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Abstract. One of the major issues in predicting poverty with satellite images
is the lack of fine-grained and reliable poverty indicators. To address this prob-
lem, various methodologies were proposed recently. Most recent approaches use
a proxy (e.g., nighttime light), as an additional information, to mitigate the prob-
lem of sparse data. They consist in building and training a CNN with a large set
of images, which is then used as a feature extractor. Ultimately, pairs of extracted
feature vectors and poverty labels are used to learn a regression model to predict
the poverty indicators.
First, we propose a rigorous comparative study of such approaches based on a
unified framework and a common set of images. We observed that the geographic
displacement on the spatial coordinates of poverty observations degrades the pre-
diction performances of all the methods. Therefore, we present a new method-
ology combining grid-cell selection and ensembling that improves the poverty
prediction to handle coordinate displacement.

1 Introduction

Estimating poverty indicators is essential for the economy and political stability of a
nation. These indicators are usually evaluated by surveying the population and ask-
ing people many questions. This requires a heavy organization, takes a long time, is
sometimes only limited to easily accessible areas, and may be subjective. Therefore,
solutions were proposed to estimate poverty at a large scale in an easier and faster way
by using observational data, i.e., with no direct interaction with the people.

Satellite images give a quite precise observational overview of the planet. As early
as 1980, Welch [Welch, 1980] monitored urban population and energy utilization pat-
terns from the images of the first Landsat satellites. Since 1999 and 2013 respectively,
Landsat 7 and 8 satellite series cover the entire Earth surface with a temporal resolution
of 16 days and a spatial resolution of 15 to 30 meters depending on the spectral bands
(8 for Landsat 7 and 11 for Landsat 8). Since 2014, Sentinel satellite series generate
images with a spatial resolution of 10 meters. It is then possible to get remote-sensing
data with a high time-frequency and a good spatial resolution.

Nevertheless, estimating the local wealth or poverty indicator rather than general
value over a country is a very challenging problem. This requires the mapping of the



observational data (i.e., the pixel intensity of a satellite image) and the poverty indicator
precisely located. In some cases, numerous indicators can be available. For example, in
[Babenko et al., 2017], 350,000 poverty indicators are collected in two surveys over the
city of Mexico or, in [Engstrom et al., 2017], 1,300 ground-truth poverty indicators are
obtained for a limited 3,500 km2 area of Sri Lanka. With a large number of indica-
tors, direct supervised training with high-resolution daytime satellite images becomes
possible, in particular with Deep-Learning techniques. Unfortunately, the number of
such indicators is usually low in most countries, especially in developing ones. For ex-
ample, only 770 poverty indicators are reported in 2016 for Malawi5 with an area of
more than 118,000 km2. In 2013, Chandy [Chandy, 2013] reported in general terms
that almost two-fifths of the countries do not perform at least one income survey every
5 years. Based on this observation, a direct Machine-Learning approach, processing a
set of geolocalized satellite images associated with the corresponding poverty indica-
tors would inevitably lead to over-fitting, and then very bad generalization (e.g., see
[Ngestrini, 2019]).

But, in 2016, Jean et al. [Jean et al., 2016] proposed an accurate and scalable method
based on Deep-Learning to estimate local poverty from satellite imagery, based on
sparse socio-economic data. They managed to solve the problem of the limited number
of poverty indicators by using a Transfer Learning technique. It consists in training a
Convolutional Neural Network (CNN) on one task and then applying the trained CNN
to a different but related task. Since this seminal work, many papers have been pub-
lished with either applying or extending the original algorithm, or propose some vari-
ants of Deep-Learning techniques. In particular, Ermon Group6 at Stanford University
proposed different methods to tackle the problem (see [Yeh et al., 2020] for their latest
results).

The difficulty is then to compare all the available methods as they do not use the
same input data and they are not evaluated with the same set of parameters. In this
paper, we propose to assess the methods with a common framework in order to analyze
their performances, understand the limitations of the available data (both images and
indicators), and evaluate whether combining them would improve the results. In Section
2, we describe three methods we selected in this line of research. In Section 3, we
present the common framework to assess fairly the performances of the methods. In
Section 4, we discuss adapting the methods to improve the performances. Conclusion
and future work are presented in Section 5.

2 Description of the Selected CNN-based Methods

Transfer Learning emerged recently as an efficient way to deal with a limited number
of poverty indicators. For our application, proxy data related to poverty and available in
large quantities can be used to train a CNN for classifying satellite images accordingly.

By taking a specific layer of the resulting CNN, we can extract a feature vector
that characterizes the input satellite image with respect to its correlation with the corre-

5 Living Standard Measurements Study, Malawi 2016: https://microdata.worldbank.

org/index.php/catalog/2939.
6 Ermon Group web page : https://cs.stanford.edu/~ermon/website/



sponding proxy data. As proxy data are chosen to be related to poverty, we can assume
that the feature vector is an appropriate representation of poverty in the image.

Finally, we can compute the feature vectors of satellite images at the sparse locations
of the limited set of poverty indicators, and perform a regression between the vectors
and the poverty indicators. This process can be done efficiently despite a limited number
of locations and it can establish a relationship between the satellite images and the
poverty indicators.

A major issue is then to select relevant proxy data. Several solutions have been
proposed and we review three of them in the following sections.

2.1 Nighttime Light

The concept of using Transfer Learning to estimate poverty from satellite images was
proposed in [Jean et al. 2016]. In this work, the authors used nighttime light values
(NLV), which are known, since many years, to be a good proxy for poverty evaluation
(see for example, [Elvidge et al., 1997], [Doll et al., 2000] or [Chen and Nordhaus, 2011]).

NLV data set is provided by the Earth Observation Group7 and the corresponding
images are extracted from Google Static Map8, at 2.5 meters of resolution.

The authors introduce a CNN architecture to classify daytime satellite images by
NLV. Three classes are used for low, medium, and high NLV [Jean et al., 2016, Supple-
mentary Materials]. The CNN is based on a VGG-F architecture [Wozniak et al., 2018]
and is pre-trained on the ImageNet dataset. Next, the network is fine-tuned on the train-
ing data set, which consists of 400,000 [Xie et al., 2016] images, each of them covering
a 1km2 area in Africa.

[Perez et al., 2017] is an extension of the previous research based on Landsat im-
ages. It shows that despite the lower resolution of Landsat images, the model accuracy
is higher than the one of the previous benchmarks.

2.2 Land Use

In [Ayush et al., 2020], the authors assume that land use, and specifically the manufac-
tured objects observed in a satellite image emphasize the wealthiness of an area. The
authors trained a CNN on a land use detection and classification task, to extract a fea-
ture vector related to poverty. As proxy data, they used the xView data set9 consisting
of very high-resolution images (0.3 m) annotated with bounding boxes defined over
10 main classes (building, fixed-wing aircraft, passenger vehicle, truck, railway vehi-
cle, maritime vessel, engineering vehicle, helipad, vehicle lot, construction site) and 60
sub-classes. As the size of the objects in a satellite image may vary (e.g., a truck is much
smaller than a building), the network used YoloV3, with DarkNet53 backbone architec-
ture [Redmon and Farhadi, 2018], which allows the detection at 3 different scales. This
network is pre-trained on ImageNet and fine-tuned on the xView data set. Since it was

7 NOAA Earth Observation Group Website: https://ngdc.noaa.gov/eog/
8 Google Static Map, getting started Web page: https://developers.google.com/maps/
documentation/maps-static/start.

9 xView Challenge Website: http://xviewdataset.org/.



trained on a detection/classification task, a single satellite image may have several de-
tection results, depending on the number of objects in the image. Thus, the input image
may be associated with multiple feature vectors, one for each detection. The authors
further explore this additional information by different combinations of the feature vec-
tors.

2.3 Contrastive Spatial Analysis

In [Jean et al., 2019], the idea is to be able to cluster homogeneous-looking areas and
assume that some clusters will be specific to poor areas. Contrary to the two previous
approaches, this method is based on an unsupervised task. A CNN model is trained
with the aim of learning a semantic representation of an input image according to the
following constraints: (i) If two sub-parts of an image are close spatially, they must have
a similar semantic representation (i.e., feature vectors); and (ii) If two sub-parts of an
image are far apart, they must have a dissimilar semantic representation.

The data set is a set of image triplets (a,n,d), where a, n, and d are tiles that are
sampled randomly from the same image.

More precisely, the neighbor tile n is sampled randomly in a given neighborhood of
a, the anchor tile and d, the distant tile is sampled randomly outside of a’s neighbor-
hood. The objective is to minimize the following cost function using the CNN:

L(ta, tn, td) = max(0,‖ta− tn‖2−‖ta− td‖2 +m) (1)

where ta, tn and td are the feature vectors produced by the CNN for the anchor tile
a, the neighbor tile n, and the distant tile d respectively. m is the margin to enforce a
minimum distance. During the minimization process, if tn is too far from ta compared
to td (using the Euclidean distance), then tn will be generated to get closer to ta, and td
will get more distant from ta. The equilibrium is obtained when td is in the hypersphere
with radius ‖ta− tn‖+m. The CNN is a modified version of ResNet-18 taking the three
tiles as inputs.

2.4 Regression Step

All the previous methods aim to produce a feature vector representation of a satellite
image that should represent poverty to a certain extend. The first approach uses a feature
vector that estimates NLV from the satellite images. The second approach uses a fea-
ture vector that estimates land use. The third approach uses a feature vector that empha-
sizes the differences between two satellite images. Throughout the paper, we will name
the three methods, Nighttime Light, Land Use, and Contrastive respectively. For each
method, a Ridge regression model is trained with the pairs of feature vectors (obtained
from the corresponding method) and the poverty indicators. The feature vectors are gen-
erated from the images of the sparse locations where some poverty indicators are avail-
able. We select the Ridge regression model, that is as close as possible to the method-
ology exposed in [Jean et al., 2016], [Jean et al., 2019], and [Ayush et al., 2020].



2.5 Comparison Issues

The three methods aforementioned may seem to offer comparable results from the re-
sults reported, but as a matter of fact, they differ greatly by the choice of the satellite
images, proxy data, and feature vector parameters as we can see in Table 1.

Nighttime Light Contrastive Land Use

Countries Uganda, Malawi,
Tanzania, Nigeria

Uganda Uganda

Image
source

Google Static Map
(DigitalGlobe)

Landsat-7 DigitalGlobe

Resolution 2.5 m 30 m 0.3 m
Spectral
Bands

3 (RGB) 5 (RGB + 2 additional
spectral bands)

3 (RGB)

Feature
vector size

4,096 512 10-60

Table 1. Differences between the input data and parameters used in the three methods.

Notice that the images do not share the same resolution and the structures and ob-
jects captured in the images do not have the same scale. Moreover, in [Jean et al., 2019],
the images contain 5 spectral bands, whereas the other methods process standard RGB
images.

Experiments reported in [Perez et al., 2017] have shown that lower resolution im-
ages and additional spectral bands could influence poverty estimation. With this con-
sideration in mind, we can assume that the image resolution and the number of spectral
bands are significant features that must be commonly set before any method compari-
son.

Additionally, the size of the feature vectors generated by the CNN differs for each
method. As it is difficult to know the influence of this parameter on the final R2 score,
we set the size to be identical across the different methods, to provide a fair comparison.

3 A Common Framework to Assess the CNN-based Methods

Our goal is to compare the three methods consistently and fairly with a common frame-
work, to expose their benefits and limitations. Therefore, we decided to use the same
satellite image source, the same image dimension and scale, the same regression steps,
and the same socio-economic indicators. Doing so, we can compare which approach
better emphasizes the poverty and if an unsupervised method, i.e., without proxy data,
can outperform Nighttime Light or Land Use methods.

Before discussing the framework, it is important to notice that the poverty indicators
given in the available surveys are artificially moved from their actual position, which
may lead to biasing the results.



Fig. 1. Geographic displacement procedure performed on LSMS socio-economic surveys.

Surveying operators add a random geographic displacement up to 10km on latitude
and longitude from the location where the socio-economic indicator is evaluated, to pro-
tect the anonymity of respondents (see [Burgert et al., 2013]10). In the example given
in Figure 1, the poverty indicators of a village are distributed over a 10km × 10km sur-
rounding area. This means that the actual poverty indicator can be significantly different
from the reported one in the survey.

3.1 Framework Specifications

We can represent the three methods as the global pipeline shown in Figure 2. In the com-
mon framework we propose, the algorithm operates over a 10 km×10 km area around
a given input location (i.e. latitude and longitude coordinates) with a corresponding
poverty indicator. It takes as input a 4,000×4,000 pixels satellite image centered on the
considered location. This ensures that the true indicator location is indeed in the image.
Each image is then split into 100 sub-images (of 400 × 400 pixels), each one covering
a 1 km×1 km area according to a regular grid. The sub-images are then processed by

10 This document shows how Demographic and Health Surveys are modified, and claims that the
Living Standards Measurement Study, our survey provider, performs the same anonymization
policy.

Fig. 2. Canonical pipeline for poverty prediction over 1km2 areas.



a Deep Learning feature extractor specific to a selected method (Nighttime Light, Land
Use, Contrastive) in order to produce a fixed-size feature vector. Finally, the feature
vectors are averaged and sent to a Ridge regressor, which returns the poverty estimation
value for the 1km × 1km area centered in the input location.

3.2 Data Description

Satellite images are used for both feature extractor training and poverty indicator esti-
mation using regression. Some proxy data are also needed to build Nighttime Light and
Land Use feature vectors.

Satellite images: Since we want to compare the approaches, the images used to
build all the feature extractor and output the socio-economic estimates are provided by
the Google Static Map API11. The satellite images used are 400 × 400 pixels, covering
a 1km2 area (2.5 meters resolution) with the classical RGB color channels. For each
location in the survey, we use the same type of images to build a larger one that covers
a 10km × 10km neighboring area.

Proxy data for Nighttime Light method: As in [Jean et al., 2016], we used the 1km
resolution world map of NLV, provided by the Earth Observation Group in 201312. No-
tice that afterward, the Earth Observation Group has provided 500m resolution world
maps. Unfortunately, there is no reliable time reference mentioned and associated with
Google Static Map images so we assume that 2013 NLV data are roughly consistent
with Google Static Map images. Finally, 71,000 daytime images were randomly se-
lected from the NLV world map in Africa.

Proxy data for Land Use feature extractor:
The xView dataset image resolution (0.3 m) is much higher than GSM one (2.5

m), which prevents us from using the object detection methodology based on xView
dataset. We then adapted the idea and use a global land use classifier which outputs a
single value instead of a set of feature vectors corresponding to each detected object.

We used land use labels provided in the Eurosat data set [Helber et al., 2018]. It
consists of almost 30,000 satellite images of European places, labeled into 10 classes:
sea lake, river, residential, permanent crop, pasture, industrial, highway, herbaceous
vegetation, forest, and annual crop. The authors provided a GeoTIFF data set13, includ-
ing the locations of all images, we simply used these locations and downloaded the
corresponding Google Static Map API images.

Proxy data for Contrastive feature extractor: Since it is an unsupervised method,
no proxy data is required. Therefore, we used the poverty indicator location to generate
4,000 × 4,000, images with 2.5 meters resolution. Then, for each image, we randomly
sample 100 anchor, neighbor, and distant image triplets, with the same size, area cov-
erage, and channel as introduced earlier. We set the neighborhood size to 400 pixels, so

11 Google Static Map getting started web page: https://developers.google.com/maps/
documentation/maps-static/start.

12 Nighttime Light world map: https://www.ngdc.noaa.gov/eog/dmsp/

downloadV4composites.html.
13 GeoTIFF data set provided by [Helber et al., 2018]: https://github.com/phelber/

EuroSAT.



the central pixel of each neighbor image (resp. distant image) is less (resp. more) than
400 pixels away from the anchor image. The overall process generates 77,000 triplets.

Poverty indicators: We used the poverty indicators from LSMS surveys14. We fo-
cus on the 2016 Malawi survey and consider the natural logarithm of the consumption
expenditures as the poverty indicator. Note that the surveys are designed in two steps.
The country is divided into clusters, and then, several households are surveyed within
each cluster. In the resulting survey, only the clusters coordinates are reported (and ran-
domly displaced for anonymization purposes, as explained earlier). In our experiments,
we use the 770 clusters provided by the survey to train and test the poverty prediction
models at the cluster level.

3.3 Metrics and Evaluation Goal

Performances of CNNs: We use the accuracy metric for assessing the classification
task which allows us to compute feature vectors in Nighttime Light and Land Use. It is
defined as follows:

A =
1
N

N

∑
i=1

δ (yi, ŷi) (2)

with y = (yi)i∈{1,...,N} (resp. ŷ = (ŷi)i∈{1,...,N}) the true (resp. predicted) NLV value or
land use, N the number of predictions, and δ the Kronecker delta. Since Contrastive does
not make any prediction, we can not use accuracy to measure its quality performance.

Performances of the Ridge regressor: We consider y = (yi)i∈{1,...,N} (resp. ŷ =
(ŷi)i∈{1,...,N}) as the true (resp. predicted) poverty indicator and N be the number of
predictions. Similarly to previous work, we used the R2 score, also called coefficient of
determination, defined as follows:

R2 = 1− ∑
N
i=1(yi− ŷi)

2

∑
N
i=1(ȳ− yi)2

. (3)

R2 aims to measure the mean squared error (numerator) over the variance (denom-
inator). As a universal and classical metric, it corresponds to the amount of variance
explained by the model.

Cross-validation: The usual train/test splitting process leads to too small data sets
impacting the quality of the learning and decreasing the performances. The sparsity of
poverty indicators causes some differences between training and testing data distribu-
tions. Therfore, the results obtained from a given train/test split can be very different
from the ones obtained with other train/test splits. To avoid this problem, we use 10-fold
cross-validation and average the scores.

3.4 Implementation

We ran our experiments using a workstation with 32 Gb, Intel Xeon 3.6GHz 12 cores,
and a NVIDIA Quadro GV100 graphic card. We used the Python TensorFlow 2.x li-
brary.
14 Living Standard Measurements Study, Malawi 2016: https://microdata.worldbank.

org/index.php/catalog/2939.



The three CNNs are based on the VGG16 architecture, followed by a fully con-
nected layer (used to extract the features) and ended with the classification layer. The
VGG16 architecture is pre-trained on ImageNet. We used stochastic gradient descent
as optimizer.

All the image pixel values are scaled from 0 to 1 and a horizontal and vertical flip
is randomly applied during the training phase as data-augmentation. At the end of each
epoch, a validation step is done. The feature extractors are generated with the weights
that optimize the validation accuracy when available (Nighttime Light and Land Use) or
the validation loss (Contrastive). The training phase ran for 100 epochs and lasts for 18
hours for Nighttime Light, 13 hours for Land Use, and 3 hours for Contrastive.

The feature vectors generated by the feature extractors have d = 512 dimensions.
We use the Ridge regression with regularization parameters α chosen among the values
{10−4,10−3, . . . ,105}.

3.5 Results

Table 2 gives R2 scores which can be considered as baseline results. The first col-
umn contains the results obtained when only the feature vector corresponding to the
anonymized position is used for regression (without considering the 10km × 10km
neighborhood). The second column contains the results obtained when all the feature
vectors corresponding to an input image in the 10km × 10km neighborhood are av-
eraged. Regardless of the feature extractor, we can observe across the methods that
there is a significant difference between the R2 score when all the positions are consid-
ered compared to the score obtained with a single feature vector from the anonymized
position. The gain ranges from +0.04 to +0.09. Note that the R2 values for the three
state-of-the-art approaches are similar, with 0.47, 0.46, and 0.45. Nevertheless, the R2

standard deviation remains high and prevents a fair ranking of the approaches.

anonymized Position All Positions α

Nighttime Light 0.404 ±0.07 0.449±0.09 102

Land Use 0.383 ±0.08 0.47±0.08 103

Contrastive 0.385±0.07 0.462±0.08 102

Table 2. R2 scores of the three poverty prediction methods, evaluated on the test data set (10-folds
cross-validation).

4 How to Improve the Results?

Let us investigate two ways to ameliorate the methods’ prediction. The first proposition
consists in handling the spatial perturbation of the coordinates. The second approach
consists in combining the three approaches.



4.1 Handling the Geographic Perturbation

The random perturbation injected in the spatial coordinates of the surveyed poverty
indicators may directly affect the prediction results. Therefore, we propose a 2-step
method with two variants each, adapting the following step of the framework exposed
in Section 3.1: For each position in the survey, (1) We consider all the 10km × 10km
neighboring areas for feature extraction, and (2) We average the resulting feature vec-
tors.

On the one hand, the first step allows capturing the true position of the poverty
indicator. On the other hand, it captures also the 99 false positions of the poverty indi-
cator, perturbing the most important information. The second step reduces drastically
the amount of information. The resulting average feature vector is a summarized rep-
resentation of the 10km × 10km neighborhood in which all the specific features are
omitted.

Adaptation of Step (1) with grid-cell selection: Instead of considering all the
10km × 10km neighboring areas for each position in the survey, we select specific
cells in the grid of the neighborhood. The selection is based on the inhabitant num-
ber from WorldPop15 and NLV. More precisely, we keep the cells that correspond
to: (a) The n most populated places, and (b) The n highest NLV, with n varying in
{1,5,10,20,40,60,80}.

After this first adaptation, we exclude "no mans’ land" areas where there is no plau-
sible position for a poverty indicator. Then, the feature extractors process only the se-
lected cells and return n feature vectors per position in the survey.

Adaptation of Step (2) without averaging the feature vectors: For each position
in the survey: (a) We average the n feature vectors and compare with the case where
(b) The n feature vectors are used for regression. In the latter case, the n feature vectors
are annotated with the poverty indicator collected at the corresponding position in the
survey. Doing so, we ensure that the specific features captured in all the feature vectors
are processed by the regression model.

4.2 Combining the Approaches

There is a large body of research on ensembling methods in the literature. As a starting
point, we investigate two simple and straightforward ways of combining the approaches
illustrated, in Figure 3. Future work will explore and test other ensembling methods.

Given the entire grid (10km × 10km area), a feature extractor outputs one vector
for each cell. Please note that some cells may not be processed because of the grid-
cell selection, depending on their respective inhabitant number (1a) or NLV (1b). Given
a grid-cell, i.e., a sub-image of 400 × 400 pixels that covers a 1km2 area, each of the
three feature extractors returns a feature vector. Then, the three feature vectors are either
averaged (Ensembling Averaged) or concatenated (Ensembling Concatenated).

4.3 Experiments and Analysis

Performances of feature extractors: The CNNs are used to extract features from im-
ages. Therefore, their respective accuracy values are not used to determine whether or
15 WorldPop: https://www.worldpop.org/geodata/summary?id=123



not they are good classifiers. However, the accuracy metric can be used as an indi-
rect measure to indicate the degree of consistency between the features generated by
the CNNs, according to the classification problem (only for Nighttime Light and Land

Use approaches). Nighttime Light reaches 64% of accuracy on the validation data set,
whereas Land Use reaches 97%. As mentioned earlier, instead of the accuracy measure,
we use the R2 score for evaluating Contrastive’s performance on the poverty prediction
task.

Fig. 3. Ensembling pipeline. Similar to figure 2, with an intermediate step of either concatenation
or averaging, represented by the gray grids. Note that that the previous adaptation (1) and (2) are
not shown, for the sake of clarity.

R2 of SOTA methods R2 of our methods handling geographic
perturbation

Single
anonymized

position

Averaging
across all
positions

Population-
based

grid-cell
selection

n = 20 and
averaging

NLV-based
grid-cell
selection

n = 20 and
averaging

Random
grid-cell
selection

n = 20 and
averaging

Population-
based

grid-cell
selection

n = 20 and
not

averaging
Nighttime

Light

0.404± 0.07 0.449± 0.09 0.496± 0.09 0.487 ± 0.08 0.411± 0.07 0.379±0.08

Land Use 0.383±0.08 0.47± 0.08 0.483± 0.08 0.466± 0.08 0.403± 0.05 0.35±0.07
Contrastive 0.385±0.07 0.462± 0.08 0.486± 0.04 0.464± 0.06 0.388± 0.05 0.313±0.04

Ensembling

Concatenated

0.44±0.08 0.48± 0.09 0.491± 0.07 0.502± 0.08 0.429± 0.07 0.387±0.07

Ensembling

Averaged

0.41± 0.08 0.47± 0.09 0.494± 0.07 0.487± 0.07 0.422± 0.05 0.378±0.07

Table 3. R2 scores for different grid-cell selection (column) and feature extractors (row). Best
R2 = 0.502 is obtained with the ensembling method by concatenation, with NLV-based grid-cell
selection (n = 20).



Discussion on grid-cell selection: We can notice that the two grid-cell selection
approaches have similar results, essentially because there is an overlap between the cells
selected by each method.

When selecting the grid-cells, either based on the population criterion, or the NLV
criterion, the average R2 score increases up to +0.05 compared to the score obtained
when using all the feature vectors. The highest increase is obtained with the population
criterion. Each approach benefits from the population-based grid-cell selection. Only
Nighttime Light benefits from NLV-based grid-cell selection. Compared to the results
obtained by averaging all the feature vectors, all the approaches give an average R2

above 0.48. At this stage, we can say that our grid-cell selection method slightly im-
proves the results. By selecting the most likely true positions of the indicators in the
survey, we add the geographical context. However, when considering the same pro-
portion of geographical context, random grid-cell selection is still less efficient than
population-based grid-cell selection or NLV-based grid-cell selection, from +0.06 to
+0.1. This suggests naturally that capturing the true position improves the prediction of
the model.

Discussion on averaging or not the feature vectors: With the same grid-cell
selection, averaging the selected feature vectors leads to the best results and should be
recommended. In Table 3, the same grid selection is applied for both columns 3 and 6,
but the selected feature vectors are averaged (column 3) and the selected feature vectors
are all processed (column 6) by the regression model. We can notice that averaging
increases the R2 score up to +0.15. The correct cell (correct position) with the correct
poverty value may be masked by the 20 other feature vectors. This probably explains
the poor performance of this approach.

Discussion on the ensembling approaches: Combining the approaches by con-
catenation or averaging always improves the average R2 score by +0.01 approximately.
The best results are obtained with NLV-based grid-cell selection, with an average R2

reaching 0.50. However, the improvement is negligible. For example, when using the
population-based grid-cell selection, there is no improvement compared to Nighttime

Light alone.

Next, we investigate whether an ensembling approach combining the three methods
can significantly improve the results. For several test folds and all the ground truth data
in each test fold, we compare the relative prediction error made by Nighttime Light,
Land Cover , and Contrastive (shown in Figure 4, for one particular test fold). Then, for
each ground truth observations, we select the prediction with the smallest prediction
error. We average the R2 score obtained with the best prediction over the test folds, and
obtain R2 = 0.6. This score is significantly higher than all the other results presented in
Table 3. Thus, there is room for improvement by ensembling the methods.

Additionally, in Figure 4, we observe that, regardless of the feature extractor, the
three approaches are slightly over-estimating the richness when the poverty is extreme,
and give more erroneous predictions when the poverty is above 2.4$/day. This can be
explained by a fewer number of poverty indicators that are greater than 2.4$/day in the
learning set.



Fig. 4. Prediction error of the three feature extractors for one of the test fold with respect to the
poverty level. The prediction is obtained by averaging all the feature vectors for a given position
and applying the learnt regression model. Black line connects the best predictions among the
three predictions for each test sample. Note that the X-axis is not linear.

5 Conclusion and Future Work

By providing a fair comparison between three state-of-the-art models for poverty pre-
diction, we present several insightful results: (1) Such models produce similar results on
the same framework. (2) The spatial perturbation injected in the coordinates of poverty
indicators is a key issue that reduces significantly the prediction power of the models.
By handling the spatial perturbation of the coordinates, our grid-cell selection method
shows better performances and motivates future work to ameliorate the entire process.
(3) Using anonymized coordinates from the surveys implies poverty prediction at a
10km × 10km scale (which can still capture the true position) rather than 1km ×
1km scale. However, it prevents the use of very high-resolution images available to-
day. Covering a 100 km2 area with high-resolution images would necessitate very large
images (4,000 × 4,000 with 2.5 meters resolution) that cannot be directly processed
by a CNN. We believe that this opens several new research directions to handle noise
and high-resolution images for CNN-based prediction models. (4) We showed that our
combination of the three considered methods does not augment drastically the qual-
ity performance. However, we experience that choosing the best prediction among the
three methods leads to R2 = 0.6. Thus, we claim that there exists a combination of the
three methods that can give significant improvement of the R2 score. As it is a choice on
the prediction strategy, we believe that other or more sophisticated ensembling methods
can be even more efficient. (5) Finally, the small size of the data set causes some differ-
ences and discrepancies between the training and testing data sets, which are reflected
by high standard deviation values during the cross-validation.



To pursue this work, we aim to propose a combination method that can reach higher
R2 scores, eventually using multi-spectral imagery to estimate poverty indicators as
other work in the literature. Using the fair benchmark for poverty prediction we pro-
posed, we plan to explore the benefits of multi-spectral images compared to natural
RGB images. Finally, other deep learning architectures may be more likely to give a
better feature representation of images. Therefore, one of our goals will be to test and
find an optimal architecture.
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