − t2)T

)
b,b′

)
,
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and limj0→∞R
(i,i′,s,s′,j0)(m)
(a,b),(a′,b′) = 0. Conclusion follows from (B.13).

Proof of (C.4). The proof
is based on decomposition (C.5) of Cov(Y (i,s,j0)(m), Y (i′,s′,j0)(m)). Following the step 2
and the step 3 of the proof of Lemma 16, we can establish that

n−1
j1

nj1−1∑
s=0

nj1−1∑
s′=0

R
(i,i′,s,s′,j0)(m)
(a,a′),(b,b′) −→

j0→∞
0,

n−1
j1

nj1−1∑
s=0

nj1−1∑
s′=0

T
(i,i′,s,s′,j0)(m)
(a,b),(a′,b′) −→

j0→∞
2π

∫ π

−π
W̃

(i,i′)(m)∗
a,a′ (λ)W̃

(i,i′)(m)∗
b,b′ (λ)dλ,

n−1
j1

nj1−1∑
s=0

nj1−1∑
s′=0

T
(i,i′,s,s′,j0)(m)
(a,b′),(b,a′) −→

j0→∞
2π

∫ π

−π
W̃

(i,i′)(m)∗
a,b′ (λ)W̃

(i,i′)(m)∗
b,a′ (λ)dλ.

The proof is very similar and it is not detailed here for the sake of concision. It relies
on Lemma 32, Lemma 13, Lemma 14 and Lemma 15.

We are now in a position to give the asymptotic normality of variables S(i,s,j0)(m), defined
in (A.5).

Proposition 23. Under conditions of Theorem 20,{
vec
(
S(i,j0)(m)

)
, i = 1, . . . , N

}
L−→

j0→∞
{Q(m)(i), i = 1, . . . , N},

where Q(m)(·) is a centered Gaussian process with covariance function
Cov (Q

(m)
a,b (i), Q

(m)
a′,b′(i

′)) = Γ
(i,i′)(m)
(a,b),(a′,b′) defined in (B.12).

Proof. With results of Lemma 22, we can apply [31, Proposition 3], which gives the
proposition.

Appendix C.1.3. Third step: proof of Proposition 21

For i = 1, . . . , N , when j0 goes to infinity, vec
(
S(i,j0)(m)

)
= vec

(
n
−1/2
j

∑nj−1
s=0 Y (i,s,j0)(m)

)
converges to a Np2(0,Γ(m)) distribution by Proposition 23. We want to deduce a similar
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result for variables (S(i,j0)). Lemma 17 establishes that limm→∞ Γ(m) = Γ. Hence
Lemma 24 below entails that we can apply [44, Theorem 3.2]. Proposition 21 follows.

It remains to prove the following lemma.

Lemma 24. For all i, i′ = 1, . . . , N ,

lim
m→∞

lim
j0→∞

Var
(
S(i,j0)(m) − S(i,j0)

)
= 0.

Proof. Lemma 16 and Proposition 23 state respectively that for all (i, i′) ∈ {1, . . . , N}2,
for all (a, b, a′, b′) ∈ {1, . . . , p}4, we have limj0→∞Cov(S(i,j0)

a,b ,S(i′,j0)
a′,b′ ) = Γ

(i,i′)
(a,b),(a′,b′)

and limj0→∞Cov(S(i,j0)(m)
a,b S(i′,j0)(m)

a′,b′ ) = Γ
(i,i′)(m)
(a,b),(a′,b′). Additionnally, by Lemma 17,

limm→∞ Γ(i,i′)(m) = Γ(i,i′). Consequently,

lim
m→∞

lim
j0→∞

Cov(S(i,j0)(m)
a,b ,S(i,j0)(m)

a′,b′ ) = lim
j0→∞

Cov(S(i,j0)
a,b ,S(i,j0)

a′,b′ ) = Γ
(i,i′)
(a,b),(a′,b′).

Hence it is sufficient to prove that limm→∞ limj0→∞Cov(S(i,j0)(m)
a,b ,S(i′,j0)

a′,b′ ) =

Γ
(i,i′)
(a,b),(a′,b′). To this aim, we will prove that limits can be inverted, that is,

limm→∞ limj0→∞Cov(S(i,j0)(m)
a,b ,S(i′,j0)

a′,b′ ) = limj0→∞ limm→∞Cov(S(i,j0)(m)
a,b ,S(i′,j0)

a′,b′ ).

We can establish that Cov(S(i,j0)(m)
a,b ,S(i′,j0)

a′,b′ ) converges as j0 goes to infinity to

2π

∫ π

−π
W̃

(i,i′,j0)(m,∞)∗
a,a′ (λ)W̃

(i,i′,j0)(m,∞)∗
b,b′ (λ)dλ+ 2π

∫ π

−π
W̃

(i,i′,j0)(m,∞)∗
a,b′ (λ)W̃

(i,i′,j0)(m,∞)∗
b,a′ (λ)dλ,

(C.6)
with

W̃
(i,i′,j0)(m,∞)∗
a,b′ (λ) =

∑
t∈Z

W(i,i′,j0)(m,∞)∗
a,b′ (λ+ 2tπ)

and W(i,i′,j0)(m,∞)∗
a,b′ (λ) = 2−j1

p∑
a′=1

V(i,j0)(m)∗
a,a′ (2−j1λ)V(i′,j0)∗

b,a′ (2−j1λ).

The proof is very similar to the one carried out for proving (C.4) and it is thus omitted.
Additionally (C.6) converges to Γ

(i,i′)
(a,b),(a′,b′) when j0 goes to infinity.
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Next we can study the limit of Cov(S(i,j0)(m)
a,b ,S(i′,j0)

a′,b′ ) as m goes to infinity and state that
it converges uniformly to Γ̂

(i,i′,j0)
(a,b),(a′,b′) defined in (B.22). In the proof of Lemma 17, we

have proved that limj0→∞ Γ̂
(i,i′,j0)
(a,b),(a′,b′) = Γ̂

(i,i′,j0)
(a,b),(a′,b′). Hence

lim
m→∞

lim
j0→∞

Cov(S(i,j0)(m)
a,b ,S(i′,j0)

a′,b′ ) = lim
j0→∞

lim
m→∞

Cov(S(i,j0)(m)
a,b ,S(i′,j0)

a′,b′ ) = Γ
(i,i′)
(a,b),(a′,b′).

This concludes the proof.

Appendix C.2. Study of R(j)

The following lemma gives the convergence of {Ra,b(j), a, b = 1, . . . , p, j > 0} to zero
when j goes to infinity.

Lemma 25. n1/2
j Ra,b(j) = n

−1/2
j

∑Tψ(2∆−u−1)

i=2∆−u Y(i,nj1 ,j0)

a,b goes to zero in probability as j0

goes to infinity.

Proof. Hölder’s inequality gives

E[|Y(i,nj1 ,j0)

a,b |] 6
p∑

a′=1

(∑
t∈Z

V(i,j0)
a,a′ (2j1nj1 − t)2

)1/2(∑
t∈Z

V(i,j0)
b,a′ (2j1nj1 − t)2

)1/2

.

Using Parseval’s equality and Lemma 10, we get

E[|Y(i,nj1 ,j0)

a,b |] 6
p∑

a′=1

(∫ π

−π

∣∣∣V(i,j0)∗
a,a′ (λ)

∣∣∣2 dλ

)1/2(∫ π

−π

∣∣∣V(i,j0)∗
b,a′ (λ)

∣∣∣2 dλ

)1/2

6 Cv

∫
R
(1 + |ξ|)−2δvdξ .

Since δv > 1/2, E[|Y(i,nj1 ,j0)

a,b |] if finite. Thus Ra,b(j) = OP(nj) using Markov’s
inequality.
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Appendix C.3. Proof of Theorem 20

Equality (C.1) states that for all a, b = 1, . . . , p,

2−j0(da+db)


√
nj0σ̂a,b(j0)

...√
nj0+∆σ̂a,b(j0 + ∆)


=
√
nj1


√
nj0
...√

nj0+∆

 Bj0

S
(1,j0)
a,b
...

S(N,j0)
a,b

+


√
nj0Ra,b(j0)

...√
nj0+∆Ra,b(j0 + ∆)

 .

By Proposition 25, n1/2
j Ra,b(j) goes to 0 in probability when j goes to infinity.

Proposition 21 entails that the first term is asymptotically Gaussian and centered. We
now explicit the asymptotic variance.

For all 0 6 u′ 6 u 6 ∆, V(a,b),(a′,b′)(u, u
′) = limj0→∞Cov

(
n

1/2
j0+u2

−j0(da+db)σ̂a,b(j0 +

u), n
1/2
j0+u′2

−j0(da′+db′ )σ̂a′,b′(j0 + u′)
)
satisfies

V(a,b),(a′,b′)(u, u
′) = lim

j0→∞
nj1n

1/2
j0+un

1/2
j0+u′

(
Bj0 Cov

(
S(i,j0)
a,b ,S(i,j0)

a′,b′

)
i,i′=1,...,N

BT
j0

)
u,u′

.

Replacing Bj0 by its expression, the equation above can be reformulated as

V(a,b),(a′,b′)(u, u
′) = lim

j0→∞
nj1n

−1/2
j0+un

−1/2
j0+u′

2∆−u+1−1∑
i=2∆−u

2∆−u′+1−1∑
i′=2∆−u′

Cov
(
S(i,j0)
a,b ,S(i,j0)

a′,b′

)
i,i′=1,...,N

.

Using the fact that nj1n
−1/2
j0+un

−1/2
j0+u′ ∼ 2−∆+u/2+u′/2, and using Proposition 21, it results

that

V(a,b),(a′,b′)(u, u
′) = 2−∆+u/2+u′/2

2∆−u+1−1∑
i=2∆−u

2∆−u′+1−1∑
i′=2∆−u′

Γi,i′((a, b), (a
′, b′)),

with Γ̃((a, b), (a′, b′)) =
(
Γ(a,b),(a′,b′)(i, i

′)
)
i,i′=1,...,N

defined in (B.6). We deduce from
Lemma 19 that

V(a,b),(a′,b′)(u, u
′) = 2−(u−u′)/2 (G � Ĩ �G(a,a′),(b,b′)(u) + G � Ĩ �G(a,b′),(a′,b)(u)

)
.
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Appendix D. Proof of Corollary 3

Let (a, b) ∈ {1, . . . , p}2 and j > 0. We can write the correlation ρ̂a,b(j) as ρ̂a,b(j) =
g(2−j(da+db)σ̂a,b(j), 2

−j2daσ̂a,a(j), 2
−j2dbσ̂b,b(j)) with g(x1, x2, x3) = x1/

√
x2x3. The vector

(σ̂a,a(j), σ̂b,b(j), σ̂a,b(j)) is asymptotically Gaussian by Theorem 20. By Delta method
[33, Theorem 4.2.3.], we deduce that √nj (ρ̂a,b(j)− ra,b) converges to a centered
Gaussian distribution when j goes to infinity and that its asymptotic covariance satisfies:

lim
j0→∞

Cov(ρ̂a,b(j0 + u), ρ̂a′,b′(j0 + u′))

=
1√

Ga,aGb,b

( 1√
Ga′,a′Gb′,b′

V(a,b),(a′,b′)(u, u
′)− ra′,b′

2Ga′,a′
V(a,b),(a′,a′)(u, u

′)

− ra′,b′

2Gb′,b′
V(a,b),(b′,b′)(u, u

′)
)

− ra,b
2Ga,a

( 1√
Ga′,a′Gb′,b′

V(a′,a′),(a′,b′)(u, u
′)− ra′,b′

2Ga′,a′
V(a,a),(a′,a′)(u, u

′)

− ra′,b′

2Gb′,b′
V(a,a),(b′,b′)(u, u

′)
)

− ra,b
2Gb,b

( 1√
Ga′,a′Gb′,b′

V(b,b),(a′,b′)(u, u
′)− ra′,b′

2Ga′,a′
V(b,b),(a′,a′)(u, u

′)

− ra′,b′

2Gb′,b′
V(b,b),(b′,b′)(u, u

′)
)
.

We deduce first that

lim
j→∞

Var(ρ̂a,b(j))

=
1

Ga,aGb,b

(
V(a,b),(a,b)(0, 0)− Ga,b

2Ga,a

V(a,b),(a,a)(0, 0)− Ga,b

2Gb,b

V(a,b),(b,b)(0, 0)

)
− Gab

2G2
a,aGb,b

(
V(a,b),(a,a)(0, 0)− Ga,b

2Ga,a

V(a,a),(a,a)(0, 0)− Ga,b

2Gb,b

V(a,a),(b,b)(0, 0)

)
− Gab

2Ga,aG2
b,b

(
V(a,b),(b,b)(0, 0)− Ga,b

2Ga,a

V(a,a),(b,b)(0, 0)− Ga,b

2Gb,b

V(b,b),(b,b)(0, 0)

)
,

where we have used that V(u, u) = V(0, 0) for all u ∈ Z. Replacing also
V(a1,a2),(a3,a4)(0, 0) for all a1, a2, a3, a4 = 1, . . . , p by its expression given in (9), we obtain
the asymptotic distribution of Corrollary 3.
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Second, suppose that the off-diagonal entries of G are equal to zero. Then,

lim
j0→∞

Cov(ρ̂a,b(j0 + u), ρ̂a′,b′(j0 + u′)) =
1√

Ga,aGb,bGa′,a′Gb′,b′
V(a,b),(a′,b′)(u, u

′).

Replacing V(a,b),(a′,b′)(u, u
′) by its expression, it results that the right-hand side is equal

to 0 for all (a, b) /∈ {(a′, b′), (b′, a′)}, and is equal to 2−|u−u
′|/22−j(2da+2db)Ĩ|u−u′|(2da, 2db)

else.

Appendix E. Additional results on the sample wavelet covariance

The objective of this section is to prove that some linear combinations of sample wavelet
covariances may be asymptotically Gaussian. Some conditions are given in the following
proposition. It corresponds to [23, Theorem 3]. The arguments and the scheme of proof
are the same. They are recalled here since the setting and the notations are slightly
different.

Proposition 26. Suppose assumptions of Theorem 2 hold. Let ∆ ∈ N ∪ {∞}.
Let {ω(u, j0), u ∈ N, j0 ∈ N} be a sequence of Rp×p such that for all u ∈ N,
ω(u, j0) −→

j0→∞
ω̃(u) ∈ R and

∆∑
u=0

sup
j0>0
‖ω(u, j0)‖∞ <∞. (E.1)

Define

S(∆, j0) =
∆∑
u=0

√
nj0+uω(u, j0)Λj0+u(d)−1(Σ̂(j0 + u)−Σ(j0 + u))Λj0+u(d)−1 .

Then vec(S(∆, j0)) converges in distribution to Np(0,V(S)(ω̃,∆)) when j0 goes to
infinity, with

V
(S)
(a,b),(a′,b′)(ω̃,∆) =

∑
u,u′=0,...,∆

2−u(d0
a+d0

b+d
0
a′+d

0
b′ )ω̃a,b(u)V(a,b),(a′,b′)(u, u

′)ω̃a′,b′(u
′).
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Proof. For all ` > 0, introduce

S̃a,b(`, j0) =
∑̀
u=0

ω̃a,b(u)
√
nj0+u2

−(j0+u)(da+db)(σ̂a,b(j0 + u)− σa,b(j0 + u)) .

By Theorem 2, for all 0 6 ` <∞, S̃a,b(`, j0) is asymptotically Gaussian, with distribution
Np(0,V(S)(ω̃, `)).

We will first establish the result when ∆ = j1 − j0 is finite and next when it is infinite.

• ∆ finite.
Since S̃a,b(∆, j0) is asymptotically Gaussian, it is sufficient to prove that
E
∣∣∣Sa,b(∆, j0)− S̃a,b(∆, j0)

∣∣∣ goes to 0 when j0 goes to infinity. Using Lemma 27,
we have

E
∣∣∣Sa,b(∆, j0)− S̃a,b(∆, j0)

∣∣∣ 6 Cσ

∆∑
u=0

|ωa,b(u, j0)− ω̃a,b(u)| . (E.2)

We conclude with (E.1).

• ∆ infinite.
The convergence of Sa,b(`, j0) has been established when ` is finite and (E.1)-(E.2)
imply that

lim
`→∞

lim
j0→∞

E |Sa,b(`, j0)− Sa,b(`, j0)| = 0.

Hence, it is sufficient to prove that lim`→∞ limj0→∞ E |Sa,b(∞, j0)− Sa,b(`, j0)| = 0.
Lemma 27 gives

E |Sa,b(∞, j0)− Sa,b(`, j0)| 6
∞∑

u=`+1

|ωa,b(u, j0)| .

The convergence is obtained using (E.1).

The proof of Proposition 26 above is based on the following lemma.
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Lemma 27. Suppose conditions of Theorem 20 hold. There exists Cσ depending on Ω,
d, φ(·), ψ(·), L and β such that for all (a, b) ∈ {1, . . . , p},

E |σ̂a,b(j)− σa,b(j)| 6 Cσ
(
2j(da+db)n

−1/2
j

)
.

Proof. Since we only consider one scale, suppose momentarily that j0 = j = j1. Based
on notations of Appendix A.2, equation (A.3), and Proposition 25,

2−j(da+db)
(
σ̂a,b(j)− σa,b(j)

)
=

1
√
nj

(Sa,b(1, j)− E(Sa,b(1, j))) +OP(nj).

Lemma 22 and Lemma 24 imply that Var
(
Sa,b(1, j)

)
is finite. Lemma 27 is then

straightforward.

Appendix F. Proof of Theorem 4

In this section the true parameters are denoted with an exponent 0.

Observe that conditions of [6, Proposition 6] are satisfied since we suppose assumption
(M3). Consequently, under assumptions of Theorem 4, conditions of Theorem 6 of [6]
hold. It entails that

d̂− d0 = OP(2−j0β +NX2j0/2),

∀(a, b) ∈ {1, . . . , p}2, Ĝa,b(d̂)−Ga,b(d
0) = OP(log(N)(2−j0β +N−1/22j0/2)).

The proof of Theorem 4 is based on a Taylor expansion of the objective function. We
first recall some useful results obtained [6] in Appendix F.1, next we give a normality
result on the first derivative of the objective function in Appendix F.2. Appendix F.3
finally gives the proof of Theorem 4.

55



Appendix F.1. Some results about the objective function and its derivative

The objective function R(·) is equal to R(d) = log det
(
Λ< J >(d)Ĝ(d)Λ< J >(d)

)
−

1. It is straightforward that d̂ = argmin
d

R(d) satisfies

d̂ = argmin
d

R̃(d) with R̃(d) = log det G̃(d)

and G̃(d) = Λ< J >(d− d0)Ĝ(d)Λ< J >(d− d0).

The derivatives of the criterion R̃(d) are equal to

∂R̃(d)

∂da
= trace

(
G̃(d)−1∂G̃(d)

∂da

)
, (F.3)

∂2R̃(d)

∂da∂db
= − trace

(
G̃(d)−1∂G̃(d)

∂db
G̃(d)−1∂G̃(d)

∂da

)
+ trace

(
G̃(d)−1∂

2G̃(d)

∂da∂db

)
.

when G̃(d)−1 exists.

For any a = 1, . . . , p, let ia be a p× p matrix whose a-th diagonal element is one and all
other elements are zero. Let a and b be two indexes in 1, . . . , p. The first derivative of

G̃(d) with respect to da, ∂G̃(d)
∂da

, is equal to

− log(2)
1

n

j1∑
j=j0

nj (j −< J >)Λ< J >(d− d0)Λj(d)−1

(iaΣ(j) + Σ(j)ia)Λj(d)−1Λ< J >(d− d0),

with Σ̂(j) = (σ̂a′,b′(j))a′,b′=1,...,p. Thus

∂G̃

∂da

∣∣∣∣∣
d0

= − log(2)

n

j1∑
j=j0

nj (j −< J >) Λj(d)−1(iaΣ(j) + Σ(j)ia)Λj(d)−1 . (F.4)
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Appendix F.2. Asymptotic normality of the first derivative

The objective of this section is to prove that
√
n ∂R̃

∂d

∣∣∣∣
d0

is asymptotically Gaussian.

Proposition 28. Under assumptions of Theorem 4,

√
n
∂R̃

∂d

∣∣∣∣∣
d0

L−→
j0→∞

Np
(

0, 4 log(2)4κ2
∆ Vd(∆)

)
.

where Vd(∆) is defined in equation (17).

Proof. For any vector υ = (υa)a=1,...,p ∈ Rp, we want to prove that υT ∂R̃
∂d

∣∣∣∣
d0

converges

to a centered Gaussian distribution with variance υT (4 log(2)2κ2
∆V)υ.

By (F.3),

υT
∂R̃(d)

∂da
=

p∑
a=1

υa trace

(
G̃(d)−1∂G̃(d)

∂da

)
.

As expressed in [6, page 36], G̃(d) can be written as

G̃a,b(d
0) = G0

a,b +

j1∑
j=j0

nj∑
k=0

1

n

(
Wa(j, k)Wb(j, k)

2j(d
0
a+d0

b)
−G0

a,b

)
.

Applying [6, Proposition 8], we get

G̃a,b(d
0) = G0

a,b +OP(2−j0β +N
−1/2
X 2−j1/2) .

We introduce

S̃j0 =
√
n

p∑
a=1

υa trace

(
G0−1 ∂G̃(d)

∂da

∣∣∣∣∣
d0

)
.

It is easily seen that
√
nυT

∂R̃(d)

∂d

∣∣∣∣∣
d0

− S̃j0
P−→ 0. (F.5)
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Reformulating (F.4), we get(
∂G̃(d)

∂da

∣∣∣∣∣
d

)
a,b

= −2 log(2)
1

n

j1∑
j=j0

(j −< J >)2−j(d
0
a+d0

b) njσ̂a,b(j).

Thus we can write S̃j0 as

S̃j0 =
∑

a,b=1,...,p

S
(d)
a,b (∆, j0), (F.6)

with S
(d)
a,b (∆, j0) =

∆∑
u=0

ω
(S)
a,b (u, j0)

√
nj0+u 2−(j0+u)(d0

a+d0
b) σ̂a,b(j0 + u)

and ω
(S)
a,b (u, j0) = −2 log(2)

√
nj0+u

n
(j0 + u−< J >) υa(G

0−1)a,b.

Lemma 13 of [21] states that < J > − j0 → η∆ when NX → ∞. When j0 → ∞,
ω

(S)
a,b (u, j0) hence converges to ω̃(S)

a,b (u) = −2 log(2)
√

2−u

2−2−∆ (u−η∆) υa(G
0−1)a,b.Moreover

(E.1) holds for ∆ ∈ N ∪ {∞}.

Applying Proposition 26, vec
(
S(d)(∆, j0)− E(S(d)(∆, j0))

)
is asymptotically Gaussian,

with distributionNp(0,V(S)(ω̃(S),∆)). Consequently, S̃j0−E(S̃j0) follows asymptotically
the Gaussian distribution Np(0,

∑
a,b,a′,b′=1,...,p V

(S)
(a,b),(a′,b′)(ω̃

(S),∆)).

The end of the proof is divided into two steps. First we prove that E(S̃j0) goes to 0
when j0 goes to infinity, and next we establish that the asymptotic variance above, that
is,
∑

a,b,a′,b′=1,...,p V
(S)
(a,b),(a′,b′)(ω̃

(S),∆), is equal to 4 log(2)2κ2
∆υ

TVd(∆)υ.

Convergence of E(S̃j0) toward 0.
Taking the expectancy of S̃j0 ,

E(S̃j0) = −2 log(2)√
n

j1∑
j=j0

nj(j −< J >)
∑

a,b=1,...,p

υa (G0−1)a,b2
−j(d0

a+d0
b)σa,b(j).

Since
∑j1

j=j0
nj(j −< J >) = 0.

E(S̃j0) = −2 log(2)√
n

j1∑
j=j0

nj(j −< J >)
∑

a,b=1,...,p

υa (G0−1)a,b
(
2−j(d

0
a+d0

b)σa,b(j)−G0
a,b

)
.
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Using Proposition 1,
E|S̃j0| = O

(√
nj02−j0 β

)
.

Thus E(S̃j0) converges to zero when j2
0 NX2−j0(1+2β) → 0.

Expression of
∑

a,b,a′,b′=1,...,p V
(S)
(a,b),(a′,b′)(ω̃

(S),∆).

It remains to prove that
∑

a,b,a′,b′=1,...,p V
(S)
(a,b),(a′,b′)(ω̃

(S),∆) = 4 log(2)2κ2
∆υ

TVd(∆)υ. By
expanding the expression,∑

a,b,a′,b′=1,...,p

V
(S)
(a,b),(a′,b′)(ω̃

(S),∆))

=
4 log(2)2

2− 2−∆

∑
a,b,a′,b′=1,...,p

υaυa′(G
0−1)a,b(G

0−1)a′,b′
∆∑
u=0

∆∑
u′=0

2−u/2−u
′/2(u− η∆)(u′ − η∆)

2−u(d0
a+d0

b)−u
′(d0

a′+d
0
b′ )V(a,b),(a′,b′)(u, u

′)

= 4 log(2)2
∑

a,b,a′,b′=1,...,p

υaυa′(G
0−1)a,b(G

0−1)a′,b′
(
G0
aa′G

0
bb′I(S)(d0

a + d0
a′ , d

0
b + d0

b′)

+G0
ab′G

0
a′bI(S)(d0

a + d0
b′ , d

0
a′ + d0

b)
)
,

where

I(S)(δ1, δ2) =
1

2− 2−∆

∆∑
u=0

∆∑
u′=0

2−u/2−u
′/2(u− η∆)(u′ − η∆)

2(δ1+δ2)u∨u′−|u−u′|/22−uδ1−u
′δ2 Ĩ|u−u′|(δ1, δ2) .

We can formulate this expression to recover a similar form to that of [21, Theorem 5]
and [23, Theorem 5]. The arguments are the same than those used in the proof of
[21, Proposition 10], but are recalled here to explicit the form of the variance. We can
express I(S)(δ1, δ2) as:

I(S)(δ1, δ2) =
1

2− 2∆

∆∑
γ′=0

(γ′ − η∆)2 2−γ
′
Ĩ0(δ1, δ2)

+
1

2− 2∆

∆∑
γ=1

∆−γ∑
γ′=0

(γ + γ′ − η∆)(γ′ − η∆)2−γ−γ
′
(2γδ1 + 2γδ2)Ĩγ(δ1, δ2) ,

59



where we set γ = |u− u′| and γ′ = u∧u′. We can use the equalities
∑∆−γ

γ′=0(γ′−η∆)22−γ
′
=

(2− 2−∆+γ)(κ∆−γ + (η∆−γ − η∆)2) and
∑∆−γ

γ′=0(γ′ − η∆)2−γ
′

= (2− 2−∆+γ)(η∆−γ − η∆).
We obtain

I(S)(δ1, δ2) = κ∆Ĩ0(δ1, δ2)

+
1

2− 2∆

∆∑
γ=1

(2−2−∆+γ)((γ+η∆−γ−η∆)(η∆−γ−η∆)+κ∆−γ) 2−γ(2γδ1 + 2γδ2)Ĩγ(δ1, δ2) .

We see that when ∆ < ∞, I(S)(δ1, δ2) =
κ2

∆

2
I∆(δ1, δ2), with I∆(δ1, δ2) defined in (13).

Hence,
∑

a,b,a′,b′=1,...,p V
(S)
(a,b),(a′,b′)(ω̃

(S),∆) = 4 log(2)2κ2
∆υ

TVd(∆)υ.

When ∆ goes to infinity, the sequence κ∆ converges to 2 and the sequence η∆ converges
to 1. We deduce the asymptotic form (14) when ∆→∞ by dominated convergence.

Appendix F.3. Proof of Theorem 4

The Taylor expansion of ∂R̃(d)

∂d
at d̂ at the neighborhood of d0 gives

√
n(d̂− d0) =

(
∂2R̃

∂d∂dT

∣∣∣∣∣
d

)−1
√
n
∂R̃

∂d

∣∣∣∣∣
d0

, (F.7)

where d is such that ‖d− d0‖ 6 ‖d̂− d0‖.

It has already been established in [6, Equation (E10)] that, under assumptions of
Theorem 4,

∂2R̃(d)

∂d∂dT

∣∣∣∣∣
d

P−→ κj1−j0 log(2)22(G0−1 ◦G0 + Ip) . (F.8)

This justifies also that the matrix
(

∂2R

∂d∂dT

∣∣∣
d

)
in (F.7) is indeed invertible for sufficiently

high NX when 2−j0β +N
−1/2
X 2j0/2 → 0.

Next Proposition 28 establishes that ∂R̃
∂d

∣∣∣∣
d0

converges to a centered Gaussian

distribution with variance (2 log(2)2κ2
j1−j0 Vd(∆)). Theorem 4 then follows with (F.7)

and (F.8).
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Appendix G. Proof of Theorem 5

In this section the true parameters are denoted with an exponent 0.

We have Ĝa,b(d) = 2< J >(da−d0
a+db−d0

b)G̃a,b(d) and Ĝa,b(d
0) = Ga,b(d

0) with G̃(d)

defined in (F.2). As 2< J >u − 1 = j0 u log(2)(1 + o(1)) when u→ 0, we deduce that

Ĝa,b(d̂)− G̃a,b(d̂) = j0 (d̂a − d0
a + d̂b − d0

b) log(2)(1 + o(1))Ga,b(d̂) . (G.1)

Since j0 (d̂a−d0
a+ d̂b−d0

b) = oP(1), it is sufficient to establish the asymptotic distribution
of G̃a,b(d̂). More precisely, we want to prove that

√
n vec

(
G(d̂)−G0

)
converges in

distribution to a centered Gaussian distribution. We decompose
√
n vec

(
G̃(d̂)−G0

)
as √

n(G̃(d̂)−G0) =
√
n
(
G(d0)−G0

)
+
√
n
(
G̃(d̂)− G̃(d0)

)
. (G.2)

The first term converges to the desired distribution as established in Lemma 29, while
the second one is negligible by Lemma 30.

Lemma 29 and Lemma 30 are given hereafter.

Appendix G.1. Study of
√
n
(
G̃(d0)−G0

)
Lemma 29. Under assumptions of Theorem 5,

√
n vec

(
G(d0)−G0

)
converges as j0

goes to infinity to a centered Gaussian distribution, with variance ΘG(∆) defined in (19).

Proof. Consider T0(j0) = vec
(√

n
(
G(d0)− E(G(d0))

))
. Recall that

G̃a,b(d
0) =

1

n

j1∑
j=j0

nj2
−j(d0

a+d0
b)σ̂a,b(j) .

Using inequality (5),
E(G̃a,b(d

0)) = G0
a,b(j) +O

(
2j0β

)
,

and consequently
√
n
(
E(G̃a,b(d

0))−G0
a,b(j)

)
= o(1).
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We can write
√
n vec

(
G(d0)−G0

)
as

√
n
(
G̃a,b(d

0)− E(G̃a,b(d
0))
)

=

j1−j0∑
u=0

ω(G)(u, j0)
√
nj0+u 2−(j0+u)(d0

a+d0
b)(σ̂a,b(j0 + u)− σa,b(j0 + u)), (G.3)

with ω(G)(u, j0) =
√
nj0+u/n. The sequence ω(G)(u) converges to ω̃(G)(u) =

2−u/2/
√

2− 2−∆ when j0 goes to infinity. Applying Proposition 26, we obtain that
T0(j0)− E(T0(j0)) converges as n goes to infinity to a centered Gaussian distribution,
with variance

lim
j0→∞

Cov (T0 a,b(j0), T0 a′,b′(j0))

=
∆∑
u=0

∆∑
u′=0

2−u(d0
a+d0

b)−u
′(d0

a′+d
0
b′ )

2−u/2−u
′/2

2− 2−∆
V(a,b),(a′,b′)(u, u

′)

= 2π
(
G0
a,a′G

0
b,b′IG∆(da + da′ , db + db′) +G0

a,b′G
0
b,a′ IG∆(da + db′ , db + da′)

)
,

where

IG∆(δ1, δ2) =
∆∑
u=0

∆∑
u′=0

2(u∨u′−u)δ1+(u∨u′−u′)δ2 2−u/2−u
′/2−|u−u′|/2

2− 2−∆
Ĩ|u′−u|(δ1, δ2).

Quantity IG(δ1, δ2) can be simplified as:

IG∆(δ1, δ2) =
∆∑
u=0

2−u

2− 2−∆
Ĩ0(δ1, δ2) +

∆∑
u=1

(2uδ1 + 2uδ2)2−u Ĩu(δ1, δ2)
∆−u∑
v=0

2−v

2− 2−∆

= Ĩ0(δ1, δ2) +
∆∑
u=1

(2uδ1 + 2uδ2)2−u
2− 2−∆+u

2− 2−∆
Ĩu(δ1, δ2).

When ∆ goes to infinity,

IG∞(δ1, δ2) = Ĩ0(δ1, δ2) +
∞∑
u=1

(2uδ1 + 2uδ2)2−u Ĩu(δ1, δ2).
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Appendix G.2. Study of
√
n
(
G̃(d̂)− G̃(d0)

)
Lemma 30. Under assumptions of Theorem 5,

√
n
(
G̃(d̂)− G̃(d0)

)
tends to 0 in

probability when j0 goes to infinity.

Proof. A Taylor expansion at order one at d0 gives

√
n
(
G̃(d̂)− G̃(d0)

)
=
√
n

(
∂G̃

∂d

∣∣∣∣∣
d0

)
(d̂− d0) +

√
n(d̂− d0)T

(
∂2G̃

∂d∂dT

∣∣∣∣∣
d

)
(d̂− d0),

with
∥∥d− d0

∥∥ 6 ∥∥∥d̂− d0
∥∥∥. Achard and Gannaz in [6, Section E.2.4.] state that, when

2−j0β +N
−1/2
X 2j0/2 → 0,

∂2G̃

∂d∂dT

∣∣∣∣∣
d0

= OP(1) .

Thus
√
n(d̂− d0)T

(
∂2G̃

∂d∂dT

∣∣∣∣∣
d

)
(d̂− d0) = oP(1).

Next, using the derivative of G(d) given in (F.4), we have:

√
n

(
∂G̃

∂d

∣∣∣∣∣
d0

(d̂− d0)

)
a,b

= − log(2)√
n

j1∑
j=j0

nj (j −< J >) 2−j(d
0
a+d0

b) σ̂a,b(j)(d̂a − d0
a + d̂b − d0

b) .

Similarly to what was done in Appendix F, we can establish that log(2)√
n

∑j1
j=j0

nj (j −
< J >) 2−j(d

0
a+d0

b) σ̂a,b(j) is asymptotically Gaussian. Since (d̂a − d0
a + d̂b − d0

b) → 0 we
conclude that this term goes to 0, which concludes the proof.
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Appendix H. Proof of Proposition 7

In this section the true parameters are denoted with an exponent 0.

From the proof of Theorem 4 (using equations (F.7), (F.8), (F.5) and (F.6)) and
Theorem 5 (using equations (G.1), (G.2), (G.3) and Lemma 30), we can extract the
following results(

(G0−1 ◦G0 + Ip)
√
n(d̂− d0)

)
a′

=

p∑
b′=1

j1−j0∑
u=0

ω
(d)
a′,b′(u, j0)

√
nj0+u 2−(j0+u)(d0

a′+d
0
b′ )(σ̂a′,b′(j)− σa′,b′(j))(1 + oP(1))+oP(1),

√
n
(
Ĝa,b(d̂)−G0

a,b

)
=

j1−j0∑
u=0

ω
(G)
a,b (u, j0)

√
nj0+u 2−(j0+u)(d0

a′+d
0
b′ )(σ̂a,b(j)− σa,b(j))(1 + oP(1)) + oP(1),

with

ω
(d)
(a′,b′)(u, j0) = − (κj1−j0 log(2))−1

√
nj0+u/n (j0 + u−< J >) (G0−1)a′,b′ ,

ω
(G)
(a,b)(u, j0) =

√
nj0+u/n.

Hence, linear combinations of
√
n(d̂a′ − da′) and

√
n
(
Ĝa,b(d̂)−G0

a,b))
)

can be

written as
∑

a′′,b′′=1,...,p

∑j1−j0
u=0 ωa′′,b′′(u, j0)

√
nj0+u 2−(j0+u)(d0

a′+d
0
b′ )(σ̂`,m(j) − σ`,m(j))(1 +

oP(1)) + oP(1) with ωa′′,b′′(u, j0) linear combination of (ω
(d)
a′′′,b′′′(u, j0))a′′′,b′′′=1,...,p and

(W(G)
a′′′,b′′′(u, j0))a′′′,b′′′=1,...,p. Proposition 26 gives the joint convergence to a Gaussian

distribution.

It remains to explicit the asymptotic covariance between d̂ and Ĝ(d̂). Asymptotically,
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the asymptotic covariance between
√
n(d̂a′ − d0

a′) and
√
n(Ĝa,b(d̂)−G0

a,b) is

V
d,G(∆)
a′,(a,b) = (κ∆2 log(2))−1 (2− 2−∆)−1

∆∑
u=0

∆∑
u′=0

2−u−u
′−|u′−u|/2(j0 + u−< J >)

2(u∧u′−u′)(d0
a+d0

b)

p∑
b′=1

(
(G0−1 ◦G0 + Ip)

−1
)
a′,b′

2(u∧u′−u)(d0
a′+d

0
b′ )(

G0
a′,aG

0
b′,bĨ|u−u′|(da′ + da, db′ + db) +G0

a′,bG
0
a,b′ Ĩ|u−u′|(da′ + db, db′ + da)

)
= (4 log(2))−1

p∑
b′=1

((G0−1 ◦G0 + Ip)
−1)a′,b′ (H.1)(

G0
a′,aG

0
b′,bI

d,G
∆ (da′ + da, db′ + db) +G0

a′,bG
0
a,b′ I

d,G
∆ (da′ + db, db′ + da)

)
,

with

Id,G∆ (δ1, δ2) =
2

κ∆

∆∑
u=0

2−u

2− 2−∆
(u− η∆)Ĩ|u−u′|(δ1, δ2)

+
1

κ∆

∆∑
u=1

2−uĨu(δ1, δ2)
∆−u∑
v=0

2−v

2− 2−∆

(
2uδ1(u− η∆) + 2uδ2(u+ v − η∆)

)
=

1

κ∆

∆∑
u=1

2−uĨu(δ1, δ2)

(
(2uδ1 + 2uδ2)

2− 2−∆−u

2− 2−∆
(u− η∆) + 2uδ2 η∆−u

)
.

(H.2)

Appendix I. Technical lemmas

We first recall some inequalities on wavelet filters given in [26, Proposition 3].

Proposition 31. Under (W1)–(W3), there exist positive constants CH1, CH2 and CH3

only depending on φ and ψ, such that, for all j, j′ > 0 and λ ∈ (−π, π),

|Hj(λ)| 6 CH12j/2
∣∣2j/2λ∣∣M (1 + 2j |λ|)−α−M , (I.1)∣∣∣Hj(λ)− 2j/2φ̂(λ)ψ̂(2jλ)

∣∣∣ 6 CH22j/2−jα |λ|M , (I.2)∣∣∣Hj(λ)Hj′(λ)− 2j/2+j′/2|φ̂(λ)|2 ψ̂(2jλ)ψ̂(2j
′
λ)
∣∣∣ 6 CH32(j+j′)/22−(j+j′)α |λ|2M . (I.3)
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Proof. Inequalities (I.1) and (I.2) are proved in [26, Proposition 3]. Next,∣∣∣Hj(λ)Hj′(λ)− 2j/2+j′/2|φ̂(λ)|2 ψ̂(2jλ)ψ̂(2j
′
λ)
∣∣∣

6 |Hj(λ)|
∣∣∣Hj′(λ)− 2j

′/2φ̂(λ) ψ̂(2j′λ)
∣∣∣+ |Hj′(λ)|

∣∣∣Hj(λ)− 2j/2φ̂(λ) ψ̂(2jλ)
∣∣∣

+
∣∣∣Hj′(λ)− 2j

′/2φ̂(λ) ψ̂(2j′λ)
∣∣∣ ∣∣∣Hj(λ)− 2j/2φ̂(λ) ψ̂(2jλ)

∣∣∣ .
Applying inequalities (I.1) and (I.2) to the right-hand side gives (I.3).

The following lemma is [26, Lemma 1]. It is used in the proofs of Lemma 16 and of
Lemma 22.

Lemma 32 ([26]). Let Q ∈ N. For all function g ∈ L2(−π, π), write

MQ(g) =

(∑
q∈Z

(1− |q|/Q)+

(∫ π

−π
g(λ)e−i q λdλ

)2
)1/2

.

Suppose g1 and g2 are C-valued functions of L2((−π, π)). Then,

|MQ(g1)−MQ(g2)|2 6 2π

∫ π

−π
|g1(λ)− g2(λ)|2 dλ.

Next, the following lemma states the convergence of a series of bivariate Fourier
coefficients. It is used in the proofs of Lemma 15 and of Lemma 19.

Lemma 33. Suppose {w∗1(λ), λ ∈ (−π, π)} and {w∗2(λ), λ ∈ (−π, π)} are C-valued
functions of L2((−π, π)). Then∑
q∈Z

(1− |q|/Q)+

(∫ π

−π
w∗1(λ)e−i q λdλ

)(∫ π

−π
w∗2(λ)e−i q λdλ

)
−→
Q→∞

2π

∫ π

−π
w∗1(λ)w∗2(λ)dλ.

Proof. Note that∑
q∈Z

(1− |q|/Q)+

(∫ π

−π
w∗1(λ)e−i q λdλ

)(∫ π

−π
w∗2(λ)e−i q λdλ

)
=
∑
q∈Z

(1− |q|/Q)+c1q c2q,
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with c1q and c2q the qth Fourier coefficient respectively of functions w∗1 and w∗2.

The sequence (1−|q|/Q)+c1qc2q converges to c1qc2q when Q goes to infinity. By Cauchy-
Schwarz’s inequality and Parseval’s equality,

∑
|q|6Q

|c1q c2q| 6 2π

(∫ π

−π
|w∗i (λ)|2 dλ

)1/2(∫ π

−π
|w∗i (λ)|2 dλ

)1/2

<∞.

Thus dominated convergence entails that the series
∑

q∈Z(1 − |q|/Q)+c1qc2q converges
to
∑

q∈Z c1q c2q. By Parseval’s theorem,

∑
q∈Z

c1q c2q = 2π

∫ π

−π
w∗1(λ)w∗2(λ)dλ,

which concludes the proof.
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