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Abstract 18 

Sediments of Lake Paravani, the largest natural lake in the South Caucasus, were analysed to 19 

reconstruct the millennial history of the environment. Pollen analysis, previously undertaken on the 20 

first core retrieved in the middle of the lake, revealed a vegetation history for the last 12 millennia. 21 

As part of the present study, a new core was taken from the north-western part of the lake. Pollen 22 

analysis was performed on this new core with the same methodology as for the previous one. A 23 

sedimentological and geochemical analysis was also conducted on both cores in order to gain an 24 

understanding of the dynamics of erosion in the catchment area in response to landscape 25 

modifications. The results show that the sediment deposits within Lake Paravani yield rather complex 26 

and puzzle-like palaeoecological records. Despite the differences between the two records, 27 

correlations have been made that are supported by the 14C dates. By combining all of the data from 28 

both cores, it was finally possible to reconstruct the puzzle of the environmental history recounted 29 

by the Lake Paravani sediments. This reconstructed history is composed of four main phases: 1. a 30 

steppic environment marked by pronounced erosion processes from 12 000 to 10 000 cal. BP; 2. a 31 

transition phase characterized by the expansion of grasses (Poaceae) from 10 000 to 9-8 000 cal. BP; 32 

3. a more forested phase from 9-8 000 to 2 000 cal. BP, during which the erosion fluxes decreased; 33 

and 4. a decline in tree cover probably due to human activities over the last 2 millennia.  34 
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 35 

Introduction 36 

The South Caucasus is located at the crossroads of Europe, the Middle East and Central Asia (Fig. S1) 37 

and provides an original archaeological chronicle, influenced both by its proximity to the Levant (the 38 

cradle of agriculture in Europe), and its specificity as a mountainous region. Therefore, the question 39 

of the environmental trajectories in the South Caucasus is crucial for understanding the regional 40 

demography and the socio-economic dynamics of past societies. Well-dated palaeoecological records 41 

are scarce and the vegetation history is not yet fully-understood. A research effort has been 42 

conducted in this region over the last ten years to reconstruct the history of palaeoenvironments, 43 

and in particular the vegetation (Connor and Sagona, 2007; Ammann, 2009; de Klerk et al., 2009; 44 

Connor, 2011; Messager et al., 2013, 2017; Joannin et al., 2014; Leroyer et al., 2016; Connor et al., 45 

2018). Sites favourable to sediment archiving, such as lakes, are particularly targeted. Lake Paravani, 46 

located on the Javakheti Plateau, is the largest lake in Georgia and was the subject of an early study 47 

(Messager et al., 2013). In this previous work, the vegetation history was reconstructed based on one 48 

core sampled in the middle of the lake. This method, based on one core, is common practice in 49 

palaeoecological studies using lake sediment (Cohen, 2006). Based on this study, a three-phase 50 

vegetation history emerged for the Javakheti Plateau: 1. a steppic environment under a cold and arid 51 

climate from 12 000 to 8 500 cal. BP, 2. a more forested environment from 9-8 000 to 2000 cal. BP 52 

and 3. a decline in tree cover during the last 2 millennia due to human impact.  53 

Other pollen analyses carried out in similar contexts (volcanic plateaux in the Lesser Caucasus, 54 

elevation close to 2000m) also revealed a major palaeoecological change (transition from steppe to 55 

more forested and/or increasing hygrophilous vegetation) which occurred at 9-8 000 cal. years BP 56 

(Joannin et al., 2014; Leroyer et al., 2016; Messager et al., 2017). In South-western Georgia, a region 57 

close to the Black Sea, which represents a major source of moisture, the vegetation history seems to 58 

differ somewhat, with forest expansion occurring earlier, around 10 000 cal. BP at an elevation of 59 

2000 m asl (Margalitadze, 1995; Connor et al., 2018).  60 

Over recent years, we have collected several other cores from Lake Paravani with two objectives: 1. 61 

to better understand the sediment processes in this large, shallow lake and 2. to find sediments 62 

dating to the Early Holocene that might help us to clarify the question of forest expansion in that 63 

region (chronology, climatic control, etc.). Most of the retrieved sequences are fragmentary (with 64 

many hiatuses) or are very short (Fig. S2). In this paper, we propose to analyse and compare the two 65 

longest and most complete sequences from Paravani. A multiproxy approach combining 66 

sedimentology and mineral geochemistry was adopted to gain a better understanding of the 67 

relationships between the lake sediment records and the erosive processes that have affected the 68 

watershed. New pollen analysis was undertaken on core PAR12-04 and the results were compared to 69 



pollen data from the previously published core PAR09-01. Finally, based on the sediment and pollen 70 

data, we have been able to reconstruct the chronology and the patterns of the Paravani deposits. 71 

The overall goal of this study is to improve scientific knowledge of the climate and vegetation 72 

histories of the highlands, and to understand their relationships with the erosive processes and the 73 

functioning of the lake over the last 12 millennia.  74 

 75 

Regional and local setting  76 

Lake Paravani is located on the Samtskhe-Javakheti Plateau, at 2073m a.s.l., between two main 77 

volcanic domains (Fig. 1). The eastern part is dominated by old (3-1 Ma) basaltic lavas and andesitic 78 

basalts (Nomade et al., 2016), composed of less differentiated and under-saturated Ti rich rocks 79 

(Javahketi plateau, sensu strico). The western part is mainly composed of differentiated rocks such as 80 

dacites and andesites. These rocks all belong to the most recent activity (last 500 ka) of the Samsari 81 

Ridge (Lebedev et al., 2008, Nomade et al., 2016). This volcanic ridge (Fig. 1) corresponds to 20 82 

principal volcanic domes. The watershed (234 km2) of Lake Paravani (surface of 37.5 km2) straddles 83 

the two main volcanic units.  84 

 85 

The Javakheti region possesses the largest number of lakes and marshes within the Caucasus 86 

(Matcharashvili et al., 2004). Inherited glacial morphologies and formations are widespread on the 87 

Javakheti Plateau, but no active glacier currently exists. The climate of the Javakheti Plateau is 88 

continental with long, cold winters and short, cool summers. The mean annual temperature is ca. 89 

5.3°C and the annual precipitation rate is ca. 500-600 mm with a maximum in late spring and early 90 

summer, and a minimum in January (Matcharashvili et al., 2004). The most widely distributed 91 

vegetation community is mountain steppe, dominated by grasses (Poaceae family, e.g. Festuca spp. 92 

or Stipa spp., Fig. 2). Forest communities are mostly absent from the plateau and only two small 93 

areas of sub-alpine forest still exist, one on the eastern part of Lake Kartsakhi and a second on the 94 

side of Mt Tavkvetili (Fig. 2) (Arabuli et al., 2008). While the plateau is steppic, different types of 95 

forest exist nowadays on the northern ranges (Bohn et al., 2000). 96 

 97 

 98 

Material and methods  99 

 1. Coring sites  100 

In this study, we investigate two cores collected in lake Paravani (Fig. 1): core PAR09-01 retrieved in 101 

2009 from the middle of the lake at a water depth of 3 m (Messager et al., 2013) and a new core 102 

PAR12-04 retrieved from the littoral area at a water depth of 2.8 m (41.465°N, 43.799°E) in 2012.  103 

 104 



 2. XRF core scanner 105 

The relative major element contents were measured every 0.5 cm on PAR09-01 and PAR12-04 using 106 

a XRF Avaatech core scanner (EDYTEM laboratory, Université de Savoie Mont-Blanc). An X-Ray beam 107 

was generated with a rhodium anode and a 125 μm beryllium window which allows a voltage range 108 

of 7 to 50 kV and a current range 0 to 2 mA. The analytical settings were adjusted at 10 kV and 1.5mA 109 

in order to detect light elements (Al -> Fe). Each individual power spectrum was transformed by the 110 

deconvolution process into relative contents (intensities) expressed in counts per seconds (cps). 111 

Principal component analysis was applied to XRF data in order to decipher sedimentary processes 112 

controlling the lake sedimentation using R statistical software and the multivariate analysis package 113 

FactomineR (Fox, 2016; Lê et al., 2008; R Core Team, 2018).  114 

 115 

 3. Magnetic Susceptibility  116 

For magnetic susceptibility (MS) analyses, two different protocols were used. The core 09-01 was 117 

sampled using 2cm3 sampling plastic cubes at 2 cm resolution. The core PAR12-04 was sampled using 118 

a U-channel. The U-channel was then directly measured with a 1 cm resolution. MS was measured at 119 

the Laboratoire des Sciences du Climat et de l'Environnement (LSCE) at Gif-sur-Yvette (France) using 120 

a Bartington© MS3 model, and the MS values obtained were normalized to sample weights (wet). 121 

 122 

 4. Loss On Ignition analysis  123 

Loss On Ignition (LOI) analyses were carried out to estimate the organic content of the sediment, 124 

following the procedure used by Heiri et al. (2001). Forty samples, collected at 1 to 3 cm intervals, 125 

were dried. Since organic matter is oxidized to carbon oxide, dioxide and ash at temperatures 126 

between ca. 200 and 500ºC, the record of sample weights before and after heating (ignition at 550°C 127 

during 5h) allows us to estimate the weight of the organic content. The heating of several test 128 

samples to 950°C (for a period of 2h) in order to estimate the carbonate content yielded so negligible 129 

a weight loss (<1%) that this step of the process was abandoned.  130 

  131 

5. Chronology  132 

The core chronology for PAR09-01 and PAR12-04 is based on 10 and 16 AMS 14C dates respectively, 133 

determined on bulk sediment (Table 1).  134 

 135 

Clam v2 (Blaauw, 2010), written for the open-source statistical software ‘R’, was used to calibrate the 136 

14C ages with the Intcal13 calibration curve (Reimer et al., 2013) and to construct an age-depth model 137 

for cores PAR09-01 and PAR12-04. An age-depth model, already published for core PAR09-01 core 138 



(Messager et al., 2013), has been refined using Clam v2 software, based on the IntCal13 calibration 139 

curve (Reimer et al., 2013). 140 

 141 

6. Pollen analysis 142 

Thirty-three samples were taken at 1 to 5 cm intervals for pollen analyses. For each sample, 1-2 g of 143 

sediment were processed following standard methods in palynology, using HCl, KOH baths (Faegri 144 

and Iversen, 1989) and heavy liquid (d:2) flotation (Girard and Renault-Miskovsky, 1969; Goeury and 145 

Beaulieu, 1979). If significant amounts of silica particles remained, a HF bath was used. After 146 

treatment, the residue was suspended in glycerol, mounted onto microscope slides and counted 147 

using "Zeiss standard™“ and "Leica DM 1000" microscopes. Pollen grains were identified using 148 

atlases of European and Mediterranean pollen types (Reille, 1992; Beug, 2004). The pollen 149 

concentration ranges from 10 to 30,000 grains. g-1 in the A12 unit, from 30 to 60, 000 for the B12 150 

unit, and from 60 to 250, 000 for the C12, D12 and E12 units. The total pollen sum ranges from 300 151 

to 349 in most samples, except five samples in which pollen grains were less abundant: i.e. samples 152 

72, 86, 92, 96, and 99 (from 205 to 270 pollen grains counted). Percentage calculations were based 153 

on the total terrestrial pollen (AP: Arboreal Pollen + NAP/Non Arboreal Pollen), excluding 154 

Cyperaceae, and moss and Pteridophyte spores.  155 

 156 

157 



Results and Interpretation 158 

1. Sediment analysis  159 

Lithology and sediment description 160 

The stratigraphy of PAR12-04 is divided into five different units (A12 to E12) from the base to the top 161 

of the sequence (Table 2, Fig. 3). Initially the unit boundaries were visually identified, and then they 162 

were compared to the tipping point identified within the xrf data.  163 

 164 

Sediment samples were collected in each unit to prepare smear slides. An illustrative picture of bulk 165 

sediment for each unit is presented along the stratigraphy in the supplementary Fig. 3. The 166 

observations of the slides provide an estimation of diatom abundance in each unit. All units contain a 167 

significant quantity of diatoms, except unit A12, which is diatom-free. The richest units are B12 and 168 

D12. The lithology of core PAR09-01 (Fig. 3) has already been described by Messager et al. (2013). 169 

The three initial units A, B, C have been renamed A9, B9 and C9 for this paper (Table 2). Following the 170 

same methodology used for PAR 12 04, the boundary between units B9 and C9 has been moved by 171 

2.5 cm (29 cm instead of 31.5 cm) based on the shift recorded at 29 cm by XRF data.  172 

 173 

LOI analysis 174 

The LOI tests at 950°C did not reveal significant carbonate content in the Paravani sediment. The LOI 175 

at 550°C is presented in figure 3. For core PAR 12-04, the LOI is lower than 10% for the lowest units 176 

A12 and B12. The LOI values fluctuate from 12 to 16% for C12, from 10 to 12% for D12 and from 10 177 

to 18% for E12. For core PAR 09-01, units A9 and B9 present low contents of organic matter. The 178 

highest LOI values (up to 12%) are recorded in the upper unit, C9. 179 

 180 

Magnetic susceptibility 181 

For core PAR12-04, the magnetic susceptibility displays high values for units A12 and B12, lower 182 

values for C12 and D12, and a progressive increase within unit E12 (Fig. 3). The magnetic 183 

susceptibility curve for PAR09-01 has already been described elsewhere (Messager et al., 2013).  184 

 185 

XRF analysis 186 

Down core variations  187 

Al, Si, K, Ca, Ti and Fe XRF intensities are presented in figure 3 for both cores. In PAR09-01, all 188 

elements reach their highest values in A9 (Fig. 3). In B9 and C9, they decrease gradually up to the top 189 

of the sequence. In PAR12-04, the highest values for all XRF indicators are observed in A12 and B12. 190 

Detrital inputs then decrease gradually from C12 up until the upper 10 cm of E12, where they 191 



decrease again sharply. Surprisingly, this decrease occurs for all elements and seems to be due to a 192 

water content effect. All elements roughly follow the same trend in both cores, except for small 193 

variations that are particularly perceptible in the calcium XRF signal. 194 

Principal component analysis 195 

Principal component analysis (PCA) was applied to the XRF results in order to decipher sedimentary 196 

processes controlling the geochemistry of cores PAR09-01 and PAR12-04 (Fig. 4). PCA was performed 197 

on major elements (Al, Si, K, Ti, Ca and Fe intensities). In both cores, nearly 80% of the total variance 198 

is supported by high loadings of all elements on dimension 1 (Dim1). This could be due to a strong 199 

imprint of detrital inputs and the absence of other XRF indicators, which could be associated with 200 

other processes (organic production and/or redox variations). However, variable projections for both 201 

cores indicate a similar trend between two end-members in the detrital inputs, which could be 202 

associated with a balance of fine to coarse particles (e.g. Fe and K against Ca and Si), and/or 203 

geochemical changes due to changes in source of sediments (Sabatier et al., 2010; Wilhelm et al., 204 

2016a).  205 

 206 

Individual projections are sorted by units (Fig. 4). In PAR09-01, unit A9 is strongly supported by Dim1, 207 

which indicates that detrital processes dominate the signal in this unit (mainly K, Al, Fe 208 

contributions). Conversely, in unit B9 and then in C9, we observe a gradual shift toward a negative 209 

correlation to Dim1; this indicates that these units are characterised by less detrital inputs and other 210 

controlling processes. In PAR12-04, the trajectory scheme of the unit is roughly the same as for 211 

PAR09-01, with a strong correlation of A12 individuals to Dim1 and then a gradual shift to negative 212 

loadings from B12 to E12.  213 

Geochemical relationships\ratios 214 

Based on the XRF data, three ratios have been calculated: Si/Al (Fig. S3), Fe/Al and Ti/Al (Fig. S4).   215 

- The Si/Al ratio can be considered as a tracer of biogenic silica (Köning et al., 2002, Ragueneau et al., 216 

2005). In PAR09-01, the Si/Al ratio is low in A9, and increases sharply at the transition between A9 217 

and B9. It remains stable in B9 and C9, except in the 40-20 cm interval where higher values are 218 

observed. In PAR12-04, the Si/Al ratio is low in A12 and increases slightly in B12. It exhibits 219 

fluctuations between high values in B12 and D12 and lower values in A12, C12 and E12. Finally, a 220 

gradual increase is observed in the upper 10cm interval of the core. 221 

In the Paravani sequence, the SI/Al ratio covariates with diatom abundance (Fig. S3) and closely 222 

matches the other indicators of climate improvement (pollen, OM, etc.). We could interpret it as a 223 



first marker of biogenic silica, but it should be used with caution because the Si contribution of the 224 

bedrock can also modify the Si/Al.  225 

- The Ti/Al and Fe/Al ratios have been tested in order to decipher the different sources of the mineral 226 

input (See Fig. S4). Different volcanic formations, such as basalt-basaltic andesite and dacite-227 

andesite, occur in the Paravani watershed (Fig. 1). Because the basalt-basaltic andesite is rich in Ti 228 

and Fe (Nomade et al., 2016), the rise in Ti/Al and Fe/Al ratios could be interpreted as indicating a 229 

greater contribution from these formations in the detrital input. Both ratios exhibit the same trend 230 

(Fig. S4). In PAR09-01, the values are low in A9, increase slightly in B9 and increase simultaneously in 231 

C9. In PAR12-04, Fe/Al and Ti/Al ratios are relatively stable and remain low all along the sequence, 232 

except towards the top of the sequence, where they both increase sharply. They yield an ambiguous 233 

signal that is probably influenced by the double origin of the silica (bedrock and biogenic silica). Thus, 234 

the core scanner XRF data do not  permit us to carry out source analysis satisfactorily. It is for this 235 

reason that the specific task of quantifying detrital and biogenic inputs will be undertaken using WD-236 

XRF.  237 

Overall, in the case of this study of the Paravani sediments, the XRF core scanner is used to some 238 

extent as a correlation tool and as a preliminary indicator of biogenic silica contribution.  239 

 240 

Chronology 241 

Sixteen radiocarbon measurements were performed on organic matter from bulk sediment collected 242 

in core PAR12-04 (Table 1). Among the 16 samples analysed, one date was rejected from the age-243 

depth model (Fig. 5); the Poz58699 sample at 93.5 cm (Table 1), dated to 11240 BP, is clearly too old, 244 

probably due to the presence of reworked material.  245 

A number of hiatuses have been identified based on the combination of radiocarbon ages and abrupt 246 

changes in geochemistry (XRF data). Two main hiatuses were identified at depths of 84.5 cm 247 

(between B12 and C12) and 69 cm (between C12 and D12). Deposition of the C12 unit began around 248 

5 100 and stopped at 4 650 cal. year BP. A hiatus of 1 850 years precedes the onset of the deposition 249 

of D12 at around 2800 cal. years BP. The other hiatus, which occurs between units B12 and C12, lasts 250 

more than 4 000 years.  251 

 252 

For core PAR09-01, ten samples were radiocarbon dated (Messager et al., 2013). Based on pollen and 253 

XRF data, the B12 phase recorded in PAR12-04, ranging from 10 500 to 9 300 cal. years BP, is not 254 

recorded in the PAR09-01. As a result, a hiatus has been proposed at a depth of 69 cm (Fig. 5). The 255 

underlying sediments are older (two radiocarbon dates earlier than 12 000 cal. years BP) and the 256 

continuous record begins at 69cm, or at 8250 cal. years BP (Fig. 5). 257 

 258 



2. Pollen results 259 

Results of the pollen analyses are presented in the pollen diagram below (Fig. 6). Local Pollen 260 

Assemblage Zones (LPAZ) have been defined (Birks and Birks, 1980) using the CONISS method 261 

(Grimm, 1987). Five main LPAZs have been identified in the PAR12-04 pollen record (Fig. 6): 262 

 263 

- LPAZ1 (depth: 105.5-91 cm): The first zone is characterized by the prevalence of herbaceous pollen 264 

taxa. Amaranthaceae-Chenopodiaceae (42.9-56.8%) and Artemisia (12.7-24.3%) dominate the pollen 265 

assemblages. Open vegetation is also attested by the abundance of other herb taxa, such as Poaceae, 266 

Asteraceae (Asteroideae, Cichorioideae), Caryophyllaceae. The Alimsataceae family is well 267 

represented (1.5-7%). The xeric and steppic taxon, Ephedra distachya t., is present in every sample of 268 

this zone (0.5-2.4%). In this LPAZ, just a few tree pollen grains of Betula (0.4-1%), Quercus (0.5-1.5%), 269 

Fagus (0-0.8%), Pinus (0-1.5%) and Corylus (0-0.5%) have been identified.  270 

- LPAZ2 (depth 91-85 cm): This zone is marked by an abrupt decrease of Amaranthaceae-271 

Chenopodiaceae (17.6-26.2%), while Poaceae values rise significantly, from 18.5% to over 33%. There 272 

is a slighter decrease in Artemisia while the other herbs present rather stable pollen values. This zone 273 

records the last significant occurrence of the Alimsataceae family. The AP values increase (from 14.7 274 

to 28.9%) in LPAZ 2 due to the progressive expansion of deciduous trees such as Quercus, Fagus, 275 

Betula and Carpinus. Nonetheless, Ephedra distachya is still well represented, attesting to the steppic 276 

character of the vegetation.  277 

- LPAZ3 (depth 85-68 cm): This zone is characterized by low values of herbaceous pollen (NAP ranges 278 

from 35.8 to 50.6%) and high pollen values for tree pollen taxa, such as Pinus (19.3-35.2%), Betula 279 

(1.9-3.4%), Carpinus (2.3-7.1%), Fagus (3.8-6.9%), and Quercus (10-15%). Ephedra distachya is not 280 

recorded.  281 

- LPAZ4 (depth 68-58cm): This zone is marked by the lowest herbaceous pollen values of the record 282 

(NAP ranges from 21 to 26.6%) due to low Poaceae, Amaranthaceae-Chenopodiaceae and Artemisia 283 

pollen values. LPAZ4 is also characterised by the highest values of Pinus in the sequence (36.8-52%).  284 

- LPAZ5 (depth 58-0cm): In this zone, some of the herbaceous pollen taxa, such as Asteraceae 285 

Asteroideae, Ast. Cichorioideae  and Poaceae, show increasing frequencies. Pollen indicators of 286 

human activities display a continuous curve (Fig. 9). Indeed, the taxa Plantago, an indicator of 287 

pastoral activity, and Cerealia are both well recorded in this zone. Deciduous trees present stable 288 

pollen values, but the Pinus values tend to decrease slightly along the LPAZ. Abies tends to disappear 289 

while Picea presents increasing pollen values. This zone documents a more open landscape than 290 

LPAZ4. 291 

292 



Discussion 293 

 1. Why a puzzling lake?  294 

The sediment analysis of PAR12-04 and PAR09-01 sequences shows that the deposits within Lake 295 

Paravani yield rather complicated and puzzle-like palaeoecological records. To reconstruct the history 296 

of past environments, palaeoecologists traditionally use the sediments recovered from the deepest 297 

and/or central part of the lake (Cohen, 2003). Such a sequence is assumed to be representative of 298 

the lake deposits. Since the sequence comes from the lowest bathymetric point (lowest bottom), the 299 

occurrence of hiatuses due to very low sedimentation, or none at all, during emerging phases is 300 

limited. Even though, core PAR09-01 was taken from the central part of the lake, and at the 301 

maximum depth (3m), its sequence presents a hiatus of several thousands of years at a depth of 69 302 

cm (Fig. 5). Indeed, when comparing the pollen data from both cores, the period covered by the B12 303 

unit in PAR12-04 (10 500 to 9 300 cal. years BP), characterized by very high Poaceae values and a 304 

slight increase of arboreal taxa, is not recorded in PAR09-01 (Fig. S5). The absence of a hiatus for this 305 

time period in core PAR12-04, a core retrieved in a slightly higher bathymetric point (2.8m), is an 306 

unexpected result because in theory, this upper point, located closer to the shoreline, is more likely 307 

to be affected by emerging phases. The PAR12-04 sequence presents hiatuses of 4 000 and 1 850 308 

years at depths of 84.5 and 69 cm, respectively. Consequently, both cores yield two different records 309 

with asynchronous hiatuses. Correlating the different units turned out to be a real challenge. The 310 

curves provided by XRF core logging (which is an efficient tool for correlating lake sequences) were 311 

not easy to disentangle (Fig. 3). Their comparison is rendered particularly complex by the hiatuses 312 

and variable concentrations of diatoms (Fig. S3). Indeed, the increasing diatom concentration dilutes 313 

the detrital input and may have a significant effect on the XRF results (dilution of other elements by 314 

biogenic silica). If the diatom bloom is localized in the lake, some cores might record diatoms while 315 

others would not. Dissimilar sediment sequences within a single lake have already been observed in 316 

several lakes (Anderson, 1986; Beaudoin and Reasoner, 1992). However, in previous works, the cores 317 

came from different depths (contrasted bathymetry). In the case of Lake Paravani, the lake bottom is 318 

almost flat and there is no delta which might generate significant differences in sediment facies. The 319 

presence of hiatuses at Paravani could be explained by the low water depth (facilitating bottom 320 

emergence during low lake levels), but how do we explain the absence of synchronicity for these 321 

hiatuses? One hypothesis that might be forwarded is the effect of earthquakes. In fact, lacustrine 322 

sedimentation can be highly sensitive to regional earthquake activity with slope failures, violent 323 

waves and seiche effects causing hiatuses (Chapron et al., 2016, Wilhelm et al., 2016). In the 324 

Samskhe-Javakheti, which is known as a seismically active region (Kachakhidze et al., 2003), past 325 

earthquakes could have modified the lake sedimentation. Numerous prehistoric and historical 326 

earthquakes have already been documented in the region (Philip et al., 2001; Ritz et al., 2016). No 327 



traces of homogenite or turbidite have been observed in the sequences. Moreover, in such a large 328 

and shallow water body, it is difficult to imagine that the observed hiatuses could be the result of 329 

mass wasting deposits (displaced blocks of sediment), an earthquake-triggered mechanism that has 330 

been clearly identified in the Alps (Wilhelm et al., 2016). The Paravani Lake seems to be on a major 331 

fault (Nomade et al., 2016), within a highly seismically active area, where earthquakes of a 6-7 332 

magnitude and surface ruptures are historically attested (Ritz et al., 2016). Without detailed 333 

bathymetry mapping, however, we cannot discuss the potential of underwater fault activity leading 334 

to sediment hiatuses in the upper compartments (Beck et al., 2012). Another factor that could have 335 

played a role in the sedimentation process is the wind. In shallow lakes, such as Paravani, the wind 336 

can directly drive the sedimentation process and hydrodynamics, generating deep erosional surfaces 337 

(Nutz et al., 2016). This question deserves further exploration because Paravani is particularly subject 338 

to thermal winds during the summer.  339 

Despite the differences between the two records, it is possible to draw correlations (Fig. 7 and 8) 340 

based on pollen data and the PCA performed on the XRF data (Fig. 4). These correlations are 341 

supported by the 14C dates, thus allowing us to better constrain the chronology of each unit. By 342 

combining all of the data from both cores, it is finally possible to reconstruct the puzzle of the 343 

environmental history recounted by the lake Paravani sediments (Fig. 7).  344 

 345 

 2. The environmental history provided by the combination of 09-01 and 12-04 records 346 

Before 10 500 years cal. BP 347 

The A12 and A9 units are mainly composed of detrital sediment (Fig. S3), characterized by high Si, Ca, 348 

Ti and Fe inputs (Fig. 3) that reflect erosion processes in the Paravani watershed. The low OM value 349 

probably indicates low biogenic production in the lake. Diatoms are almost absent in this deposit 350 

(low Si/Al and Fig. S3). At that time, the reconstructed vegetation is composed of steppes and semi-351 

desert steppes. All proxies indicate cold, arid climatic conditions. Regional records dating back 352 

further than 10-11 000 years cal. BP are characterised by similar environmental and climatic 353 

conditions (Wick et al., 2003; Litt et al., 2009; Van Zeist and Bottema, 1977). Such vegetation, 354 

dominated by Amaranthaceae-Chenopodiaceae, is characteristic of glacial phases recorded in the 355 

two long regional sequences sampled in Lakes Urmia (Djamali et al., 2008) and Van (Wick et al., 2003; 356 

Litt et al., 2014). In the volcanic region of the Armenian-Javakheti plateau (Fig. S1), very limited tree 357 

cover has been clearly demonstrated by both the Zarishat (Joannin et al., 2014) and Nariani pollen 358 

records (Messager et al., 2017). 359 

 360 

From 10 500 to 9 300 cal. years BP 361 



The phase recorded by unit B12 is probably the most interesting part of the PAR12-04 sequence. The 362 

deposit is securely dated by three radiocarbon dates and fits well within the Early Holocene period, 363 

10 500 to 9 300 cal. years BP (Fig. 7). This record was not recovered by the first sequence (PAR09-01) 364 

sampled in Lake Paravani. The sediment of unit B12 is still characterized by detrital input due to 365 

erosion. The sediment displays a very low content of organic matter. Nevertheless, the Si/Al curve 366 

indicates an increase in biogenic silica, which is confirmed by the abundance of diatoms in smear 367 

slides (Fig. S3). This means that the lake system was experiencing a change, with increasing bio-368 

production. Yet, at the same time, the quantity of organic matter remains low, meaning that not all 369 

compartments of the lake system are responding at the same time. This change in lake production 370 

may have various causes (e.g. rise in temperature, rise in lake level, etc.).  371 

The pollen assemblages from this phase are marked by a very slight increase of tree pollen values 372 

due to a small rise in deciduous trees (Fig. 8). This slight rise in taxa living at lower elevations 373 

(Quercus, Carpinus, Corylus, etc.) reflects an initial and slight tree expansion in lower vegetation 374 

belts, perhaps even from the western part of the South Caucasus (by long-distance pollen transport). 375 

This record fits well with the synchronic expansion of deciduous trees recorded at 10 000 cal. BP (See 376 

Fig. S6) in the Didachara sequence in south-western Georgia (Connor et al., 2017). Apart from this 377 

regional pollen echo from western areas, the pollen assemblages from this phase are still dominated 378 

by herbs (71-85-%). In Western Europe, the post-glacial expansion of temperate trees (Huntley and 379 

Birks, 1983; Wick, 2000) was underway by this time, but in the South Caucasus, several records 380 

indicate that the environment remained steppic in the early Holocene (Margalitadze, 1995; Messager 381 

et al., 2013; 2017; Joannin et al., 2014; Leroyer et al., 2016). This pattern is also observed in other 382 

regions of South-Eastern Europe and the Near East (Van Zeist and Bottema, 1977, Bottema, 1986; 383 

Stefanova and Ammann, 2003; Wright et al., 2003; Djamali et al., 2008; Djamali et al., 2010; Connor 384 

et al. 2013; Leroy et al., 2013, 2014; Ryabogina et al., 2019). Different hypotheses have been 385 

proposed to explain the delay in forest expansion: (1) the time lag in tree migration from glacial tree 386 

refugia (Leroy et Arpe, 2007); (2) the impact of burning (Roberts, 2002; Turner et al., 2010); (3) a 387 

relatively dry early Holocene climate (Stefanova and Ammann, 2003; Atanassova, 2005; 388 

Shumilovskikh et al., 2012; Van Zeist and Bottema, 1991; Roberts and Wright, 1993; Stevens et al., 389 

2001, 2006; Wright et al., 2003; Djamali et al., 2010); and (4) a negative feedback from the “Black 390 

Lake”, preceding the filling of the Black Sea by Mediterranean waters (Leroy et al., 2013). All of these 391 

hypotheses have been addressed and discussed in the context of the neighbouring Nariani pollen 392 

record (Javakheti Plateau) (Messager et al., 2017).  393 

For this time period, pollen assemblages from the Paravani B12 unit indicate a major change in the 394 

herb communities with a significant decrease of Amaranthaceae-Chenopodiaceae (Fig. 7), which was 395 

the dominant taxon recorded at Paravani since 12 500 years cal. BP. This decline of Amaranthaceae-396 



Chenopodiaceae corresponds to the expansion of Poaceae (Fig. 7). A similar vegetation dynamic was 397 

observed at Nariani between 10 200 and 9000 cal. years BP (Messager et al., 2017). Such a pattern 398 

(i.e. decline of semi-desert, expansion of grassland and very slight rise in tree cover) is also described 399 

from the Lake Van sequence (Fig. S6) between 11 500 and 9000 cal. years BP (Wick et al., 2003; Litt 400 

et al., 2009). This new pollen data from Paravani, dating back to the early Holocene, confirms the 401 

vegetation history reconstructed in Nariani (Fig. 2, Fig. S6). Based on this change in the herb 402 

community, a first climatic hypothesis was proposed (Messager et al., 2017), namely that this period 403 

is characterized by an increase in annual precipitation. Geochemical and isotopic indicators from 404 

Lake Van (Lemcke and Sturm, 1997; Wick et al., 2003), Lake Eski Acigöl (Roberts et al., 2001; Jones et 405 

al., 2007) and Nar Gölü (Dean et al., 2015) in Turkey (Fig. S1) show higher water levels and/or lower 406 

salinities during the early Holocene. Based on these different indicators, significant annual rainfalls 407 

were inferred for the early Holocene. While this climatic trend is regionally recognized, the first 408 

Holocene coastal lake terraces on the shores of Lake Van have been dated to 9.5-6 ka (Kuzucuoğlu et 409 

al., 2010; Çağatay et al., 2014), slightly younger than the other records. In Armenia, the first sign of 410 

increasing rainfall is recorded a bit later (Joannin et al., 2014, Leroyer et al., 2016), around 8000 cal. 411 

BP (Fig. S6). At a regional scale, the question of the early Holocene climate and its seasonality is still 412 

unresolved. According to the Nariani and new Paravani pollen data, the growing season appears to 413 

have remained dry (low precipitation during the spring, limiting tree expansion), while annual rainfall 414 

increased. The change in the lake system recorded at Paravani (rising concentrations of diatoms) 415 

could be interpreted as a sign of a higher lake level reflecting higher annual precipitation, but the 416 

vegetation composition indicates that spring rainfalls remained low.  417 

 418 

From 8355 to 1600 cal. years BP    419 

This phase is only fully recorded by unit B9 in PAR09-01, while it is partly represented by units C12 420 

and D12 in PAR12-04 (Fig. 8). The long phase recorded by the B9 unit is clearly marked by a drastic 421 

change in sediment composition. As indicated by lower Ti and Fe values in XRF curves, the detrital 422 

input decreased during this phase. The decline of erosion might be explained by the development of 423 

soils in the watershed and the increasing vegetation cover (see below). The very high Si/Al values 424 

could reflect higher biogenic silica production. During this period, both organic matter and biogenic 425 

silica reveal higher lake production related to the climatic amelioration, which is, in turn, attested to 426 

by the pollen record. Indeed, pollen assemblages reflect relatively forested vegetation growing under 427 

warmer and wetter climate conditions. The period ranging from 8000 to 5500 cal. BP is recognized as 428 

the period of maximum tree extension in the South Caucasus (Kvavadze and Connor, 2005; Connor 429 

and Kvavadze, 2008). In the Paravani record, the pollen data does not reveal a significant human 430 

impact from 8355 to 3000-2500 cal. BP (Fig. 8). This observation is rather unexpected because 431 



numerous archaeological sites dating from the Neolithic to the Bronze Age have been identified on 432 

the Javakheti Plateau in recent decades. While the Neolithic and Chalcolithic sites mainly occurred in 433 

lowlands (Lyonnet et al., 2016; Hamon et al., 2016; Kadowaki et al., 2015), some sites have been 434 

discovered on the volcanic plateaus. A rockshelter called Bavra-Ablari, located in the Paravanistkali 435 

Canyon, has been excavated in the last few years. The archaeozoological and botanical analyses 436 

carried out at Bavra-Ablari demonstrate that the Neolithic (layers dated to 6000-5350 BCE.) and 437 

Chalcolithic populations (layers dated to 5000–3900 BCE.) occupying the rockshelter were clearly 438 

engaged in a pastoral economy (Varoutsikos et al., 2017). Yet, the pollen spectra from the B9 unit at 439 

Paravani does not reveal any signs that grazing impacted on the vegetation at that time (from 8000 440 

to 5500 cal. BP). Moreover, significant impact of livestock on the vegetation has not been detected in 441 

other regional pollen records. The main human impact recorded for this period is the extensive use 442 

of fire during the Late Chalcolithic (Connor and Sagona, 2007; Connor 2011; Joannin et al. 2014). For 443 

the Bronze Age period, several major sites have been excavated in the Samskhe-Javakheti region. The 444 

plateau has yielded numerous sites from the Kura-Araxes culture (Early Bronze Age) and from the 445 

Middle Bronze Age. The results of investigations carried out on Early Bronze Age sites (Kura-Araxes) 446 

point to the development of “high mountain agriculture” marked by the importance of cereal 447 

growing (Kvavadze and Kakhiani, 2010; Kakhiani et al., 2015, Messager et al., 2015). The agro-448 

pastoral activities of these populations might have affected the Samskhe-Javakheti environment. 449 

However, the Paravani pollen does not record any significant sign of cereal growing or of forest 450 

clearance at that time. There may be various reasons for this discrepancy. Pollen records from large 451 

lakes such as Paravani mostly reflect changes on a regional scale. This is why pollen assemblages are 452 

significantly marked by forests while the signal of human impact is slight. Even if Kura-Araxes sites, 453 

dedicated to an agricultural economy, are “frequent” on the Plateau, their environmental impacts 454 

were probably not very large in scale and the signal of the environmental perturbations would have 455 

been diluted in the regional pollen rain. The location of the sites in the watershed (or not), may also 456 

have a major influence on our capacity to detect the intensity of human activities. If we consider the 457 

pollen spectra from the C12 unit, the values for pollen indicators of human impact are a little bit 458 

higher than in the contemporaneous base of unit B9, and are manifested as a slight increase of 459 

Plantago and Cerealia. The origin of this unit of rapid sedimentation (Fig. 5) is not well understood, 460 

but it seems that the deposition process allowed a better record of human impact than the sediment 461 

deposited in the middle of the lake (unit B9 from PAR09-01). At the end of unit B9 (and 462 

contemporaneous with unit D12), pollen spectra record an increasing human impact and the first 463 

noticeable decline in trees (around 2000 cal. years BP). 464 

 465 

  From 1600 cal. years BP to the present 466 



This last phase is recorded both in PAR12-04 (unit E12) and PAR09-01 (unit C9). It was deposited 467 

between 1600-1500 cal. years BP and the present time (Fig. 7). These units are composed of an 468 

organic rich sediment, indicating that the lake was still productive (Fig. 8). Diatoms remain well-469 

represented. While organic matter is abundant, the magnetic susceptibility is high in both of these 470 

units. For this phase, PAR09-01 and PAR12-04 display different XRF curves for Al, Si, Ti and Fe. These 471 

elements decrease throughout unit C9, although the same elements increase in unit E12, up to 10 472 

cm. Thereafter these elements display a decreasing trend for the last 50-100 years (Fig. 3). Therefore, 473 

for this phase, it is still difficult to reconstruct the erosion processes based on the XRF core scanner 474 

data. According to pollen indicators of human impact (Fig. 8), the last 1500 years are marked by an 475 

increasing anthropic imprint. For example, the taxon Plantago, a good marker of grazing, presents its 476 

highest values in this phase (Fig. 6). Cereal pollen is also well represented. Wheat and barley are 477 

mainly self-pollinating plants and their large pollen grains are not well-dispersed by the wind; hence, 478 

cereal pollen abundances greatly decrease with distance from cultivated areas. Thus, the Cerealia 479 

values in the last Paravani phase probably indicate cereal growing within the Paravani watershed (up 480 

to 2000m asl). Nowadays, cereals are still grown at this altitude on the Javakheti Plateau; some local 481 

varieties of wheat, for example, are cultivated between 800 and 2160m asl (Akhalkatsi, 2016). The 482 

decline in tree values initiated during the previous phase continues into the beginning of this phase. 483 

The very top of the sequence observed in unit C9 is marked by a scarcity of deciduous trees. It is still 484 

difficult to discuss the evolution of the tree cover on the plateau due to the additional pollen rain 485 

coming from lower vegetation belts (Kvavadze, 1993; Connor et al., 2004). According to the botanists 486 

that have worked on the region (Nakhutsrishvili, 1999; Arabuli et al, 2008), the expansion of the 487 

mountain steppes on the Javakheti Plateau is a recent phenomenon, induced by late Holocene 488 

deforestation. Certain archival sources, dating back to the 18th century, attest to a forested landscape 489 

and thus support this hypothesis (Matcharashvili et al., 2004; Connor, 2011). Based on the pollen 490 

analysis, we can presume that the decline of trees on the plateau is a process initiated at least 2300-491 

2000 years ago, but the scarcity of trees is probably a more recent process. However, it remains 492 

difficult to pinpoint when this change occurred due to the problem of mixed pollen rains. The 493 

question of the origin of the deforestation is also unresolved. According to the pollen evidence, both 494 

cereal growing and pastoralism have played a role in shaping the vegetation on the plateau. While 495 

grazing is a major driver of the modern vegetation, the intensity of this activity in the past has never 496 

been evaluated. Fire setting and mowing may also have played a role in the process of opening up 497 

the landscape. In the Aligol and Imera records (both located on the neighbouring Tsalka Plateau, 498 

1500 m asl) an increase in fires is recorded at the beginning of the Classical Era (starting around 2400 499 

cal. BP) and carries on in the subsequent periods (Connor, 2011). The role of fire in the 500 

disappearance of fir on this lowest plateau has previously been considered (Connor, 2011). 501 



Additional studies are required in order to chronicle the role of fire in the highlands and to make 502 

comparisons with the lower Tsalka plateau. Above all, coprophilous fungi or mammal DNA analyses 503 

could be undertaken in order to reconstruct the pastoral history of the Javakheti plateau, and to 504 

better decipher its role in the expansion of mountain steppe. 505 

 506 

Conclusion  507 

The sediment analysis undertaken on different cores from Lake Paravani reveals the complex history 508 

of sediment deposition in the bottom of this puzzling lake. While the sequences are affected by 509 

hiatuses, and composed of truncated units, the combination of sediment, organic matter and pollen 510 

analysis, with the help of 14C dates, allows us to reconstruct the evolution of the 511 

palaeoenvironments in the Paravani watershed over the past 12 000 years. Although the XRF core 512 

scanner turned out not to be the most suitable tool to conduct geochemical analysis on the Paravani 513 

lake sediment, it has provided the first indications regarding the functioning of the Lake system 514 

during the time period in question. The erosion pattern and the lake functioning reconstructed for 515 

the Early and Mid-Holocene are in agreement with the vegetation dynamic; both reflect the 516 

evolution of the climatic parameters (passage from glacial conditions to post-glacial conditions). The 517 

phase of transition between the glacial steppe and the temperate forest is characterised by the 518 

expansion of grassland (Poaceae steppe) which replaced the preceding Amaranthaceae-519 

Chenopodiaceae steppe. This phase, not observed in the previous Paravani analysis, was recently 520 

identified in the south Caucasus and can be related to a more widely recognized phase of the Early 521 

Holocene in the Near East.  For the late Holocene (up to 2300 cal. years BP), the pollen record 522 

indicates a gradual increase in human impact, but considering the regional (large scale) picture 523 

provided by the pollen data, it is still difficult to identify the intensity of the anthropization on the 524 

highlands. This period is marked by a change in the sediment delivered to the lake, but the effect of 525 

human activities on this erosive pattern is not sufficiently understood. It would be interesting to 526 

further investigate the role of the highland populations during the last two millennia in terms of land 527 

use and agricultural practices. This would undoubtedly enhance the discussion regarding the 528 

processes leading to the deforestation of the Plateau and the subsequent expansion of the mountain 529 

steppes which nowadays cover the highlands. 530 

 531 
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Figure captions  875 

 876 

Figure 1: Geological map of the Javakheti Plateau, locations of cores PAR09-01 and PAR12-04 in Lake 877 

Paravani (modified from Nomade et al., 2016). 878 

 879 

Figure 2. Vegetation map of the region, (prepared using EuroVegMap software, Bohn et al., 2000). 880 

 881 

Figure 3. Lithology, LOI analysis, magnetic susceptibility and XRF data for cores PAR09-01 and PAR12-882 

04. Radiocarbon ages and locations are indicated along the stratigraphy. 883 

 884 

Figure 4. Principal component analysis (PCA) performed on major elements (Al, Si, K, Ti, Ca and Fe 885 

intensities) measured by XRF core scanner. The samples have been coloured by unit.  886 

 887 

Figure 5. Age-depth Model of PAR12-04 and PAR09-01 888 

 889 

Figure 6. Synthetic pollen diagram (+ CONISS analysis) of the PAR12-04 core  890 

 891 

Figure 7. Puzzle made of Paravani lake sediment units 892 

 893 

Figure 8. Correlations of the PAR12-04 and PAR09-01 sequences. 894 

 895 

Table captions 896 

 897 

Table 1. List of AMS 14C dates from cores PAR09-01 and PAR12-04. 898 

 899 

Table 2. Description of PAR 12-04 and PAR 09-01 units  900 
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Supplementary data captions 902 

 903 

Supplementary Figure 1. Physiographic map of the region, showing Paravani (yellow star) and pollen 904 

records discussed in the text (white stars). (The map is adapted from GeoAtlas). 905 

 906 

Supplementary Figure 2. XRF core scanner curves of two elements (K and Ti) and the ratio Si/Al for six 907 

sequences collected in the Lake Paravani 908 



 909 

Supplementary Figure 3. Si/Al ratio along the PAR12-04 core, and photos of microscopic slides of bulk 910 

sediment prepared for each unit (red circles correspond to diatoms) 911 

 912 

Supplementary Figure 4. Si/Al, Ti/Al and Fe/Al ratios along the PAR12-04 and PAR09-01 cores 913 

 914 

Supplementary Figure 5. Synthetic pollen diagram of PAR 12-04 and PAR 09-01 cores 915 

 916 

Supplementary Figure 6. Comparison of regional pollen records (Arboreal Pollen, Poaceae and 917 

steppic plants): Zarishat (Joannin et al., 2014), Van (Litt et al., 2012; Pickarski et al., 2015), Nariani 918 

(Messager et al., 2017), Paravani (this study) and Dedichara (Connor et al., 2018). The Paravani 919 

synthetic curves are composed of PAR12-04 pollen data (lower part) and PAR09-01 pollen data 920 

(upper part). The Dedichara pollen data are from the European Pollen Database, available in the 921 

Neotoma Paleoecology Database. 922 

 923 
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