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Abstract

By the Gibbard–Satterthwaite theorem, every reasonable voting rule for three or more
alternatives is susceptible to manipulation: there exist elections where one or more voters
can change the election outcome in their favour by unilaterally modifying their vote. When a
given election admits several such voters, strategic voting becomes a game among potential
manipulators: a manipulative vote that leads to a better outcome when other voters are
truthful may lead to disastrous results when other voters choose to manipulate as well. We
consider this situation from the perspective of a boundedly rational voter, using an appro-
priately adapted cognitive hierarchy framework to model voters’ limitations. We investigate
the complexity of algorithmic questions that such a voter faces when deciding on whether to
manipulate. We focus on k-approval voting rules, with k ≥ 1. We provide polynomial-time
algorithms for k = 1, 2 and hardness results for k ≥ 4 (NP and co-NP), supporting the claim
that strategic voting, albeit ubiquitous in collective decision making, is computationally hard
if the manipulators try to reason about each others’ actions.

JEL classification: D72.

Keywords: strategic voting, bounded rationality, computational complexity

1 Introduction

Imagine that you and your friends are choosing a restaurant to go to for dinner. Everybody is
asked to name their two most preferred cuisines, and the cuisine named most frequently will

∗Some of the results in this paper were presented at the 24th International Joint Conference on Artificial
Intelligence (IJCAI) (Elkind et al., 2015a). We are grateful to the IJCAI-15 and the MSS reviewers, as well as to
the audiences of the Workshop on Iterative Voting and Voting Games in Padova in 2014, the 5th International
Workshop on Computational Social Choice (COMSOC-2014) in Pittsburgh, and to the participants of seminar
talks in Toulouse in 2014 and in Dagstuhl in 2015 for their useful feedback.
†Corresponding author. Email addresses: elkind@cs.ox.ac.uk (E.Elkind), umberto.grandi@irit.fr (U. Grandi),

Francesca.Rossi2@ibm.com (F. Rossi), a.slinko@auckland.ac.nz (A. Slinko).
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be selected (this voting rule is known as 2-approval). Your favourite cuisine is Japanese and
your second most preferred cuisine is Indian. Indian is quite popular among your friends, and
you know that if you name it among your favourite two cuisines, it will be selected. On the
other hand, you also know that only a few of your friends like Chinese food. Will you vote for
Japanese and Chinese to give Japanese cuisine a chance?

This example illustrates that group decision-making is a complex process that involves agents
reasoning about other agents’ preferences. Individual decision-makers would like to influence
the final decision in a way that is beneficial to them, and hence they may be strategic in
communicating their individual preferences. Indeed, it is essentially impossible to eliminate
strategic behaviour by a clever choice of the voting rule: the groundbreaking result of Gibbard
(1973) and Satterthwaite (1975) states that, under any onto and non-dictatorial social choice
rule, there exist situations where a voter can achieve a better outcome by casting a strategic
vote rather than the sincere one, provided that everyone else votes sincerely; in what follows,
we will refer to voters that can benefit from voting strategically when others remain sincere as
Gibbard–Satterthwaite manipulators or simply GS-manipulators.

The Gibbard–Satterthwaite theorem alerts us that strategic behaviour of voters cannot be
ignored, but it does not tell us under which circumstances it actually happens. Of course, if
there is just a single GS-manipulator at a given profile, and he1 is fully aware of other voters’
preferences, it is rational for him to manipulate. However, even in this case this voter may
prefer to vote truthfully, simply because he may assign a high value to announcing his true
preferences; we call such voters ideological, or non-strategic. Moreover, if there are two or more
GS-manipulators, it is no longer easy for them to make up their mind in favour of manipula-
tion: while the Gibbard–Satterthwaite theorem tells us that each of these voters would benefit
from voting strategically assuming that all other voters remain truthful, it does not offer any
predictions when several voters may be able to manipulate simultaneously.

voter 1 voter 2 voter 3 voter 4

b b a c
c c c b
a a b a

Table 1: A preference profile. In each column, the alternatives are ranked from the most
preferred (top) to the least preferred (bottom).

Example 1. Suppose four people are to choose among three alternatives a, b, and c, by means
of 2-approval, with ties broken according to the order a > b > c. That is, each voter specifies
two approved alternatives, and the winning alternative is selected among the alternatives that
received the largest number of approvals by means of the tie-breaking rule. Let the profile of
sincere preferences be as in Table 1. There are two voters who prefer b to c to a, one voter who
prefers a to c to b, and one voter who prefers c to b to a. If everyone votes sincerely, then c gets
4 approvals, b gets 3 approvals and a gets 1 point, so c is elected. We observe that voters 1 and
2 are Gibbard–Satterthwaite manipulators: each of them can make b the winner by approving
{a, b}, ceteris paribus.2 Let us consider this game from the first voter’s perspective, assuming

1We use ‘he’ to refer to voters and ‘she’ to refer to candidates.
2In the formal model that will be used throughout the paper, voters report their preference rankings; under
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that he is strategic; let Ai denote the strategy set of voter i, i = 1, 2, 3, 4. The strategy set of
voter 1 can then be assumed to be A1 = {{b, c}, {b, a}}. Voter 1 has a good reason to believe
that voters 3 and 4 will vote sincerely, as voter 3 cannot achieve an outcome that he would
prefer to the current outcome and voter 4 is fully satisfied.

Case 1. If voter 1 believes that voter 2 is ideological, then he is analysing the game where
A2 = {{b, c}}, A3 = {{a, c}} and A4 = {{c, b}}. In this case he just votes {b, a} and expects b
to become the winner.

Case 2. Suppose now that voter 1 believes that voter 2 is also strategic. Now voter 1 has
to analyse the game with A1 = A2 = {{b, c}, {b, a}}, A3 = {{a, c}} and A4 = {{c, b}}. If either
one of the strategic players—voter 1 or voter 2—manipulates and another stays sincere, b will
be the winner. However, if they both manipulate, their least preferred alternative a will become
the winner. Thus, in this case voter 1’s manipulative strategy does not dominate his sincere
vote, and if voter 1 is risk-averse, he should refrain from manipulating.

The overarching goal of this paper is to investigate the complexity of the decision that a
strategic participant of a voting game must make in the presence of other strategic voters. To
obtain a realistic model, we assume that a voter is a boundedly rational agent, most notably
in its representation of other agents’ strategic abilities, and we suggest a model for such a be-
haviour. We also assume that voters have bounded computational abilities, and use the toolbox
of computational social choice (Brandt et al., 2015) to study the computational complexity of
the problems that strategic voters face. Thus, our work merges two views of bounded ratio-
nality: the strategic one, which is inspired by the game theory and economics literature, and
the algorithmic one, which is more common in the computer science literature and goes back
to Bartholdi et al. (1989) and Bartholdi and Orlin (1991)). As this is the first study to com-
bine these two views of bounded rationality in the context of voting, it is natural to start by
investigating simple voting rules. Therefore, throughout the paper we focus on the family of
k-approval voting rules for k ≥ 1.

1.1 Voting as a Strategic Game

A prevalent approach up to date has been to view voting as a strategic game among the voters,
and use various game-theoretic solution concepts to predict the outcomes (see Section 1.3 for a
survey of related work). The most common such concept is Nash equilibrium, which is defined
as a combination of strategies, one for each player, such that each player’s strategy is a best
response to other players’ strategies. In these terms, the Gibbard–Satterthwaite theorem says
that under every reasonable voting rule there are situations where truthful voting is not a Nash
equilibrium. For example, the game analysed in Example 1 (Case 2) has two Nash equilibria:
in the first one, voter 1 manipulates and voter 2 remains truthful, and in the second one the
roles are reversed. If we increase the strategy sets, allowing non-manipulators to act, we obtain
further Nash equilibria, but truthful voting is never one of them.

The principle that players can always be expected to choose equilibrium strategies is not
universally applicable. Specifically, if players have enough experience with the game they are
playing (or with similar games), both theory and experimental results suggest that players are
often able to learn equilibrium strategies (Fudenberg and Levine, 1998). However, it is also well-
known since the early work of Shapley (1964) that learning dynamics may fail to converge to an

2-approval, voters can indicate that they approve {a, b} by reporting a � b � c or b � a � c. For readability, in
this example we use approval ballots.
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equilibrium. Moreover, in many applications—and voting is one of them—players’ interactions
have only imperfect precedents, or none at all, making learning hard if not impossible.3 If
equilibrium is justified in such applications, it must be via strategic thinking of players rather
than learning. In reality, even in simple games the required reasoning is often too complex
for such a justification of equilibrium to be behaviourally plausible (Harsanyi and Selten, 1988;
Brandenburger, 1992). This is fully applicable to voting, where such reasoning, beyond very
simple profiles, is impossible because of the number of voters involved.

In fact, a number of recent experimental and empirical studies suggest that players’ responses
in games often deviate systematically from equilibrium strategies, and are better explained by the
structural non-equilibrium level-k (Nagel, 1995; Stahl and Wilson, 1994) or cognitive hierarchy
(CH) models (Camerer et al., 2004); see also a survey by Crawford et al. (2013). In a level-k
model players anchor their beliefs in a non-strategic initial assessment of others’ likely responses
to the game. Non-strategic players are said to be level-0 players. Level-1 players believe that
all other players are at level 0, and they give their best response on the basis of this belief.
Thus, in the context of voting, a level-1 player has an incentive to vote non-truthfully if and
only if he is a GS-manipulator. Level-2 players assume that all other players belong to level 1,
and, more generally, players at level k give their best response assuming that all other players
are at level k − 1. The cognitive hierarchy model is similar, but with an essential difference:
in this model players of level k respond to a mixture of types from level 0 to level k − 1. It
is frequently assumed that other players’ levels are drawn from a Poisson distribution. Some
further approaches based on similar ideas are surveyed by Wright and Leyton-Brown (2010).
Although none of the game-theoretic models of boundedly rational voters seem to be perfect,
we believe that specifics of voting, and, in particular, the heterogeneity of types of voters in
real electorates, make the cognitive hierarchy framework more appropriate than others for our
purposes and we adapt it appropriately.

This, however, is not a trivial task. First, an important feature that distinguishes voting from
many other applications of both level-k and CH models is the role of level-0 players. Level-0 (non-
strategic) players are typically assumed to choose their strategy at random while, in contrast, in
voting situations it is natural to associate level-0 players with ideological or non-strategic voters,
who have a significant presence in real elections. For instance, in the famous Florida vote (2000),
where Bush won over Gore by just 537 votes, 97,488 Nader supporters voted for Nader—even
though in such a close election strategic voters should have voted either for Gore or for Bush
(and an overwhelming majority of Nader supporters preferred Gore to Bush) because of a real
possibility of becoming pivotal. However, in the level-k analysis voters of level 2 assume that all
other voters have level 1, i.e., level-k models cannot be used to accommodate ideological voters.
We therefore focus on the cognitive hierarchy approach. However, as a vast majority of voters
in elections can be assumed to be non-strategic, or level-0 players, we do not assume that types
are drawn from a Poisson distribution. Moreover, we limit ourselves to considering the first
three levels of the hierarchy (i.e., level-0, level-1, and level-2 players), as it seems plausible that
very few voters are capable of higher-level reasoning (for evidence supporting this assumption
we refer to the survey by Crawford et al. (2013)).

Another difficulty in adapting the cognitive hierarchy model to our setting is that in the
standard model of social choice, voters’ preferences over alternatives are ordinal rather than
cardinal (see, e.g., the already-cited classical work of Gibbard (1973) and Satterthwaite (1975)),

3We note in passing the setting of repeated elections or iterative voting, in which the information available to
voters at each iteration step can be used as a basis for learning—see, e.g., the survey by Meir (2017).
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which implies that, in general, voters at level 2 or higher do not have a straightforward definition
of best response. We therefore resort to the concept of weak dominance, assuming that voters
choose strategies that are not weakly dominated according to their beliefs. We present our
formal definitions and further discussion in Section 3.

1.2 Main Results

Our first results provide a classification of level-1 strategies under k-approval; this is a necessary
step to understand level-2 strategies in this setting (Section 4). We then switch our attention to
higher-level strategies, and, in particular, to the complexity of computing them. For k-approval
with k = 1 (i.e., the classic plurality rule) we describe an efficient algorithm that decides whether
a given strategy weakly dominates another strategy; as a corollary of this result, we conclude that
under the plurality rule level-2 strategies can be efficiently computed and efficiently recognised
(Section 5). We obtain a similar result for 2-approval under an additional minimality assumption
(Section 6). Briefly, this assumption means that the level-2 player expects all level-1 players
to manipulate by making as few changes to their votes as possible. For larger values of k,
finding level-2 strategies becomes computationally challenging: we show that this problem is
NP-hard for k-approval with k ≥ 4 (Section 7). As the problem of finding a level-1 strategy
under k-approval is computationally easy for any value of k ≥ 1 (this follows immediately by
combining our characterisation of level-1 strategies with the classic results of Bartholdi et al.
(1989)), this demonstrates that higher levels of voters’ sophistication come with a price tag in
terms of algorithmic complexity.

1.3 Related Work

There is a substantial body of research in social choice theory and in political science that models
non-truthful voting as a strategic interaction, with a strong focus on the plurality rule; this line
of work dates back to Farquharson (1969) and includes important contributions by Cain (1978),
Feddersen et al. (1990) and Cox (1997), to name a few.

More recently, voting games and their equilibria have also received a considerable amount of
attention from researchers in artificial intelligence, with a variety of approaches used to eliminate
counterintuitive Nash equilibria. Meir (2018) provides an excellent survey of this line of work;
we discuss a few specific papers below. Some authors assume that voters have a slight preference
for abstaining or for voting truthfully when they are not pivotal (Battaglini, 2005; Dutta and
Sen, 2012; Desmedt and Elkind, 2010; Thompson et al., 2013; Obraztsova et al., 2013; Elkind
et al., 2015b; Obraztsova et al., 2015a). Other works consider refinements of Nash equilibrium,
such as subgame-perfect Nash equilibrium (Desmedt and Elkind, 2010; Xia and Conitzer, 2010),
strong equilibrium (Messner and Polborn, 2007; Sertel and Sanver, 2004) or trembling-hand
equilibrium (Obraztsova et al., 2016), or model the reasoning of voters who have incomplete or
imperfect information about each others’ preferences (Myerson and Weber, 1993; Myatt, 2007;
Meir et al., 2014). Dominance-based solution concepts have been investigated as well (Moulin,
1979; Dhillon and Lockwood, 2004; Buenrostro et al., 2013; Dellis, 2010; Meir et al., 2014), also
from a computational perspective (Conitzer et al., 2011). All the aforementioned papers do
not impose restrictions on the voters’ reasoning ability, de facto assuming that they are fully
rational.

Similarly to our work, Grandi et al. (2019) also consider boundedly rational voters. However,
their work focuses on strategic interactions among Gibbard–Satterthwaite manipulators, and
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studies conditions that ensure existence of pure strategy Nash equilibria in the resulting games.
In contrast, in this paper we go further, and formally define the degree of voters’ rationality by
using the cognitive hierarchy approach.

Level-k models and the cognitive hierarchy framework have been long used to model a variety
of strategic interactions; see the survey of Crawford et al. (2013). Nevertheless, to the best of
our knowledge, ours is the first attempt to apply these ideas in the context of voting.

A topic closely related to voting games is voting dynamics, where players change their votes
one by one in response to the current outcome (Reijngoud and Endriss, 2012; Reyhaneh and
Wilson, 2012; Obraztsova et al., 2015b; Endriss et al., 2016; Lev and Rosenschein, 2016; Koolyk
et al., 2017; Meir et al., 2017); see also a recent survey by Meir (2017). However, this line of
work assumes that voters are myopic, i.e., choose actions that are best responses to the current
selections of the other voters, without trying to model the other voters’ reasoning.

Our work can also be seen as an extension of the model of safe strategic voting proposed
by Slinko and White (2014). However, unlike us, Slinko and White focus on a subset of GS-
manipulators who (a) all have identical preferences and (b) choose between truth-telling and
using a specific manipulative vote, and on the existence of a weakly dominant strategic vote in
this setting (such votes are called safe strategic votes). In contrast, in our model the decision-
maker takes into account that manipulators may have diverse preferences and have strategy sets
that contain more than one strategic vote. It is therefore not surprising that computing safe
strategic votes is easier than finding level-2 strategies: Hazon and Elkind (2010) show that safe
strategic votes with respect to k-approval can be computed efficiently for every k ≥ 1, whereas
we obtain hardness results for k ≥ 4.

One of our contributions is a classification of manipulative votes under k-approval with lexi-
cographic tie-breaking. Peters et al. (2012) propose a similar classification for several approval-
based voting rules. However, they view k-approval as a non-resolute voting rule, and therefore
their results do not apply in our setting.

1.4 Paper Outline

The paper is organised as follows. We introduce the basic terminology and definitions in Sec-
tion 2. Section 3 presents the adaptation of the cognitive hierarchy framework to the setting of
voting games. We then focus on the study of k-approval. Section 4 describes the structure of
level-1 strategies under k-approval. In Section 5 we provide an efficient algorithm for identifying
level-2 strategies with respect to the plurality rule. Section 6 contains our results for 2-approval,
and in Section 7 we present our hardness results for k-approval with k ≥ 4. Section 8 summarises
our results and suggests directions for future work.

2 Preliminary Definitions

In this section we introduce the relevant notation and terminology concerning preference aggrega-
tion and normal-form games. Throughout the paper, we write [n] to denote the set {1, 2, . . . , n}.

2.1 Votes, Strategic Votes and Voting Rules

We consider n-voter elections over a candidate set C = {c1, . . . , cm}; in what follows we use
the terms candidates and alternatives interchangeably. Let L(C) denote the set of all linear
orders over C. The preferences of a particular society are defined by a sincere preference profile
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V = (v1, . . . , vn), where each vi, i ∈ [n], is a linear order over C; we refer to vi as the sincere
vote, or preferences, of voter i. For two candidates c1, c2 ∈ C we write c1 �i c2 if voter i ranks
c1 above c2, and say that voter i prefers c1 to c2. For brevity we will sometimes write ab . . . z to
represent a vote vi such that a �i b �i · · · �i z. We denote the top candidate in vi by top(vi).
Also, we denote the set of top k candidates in vi by topk(vi); note that top1(vi) = {top(vi)} and
a �i b for all a ∈ topk(vi) and b ∈ C \ topk(vi).

Voters sometimes prefer not to report their sincere preferences, but to vote strategically.
Given a sincere preference profile V = (v1, . . . , vn) and a linear order v′i ∈ L(C), we denote
by (V−i, v

′
i) the preference profile obtained from V by replacing vi with v′i; for readability, we

will sometimes omit the parentheses around (V−i, v
′
i) and write V−i, v

′
i. We will often use this

notation when voter i submits a strategic vote v′i instead of his sincere vote vi.
A (resolute) voting rule R is a mapping that, given a profile V (sincere or strategic), outputs

a candidate R(V ) ∈ C, which we call the winner of the election defined by V , or simply the
winner at V . In this paper we focus on the family of voting rules known as k-approval. Under
k-approval, k ∈ [m− 1], each candidate receives one point from each voter who ranks her in top
k positions in his vote; the k-approval score of a candidate c, denoted by sck(c, V ), is the total
number of points that she receives. The winner is chosen among the candidates with the highest
score according to a fixed tie-breaking linear order > on the set of candidates C: specifically,
the winner is the highest-ranked candidate with respect to this order among the candidates with
the highest score. The 1-approval voting rule is widely used and known as the plurality rule. We
will denote the k-approval rule (with tie-breaking based on a fixed linear order >) by Rk. We
say that a candidate x beats a candidate y at V with respect to Rk and the tie-breaking order
> if sck(x, V ) > sck(y, V ) or sck(x, V ) = sck(y, V ) and x > y.

Definition 1. Consider a sincere profile V = (v1, . . . , vn), a voter i, and a voting rule R. We
say that a linear order v′i is a manipulative vote of voter i at V with respect to R if R(V−i, v

′
i) �i

R(V ). We say that i manipulates in favour of candidate c by submitting a vote v′i if c is the
winner at R(V−i, v

′
i). A voter i is a Gibbard–Satterthwaite manipulator, or a GS-manipulator,

at V with respect to R if the set of his manipulative votes at V with respect to R is not empty.
We denote the set of all GS-manipulators at V with respect to R by N(V,R).

Note that a voter may be able to manipulate in favour of several different candidates. Let
Fi = {c ∈ C | R(V−i, v

′
i) = c for some v′i ∈ L(C)}; we say that the candidates in Fi are feasible

for i at V with respect to R. Note that Fi 6= ∅ for all i ∈ [n], as this set contains the R-winner
at V under truthful voting.

We say that two votes v and v′ over the same candidate set C are equivalent with respect to
a voting rule R if R(V−i, v) = R(V−i, v

′) for every voter i ∈ [n] and every profile V−i of other
voters’ preferences. It is easy to see that v and v′ are equivalent with respect to k-approval if
and only if topk(v) = topk(v

′).

2.2 Normal-form Games

A normal-form game (N, (Ai)i∈N , (�i)i∈N ) is defined by a set of players N , and, for each i ∈ N ,
a set of strategies Ai and a preference relation �i defined on the space of strategy profiles,4 i.e.,
tuples of the form s = (s1, . . . , sn), where si ∈ Ai for all i ∈ N . For each pair of strategy profiles

4While one usually defines normal-form games in terms of utility functions, defining them in terms of preference
relations is more appropriate for our setting, as preference profiles only provide ordinal information about the
voters’ preferences.
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s, t and a player i ∈ N , we write s �i t if s �i t and t 6�i s. A normal-form game is viewed as a
game of complete and perfect information, which means that all players are fully aware of the
structure of the game they are playing.

Given a strategy profile s = (s1, . . . , sn) and a strategy s′i ∈ Ai, we denote by (s−i, s
′
i) the

strategy profile (s1, . . . , si−1, s
′
i, si+1, . . . , sn) that is obtained from s by replacing si with s′i. We

say that a strategy si ∈ Ai weakly dominates another strategy s′i ∈ Ai if for every strategy profile
s−i of other players we have (s−i, si) �i (s−i, s

′
i) and there exists a profile s−i of other players’

strategies such that (s−i, si) �i (s−i, s
′
i).

3 The Model

Our goal is to analyse voting as a strategic game and consider it from the perspective of the
cognitive hierarchy model. As we reason about voters’ strategic behaviour, we consider games
where players are voters, their strategies are ballots they can submit, and their preferences over
strategy profiles are determined by election outcomes under a given voting rule. Thus, a voting
game is a triple G = (V,R, (Ai)i∈[n]), where V = (v1, . . . , vn) is the list of voters’ preferences, R
a voting rule, and for each i ∈ [n] the set Ai consists of all actions available to voter i.

3.1 A Cognitive Hierarchy Framework for Voting Games

When the cognitive hierarchy (CH) framework is used in the context of normal-form games, the
players at level 0 are typically assumed to choose their action at random. Indeed, in general
normal-form games a player who is unable to deliberate about other players’ actions usually has
no reason to prefer one strategy over another. In contrast, in the context of voting, there is an
obvious focal strategy, namely, truthful voting.

At the next level of the hierarchy are level-1 voters. These voters believe that all other voters
are sincere (i.e., are at level 0), and choose their vote so as to get the best outcome they consider
possible under this assumption. That is, a level-1 voter votes so as to make his most preferred
feasible candidate the election winner. If voter i is a level-1 voter and the set of feasible outcomes
Fi is a singleton, which means that voter i cannot change the outcome at all no matter which
vote he submits, we assume that i votes truthfully. This assumption reflects the special role of
the sincere vote in the context of voting.

Definition 2. We say that a vote v′i of a voter i is a level-1 strategy at profile V with respect
to R if R(V−i, v

′
i) �i c for all c ∈ Fi \ {R(V−i, v

′
i)}.

We emphasise that in our adaptation of the CH framework a level-1 voter that is not a Gibbard–
Satterthwaite manipulator sees no reason to vote non-truthfully, since, given his belief that all
other voters will vote truthfully, he does not expect to be able to change the election outcome
according to his tastes.

We are now ready to discuss level-2 voters. These voters believe that all other voters are at
levels 0 or 1 of the cognitive hierarchy. Specifically, a level-2 voter i identifies, for every other
voter j, a set of votes Aj that he believes j may use. For each j ∈ [n] \ {i}, this set contains
j’s truthful vote vj , i.e., i entertains the possibility that j is an ideological voter. Further, if j
is not a GS-manipulator, then Aj = {vj}. On the other hand, if j is a GS-manipulator, the set
Aj consists of vj and a (possibly empty) subset of j’s level-1 strategies; this subset represents
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i’s beliefs about j’s ability and desire to manipulate.5 In particular, if i believes that j is an
ideological voter, this subset is empty.

Importantly, we do not assume that Aj \ {vj} is either empty or consists of all level-1
strategies of voter j. Indeed, the set of all level-1 strategies for a particular voter can be very
large, and a level-2 voter may be unable or unwilling to identify all such votes. For example,
a level-2 voter may know or believe that the other voters use a specific algorithm (e.g., that
of Bartholdi et al. (1989)) to find their level-1 strategies. In this case, the set of strategies for
each voter j would consist of the truthful vote vj and the output of the respective algorithm.
Further, a level-2 voter may expect that level-1 voters would not choose manipulations that are
(weakly) dominated by other manipulations. Finally, voters may prefer not to change their vote
beyond what is necessary to make their target candidate the election winner, either because
they want their vote to be as close to the true preference order as possible (see the work of
Obraztsova and Elkind (2012)), or for a fear of unintended consequences of such changes in the
complex environment of the game; this, again, may rule out some of the level-1 strategies. Thus,
a preference profile together with a voting rule define not just a single game, but a family of
games, which differ in sets of actions available to GS-manipulators.

3.2 Gibbard–Satterthwaite Games

We will now complete the model, by defining games that enable us to reason about the decisions
faced by a level-2 player. For convenience, we assume that voter 1 is a level-2 player and describe
a normal-form game that captures his perspective of the strategic interaction, i.e., his beliefs
about the game he is playing.

Fix a voting rule R, let V be a sincere profile over a set of candidates C, let N = N(V,R)
be the set of GS-manipulators at V with respect to R, and set N1 = N ∪ {1}. Since any level-1
player who is not a GS-manipulator must vote sincerely, and voter 1 believes that all other voters
are level-0 or level-1 players, in his view of the game only the GS-manipulators can deviate from
their true preferences; that is, he only needs to reason about the actions of the voters in N1\{1}.

We consider a family of normal-form games defined as follows. In each game the set of
players is N1, i.e., voter 1 is a player irrespective of whether he is actually a GS-manipulator.
For each player i ∈ N1 \ {1}, i’s strategy set Ai consists of his truthful vote and a (possibly
empty) subset of his level-1 strategies; for voter 1 we have A1 = L(C), i.e., voter 1 can submit
an arbitrary ballot. It remains to describe the voters’ preferences over strategy profiles. For a
strategy profile V ∗ = (v∗i )i∈N1 , where v∗i ∈ Ai for all i ∈ N1, let V [V ∗] = (v′1, . . . , v

′
n) be the

preference profile such that v′i = vi for i 6∈ N1 and v′i = v∗i for i ∈ N1. Then, given two strategy
profiles V ∗ and V ∗∗ and a voter i ∈ N1, we write V ∗ �i V ∗∗ if and only if i prefers R(V [V ∗]) to
R(V [V ∗∗]) or R(V [V ∗]) = R(V [V ∗∗]). We refer to any such game as a GS-game.

We denote the set of all GS-games for V and R by GS(V,R). Note that an individual game
in GS(V,R) is fully determined by the GS-manipulators’ sets of strategies, i.e., (Ai)i∈N(V,R)

(voter 1’s set of strategies is always the same, namely, L(C)). Thus, in what follows, we write
G = (V,R, (Ai)i∈N(V,R)); when V and R are clear from the context, we simply write G =
(Ai)i∈N . We refer to a strategy profile in a GS-game as a GS-profile, and we will sometimes
identify the GS-profile V ∗ = (v∗i )i∈N1 with the preference profile V [V ∗]. We denote the set of
all GS-profiles in a game G by GSP(G).

5With this approach, we depart from the recent literature of unawareness in game theory (Rêgo and Halpern,
2014, 2012), which studies interactive situations where a player might not have complete knowledge of the possible
actions available to other players.
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We will now argue that games in GS(V,R) reflect the perspective of voter 1 when he is at the
second level of the cognitive hierarchy. Fix a game G ∈ GS(V,R). Note first that, since voter 1
believes that all other voters belong to levels 0 and 1 of the cognitive hierarchy, he expects all
voters who are not GS-manipulators to vote truthfully, i.e., he does not need to reason about
their strategies at all. This justifies having N1 = N ∪ {1} as the set of players. On the other
hand, consider a voter i ∈ N1 \ {1}. voter 1 considers it possible that i is a level-0 voter, who
votes truthfully. voter 1 also entertains the possibility that i is a level-1 voter, in which case i’s
vote has to be a level-1 strategy; as argued above, voter 1 may also rule out some of i’s level-1
strategies. Consequently, the set Ai, which, by definition, contains vi, consists of all strategies
that voter 1 considers possible for i. Thus, voter 1’s view of other voters’ actions is captured
by G.

3.3 Level-2 Strategies

We are now ready to discuss level-2 strategies. In the game-theoretic literature, it is typical
to assume that a level-2 player is endowed with probabilistic beliefs about other players’ types
as well as a utility function describing his payoffs under all possible strategy profiles. Under
these conditions, it makes sense to define player 1’s level-2 strategies as those that maximise his
expected payoff with respect to his beliefs. However, in the absence of numerical information,
as in the case of voting games, we cannot reason about expected payoffs. Nevertheless, we
can compare different strategies pointwise, and remove strategies that are weakly dominated by
other strategies. On the other hand, if a strategy v is not weakly dominated, a level-2 player
may hold beliefs that make him favour v, so no such strategy can be removed from consideration
without making additional assumptions about the behaviour of the players in N(V,R). This
reasoning motivates the following definition of a level-2 strategy.

Definition 3. Given a GS-game G = (V,R, (Ai)i∈N(V,R)), we say that a strategy v ∈ A1 of
player 1 is a level-2 strategy if no other strategy of player 1 weakly dominates v.

We note that being weakly undominated is not a very demanding property: a strategy can
be weakly undominated even if it fares badly in many scenarios, as illustrated by the following
example.

Example 2. Consider the 4-voter profile over {a, b, c, d} given in Table 2. Suppose that the
voting rule is the plurality rule and the tie-breaking rule is a > b > c > d. As always, we
assume that voter 1 is the level-2 player. Voters 2, 3, and 4 are GS-manipulators; their most
preferred manipulations are, respectively, in favour of d, b, and c. Consider the GS-game where
A2 = {bdac, dbac}, A3 = {cbad, bcad}, A4 = {dcab, cdab}. In this game every vote that does not
rank d first is a level-2 strategy for the first voter. Indeed, a vote that ranks a first is optimal
when all other voters submit their sincere votes; a vote that ranks b first is optimal when voters
2 and 3 stay sincere, but voter 4 votes for c; and a vote that ranks c first is optimal when voter 2
votes for d, but voters 3 and 4 stay sincere. Note, in particular, that, by changing his vote from
abcd (his sincere vote) to cabd, voter 1 changes the outcome from a (his top choice) to c (his
third choice) when other voters vote truthfully; however, this behaviour is rational if voter 1
expects voters 3 and 4 (but not voter 2) to vote sincerely.

Example 2 illustrates that level-2 strategies are not ‘safe’: there can be circumstances where
a level-2 strategy results in a worse outcome than sincere voting. Now, a cautious level-2 player
may prefer to stick to his sincere vote unless he can find a manipulative vote which leads to an
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voter 1 voter 2 voter 3 voter 4

a b c d
b d b c
c a a a
d c d b

Table 2: A profile where voter 1 has three distinct level-2 strategies under the plurality rule.

outcome that is at least as desirable as the outcome under truthful voting, for any combination of
actions of other players that he considers possible. The following definition, which is motivated
by the concept of safe strategic voting (Slinko and White, 2014), describes the set of strategies
that even a very cautious level-2 player would prefer to sincere voting.

Definition 4. Given a GS-game G = (V,R, (Ai)i∈N(V,R)), we say that a strategy v ∈ L(C) of
voter 1 is an improving strategy if v weakly dominates voter 1’s sincere strategy v1.

We note that a level-2 strategy may fail to be an improving strategy, and, conversely, an
improving strategy is not necessarily a level-2 strategy. For instance, in Example 1 approving a
and b is a level-2 strategy, but not an improving strategy, and none of the level-2 strategies in
Example 2 are improving. However, it is easy to see that if a player has an improving strategy,
he also has an improving strategy that is a level-2 strategy. Moreover, an improving strategy
exists if and only if sincere voting is not a level-2 strategy.

A natural goal for a level-2 player would be to identify strategies that weakly dominate
all other (non-equivalent) strategies. However, while strategies with this property are highly
desirable, from the perspective of a strategic voter it is more important to find out whether
his truthful strategy is weakly dominated. Indeed, the main issue faced by a strategic voter
is whether to manipulate at all, and if a certain vote can always ensure an outcome that is
at least as good, and sometimes better, as that guaranteed by his truthful vote, this is a very
strong incentive to use it, even if another non-truthful vote may be better in some situations.
This issue is illustrated by Example 3 below, which describes a profile where a player has two
incomparable improving strategies.

Example 3. Let the profile of sincere preferences be as in Table 3, and assume that the voting
rule is the plurality rule and the tie-breaking order is given by w > d > c > b > a. The winner
at the sincere profile is w. All level-1 strategies of voter 2 are equivalent to cbdwa, whereas all
level-1 strategies of voter 3 are equivalent to dcbwa; voters 4 and 5 are not GS-manipulators.
Consider the GS-game where for i ∈ {2, 3} the set of strategies of player i consists of his truthful
vote and all of his level-1 strategies. voter 1, who is a level-2 player, can manipulate either in
favour of b or in favour of d, by ranking the respective candidate first. Indeed, for voter 1 both
badwc and dabwc weakly dominate truth-telling. However, neither of these strategies weakly
dominates the other: badwc is preferable if no other player uses a level-1 strategy, whereas dabcw
is preferable if voter 2 uses his level-1 strategy, but voter 3 votes sincerely.

We note that a level-2 player may find it useful to act as a counter-manipulator (Pattanaik,
1976; Grandi et al., 2019), i.e., to submit a vote that is not a successful manipulation with
respect to the truthful profile, but neutralises potential strategic actions of another voter. The
following example illustrates one such situation.
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voter 1 voter 2 voter 3 voter 4 voter 5

a b c d w
b c d w a
d d b c b
w w w a c
c a a b d

Table 3: voter 1 has two incomparable improving strategies.

Example 4. Let the profile of sincere preferences be as in Table 4, and assume that the voting
rule is the plurality rule and the tie-breaking order is given by a > b > c. Under truthful voting
a wins, so voter 6 is the only GS-manipulator: if he changes his vote to bca then b wins, and he
prefers b to a. Therefore, for voter 1 voting acb is preferable to voting truthfully: this insincere
vote has no impact if voter 6 votes truthfully, but prevents b from becoming a winner when
voter 6 submits a manipulative vote. Thus, in this example acb is an improving strategy, and
truthful voting is not a level-2 strategy as it is weakly dominated by voting acb. In contrast,
acb is a level-2 strategy, as no other strategy weakly dominates it.

voter 1 voter 2 voter 3 voter 4 voter 5 voter 6

c a a b b c
a b b a a b
b c c c c a

Table 4: Countermanipulation under the plurality rule.

4 Characterising Level-1 Strategies under k-Approval

The goal of this section is to understand and classify level-1 strategies under the k-approval
voting rule; this will help us reason about level-2 strategies in subsequent sections. In what
follows, we fix a linear order > used for tie-breaking. We start with a simple, but useful lemma.

Lemma 1. Fix k ≥ 1. Consider a sincere profile V over C, let w be the k-approval winner at
V , and let x be an alternative in C \ {w}. Then any manipulative vote by voter i in favour of
x at V falls under one of the following two categories:

Type 1 voter i increases the score of x by 1 without decreasing the score of w. In this case
w, x 6∈ topk(vi), x �i w, and the manipulative vote v′i satisfies x ∈ topk(v

′
i), w 6∈ topk(v

′
i).

In such cases voter i will be referred to as a promoter of x.

Type 2 voter i decreases the score of w (and possibly that of some other alternatives) by 1
without increasing the score of x. In this case w, x ∈ topk(vi), x �i w, and the manipulative
vote v′i satisfies x ∈ topk(v

′
i), w 6∈ topk(v

′
i). In such cases voter i will be referred to as a

demoter of w. Manipulations of type 2 only exist for k ≥ 2.

Proof. Suppose that voter i manipulates in favour of x. If i can increase the score of x, then x 6∈
topk(vi). However, i must rank x higher than w (otherwise, this would not be a manipulation).
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Thus, w 6∈ topk(vi) and therefore voter i cannot decrease w’s score. Moreover, if w ∈ topk(v
′
i),

then w would beat x under k-approval in (V−i, v
′
i); thus, w 6∈ topk(v

′
i).

On the other hand, suppose that i cannot increase the score of x. This means that x ∈
topk(vi) and hence i can only reduce the scores of some of x’s competitors including the current
winner w. For this to be possible, it has to be the case that w ∈ topk(vi) and x �i w. Also, we
have w 6∈ topk(v

′
i), as otherwise w would beat x under k-approval in (V−i, v

′
i). Finally, as w 6= x,

we can only have x,w ∈ topk(vi) if k ≥ 2.

The classification in Lemma 1 justifies our terminology: a promoter promotes a new winner
and a demoter demotes the old one. With the plurality rule, i.e., when k = 1, we only have
promoters.

Let X = {x1, . . . , x`} and Y = {y1, . . . , y`} be two disjoint sets of candidates. Given a linear
order v over C, we denote by v[X;Y ] the vote obtained by swapping xj with yj for j ∈ [`]. If
the sets X and Y are singletons, i.e., X = {x}, Y = {y}, we omit the curly braces, and simply
write v[x; y]. Clearly, under k-approval any manipulative vote of voter i is equivalent to a vote
of the form vi[X;Y ], where X ⊆ topk(vi), Y ⊆ C \ topk(vi). We can now state a corollary of
Lemma 1, which characterises the possible effects of a manipulative vote under k-approval.

Corollary 2. Let w be the k-approval winner at a sincere profile V , let v∗i = vi[X;Y ] be a
manipulative vote, where X ⊆ topk(vi) and Y ⊆ C \ topk(vi). Let V ′ = (V−i, v

∗
i ), and let w′ 6= w

be the k-approval winner at V ′. Then either w ∈ X or w′ ∈ Y but not both.

Consider a manipulative vote vi[X;Y ] of voter i at a sincere profile V under k-approval;
we say that vi[X;Y ] is minimal if for every other manipulative vote v′i of voter i there is a
vote vi[X

′;Y ′] that is equivalent to v′i and satisfies |X ′| ≥ |X|. That is, a manipulative vote
is minimal if it performs as few swaps as possible. Arguably, minimal manipulative votes are
the main tool that a rational voter would use, as they achieve the desired result in the most
straightforward way possible.

We now introduce some useful notation. Fix a profile V . Let w be the k-approval winner at
V , and let t = sck(w, V ). Set

S1(V, k) = {c ∈ C | sck(c) = t, w > c},
S2(V, k) = {c ∈ C | sck(c) = t− 1, c > w},

and set S(V, k) = S1(V, k) ∪ S2(V, k).
The following proposition explains our attention to this set: only candidates from S(V, k)

can become k-approval winners as a result of a manipulation.

Proposition 1. Suppose that some voter can manipulate in favour of a candidate p ∈ C at a
sincere profile V with respect to k-approval. Then p ∈ S(V, k).

Proof. Let w be the k-approval winner at V ; clearly, w 6= p. Suppose that voter i can manipulate
in favour of p at V by submitting a vote v′i; let V ′ = (V−i, v

′
i). Set t = sck(w, V ); then

sck(p, V ) ≤ t. Note that if sck(p, V ) = t, it has to be the case that w > p, since otherwise p would
beat w at V . Thus, in this case p ∈ S1(V, k). Now, suppose that sck(p, V ) = t−1. By Corollary 2
we have either sck(w, V

′) = sck(p, V
′) = t (if p was promoted) or sck(w, V

′) = sck(p, V
′) = t− 1

(if w was demoted). In both cases we have to have p > w, as otherwise w would beat p at V ′.
Therefore, in this case p ∈ S2(V, k). Finally, note that it cannot be the case that sck(p, V ) ≤ t−2,
since in this case by Corollary 2 we would have either sck(w, V

′) ≥ t − 1, sck(p, V
′) ≤ t − 2 or

sck(w, V
′) = t, sck(p, V

′) ≤ t− 1, i.e., w would beat p at V ′.
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Suppose that S(V, k) 6= ∅. If S1(V, k) 6= ∅, then by p∗(V, k) we denote the top-ranked candi-
date in S1(V, k) with respect to >; otherwise, we denote by p∗(V, k) the top-ranked candidate
in S2(V, k) with respect to >. Thus, p∗(V, k) beats all candidates other than w at V , and would
become a winner if it were to gain one point or if w were to lose one point. We omit V and k
from the notation when they are clear from the context.

We are now ready to embark on the computational complexity analysis of level-2 strategies
under k-approval, for various values of k.

5 The Plurality Rule

Recall that the plurality rule is R1, i.e., k-approval with k = 1. For this rule we only have
manipulators of type 1 (recall the definition in Section 4), and all manipulative votes of voter i
in favour of candidate c are equivalent: in all such votes c is ranked first. The main result of this
section shows that the problem of deciding whether a given strategy of voter 1 weakly dominates
another strategy can be decided in polynomial-time. Note that, since under the plurality rule
there are only m votes that are pairwise non-equivalent, this means that we can check if a given
strategy is a level-2 strategy or an improving strategy, or find a level-2 strategy or an improving
strategy (if it exists) in polynomial time; we formalise this intuition in Corollary 5 at the end of
this section.

Fix a sincere preference profile V over a candidate set C, let N = N(V,R1), and consider
a GS-game (V,R1, (Ai)i∈N ). Let w be the plurality winner at V . As argued above, for each
i ∈ N \ {1} the set Ai consists of vi and possibly a number of pairwise equivalent manipulative
votes; without loss of generality, we can remove all but one manipulative vote, so that |Ai| ≤ 2
for all i ∈ N \ {1}. We will now explain how, given two votes v′1 and v′′1 , voter 1 can efficiently
decide if one of these votes weakly dominates the other.

We will first describe a subroutine that will be used by our polynomial-time algorithm.

Lemma 3. There is a polynomial-time procedure

Alg = Alg(G, r, r′, x, y, C [1], C [0], C [−1], C [−2])

that, given a GS-game G = (V,R1, (Ai)i∈N(V,R1)) with |V | = n, two integers r, r′ ∈ {0, . . . , n},
two distinct candidates x, y ∈ C, and a partition of candidates in C \{x, y} into C [1], C [0], C [−1]

and C [−2], decides whether there is a strategy profile V ∗ in G such that

• sc1(x, V [V ∗]−1) = r,

• sc1(y, V [V ∗]−1) = r′, and

• for each c ∈ C \ {x, y} and each ` ∈ {1, 0,−1,−2} if c ∈ C [`] then sc1(c, V [V ∗]−1) ≤ r+ `.

Proof. We proceed by reducing our problem to an instance of network flow with capacities and
lower bounds, as follows. We construct a source, a sink, a node for each voter i ∈ [n]\{1} and a
node for each candidate in C. There is an arc from the source to each voter node; the capacity
and the lower bound of this arc are set to 1, i.e., it is required to carry one unit of flow. Also,
there is an arc with capacity 1 and lower bound 0 from voter i to candidate c if i ∈ N(V,R1)\{1}
and c = top(v) for some v ∈ Ai or if i ∈ [n] \ (N(V,R1)∪ {1}) and c = top(vi). Finally, there is
an arc from each candidate c to the sink. The capacity of this arc is set to r + ` if c ∈ C [`] for
some ` ∈ {1, 0,−1,−2}; the lower bounds for these arcs are 0. For x, both the capacity and the
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lower bound of the arc to the sink are set to r, and for y they are both set to r′. We note that
some of the capacities may be negative, in which case there is no valid flow. It is immediate
that an integer flow that satisfies all constraints corresponds to a strategy profile in G where all
candidates have the required scores; it remains to observe that the existence of a valid integer
flow can be decided in polynomial time.

We are now ready to describe our algorithm.

Theorem 4. Given a GS-game G = (V,R1, (Ai)i∈N(V,R1)) and two strategies v′1, v
′′
1 ∈ L(C) of

voter 1 we can decide in polynomial time whether v′1 weakly dominates v′′1 .

Proof. We will design a polynomial-time procedure that, given two strategies u, v of voter 1,
decides if there exists a profile V ∗−1 of other players’ strategies such that R1(V [V ∗−1, u]) �1

R1(V [V ∗−1, v]); by definition, v′1 weakly dominates v′′1 if this procedure returns ‘yes’ for u = v′1,
v = v′′1 and ‘no’ for u = v′′1 , v = v′1.

Let a = top(u), b = top(v). We can assume without loss of generality that a 6= b, since
otherwise u and v are equivalent with respect to plurality. Consider an arbitrary profile V ∗−1 of
other players’ strategies, and let V u = V [V ∗−1, u], V v = V [V ∗−1, v], wu = R1(V u), wv = R1(V v).
We note that wu 6= a implies wv 6= a: if wu beats a at V u, this is also the case at V v. Similarly,
if wv 6= b then also wu 6= b. Now, suppose that wu 6= a and wv 6= b. We claim that in this case
wu = wv. Indeed, suppose for the sake of contradiction that wu 6= wv. As wu 6= a, wv 6= b, the
argument above shows that {wu, wv} ∩ {a, b} = ∅. Thus, both wu and wv have the same score
under the plurality rule at V u and V v; as wu beats wv at V u, this must also be the case at V v,
a contradiction.

Note that R1(V [V ∗−1, u]) �1 R1(V [V ∗−1, v]) if and only if wu �1 w
v. By the argument in the

previous paragraph, this can happen in one of the following three cases: (i) wu = a, wv = b and
a �1 b; (ii) wu = a, wv = w for some w 6= b, a �1 w; (iii) wu = w, wv = b for some w 6= a,
w �1 b. (We note that we can merge case (i) into case (ii) or case (iii); we choose not to do so
for the sake of clarity of presentation.) We will now explain how to check if there exists a profile
V ∗−1 that corresponds to any of these three situations.

Case (i): wu = a, wv = b.

Suppose first that a > b. Then a desired profile V ∗−1 exists if and only if there is some
value t ∈ [n] such that sc1(a, V u) = t and

(a) sc1(b, V u) = t, sc1(c, V u) ≤ t for all c ∈ C \ {a, b} with a > c, sc(c, V u) ≤ t− 1 for all
c ∈ C \ {a, b} with c > a, or

(b) sc1(b, V u) = t−1, sc1(c, V u) ≤ t for all c ∈ C \{a, b} with b > c, and sc(c, V u) ≤ t−1
for all c ∈ C \ {a, b} with c > b.

Note that sc1(a, V u
−1) = sc1(a, V u)− 1 and sc1(c, V u

−1) = sc1(c, V u) for c ∈ C \ {a}. Thus,

to check if condition (a) is satisfied for some t ∈ [n], we set C [1] = {c ∈ C \ {a, b} | a > c},
C [0] = {c ∈ C \ {a, b} | c > a}, C [−1] = C [−2] = ∅ and call

Alg(G, t− 1, t, a, b, C [1], C [0], C [−1], C [−2]).

Similarly, to determine whether condition (b) is satisfied for some t ∈ [n], we set C [1] =
{c ∈ C \ {a, b} | b > c}, C [0] = {c ∈ C \ {a, b} | c > b}, C [−1] = C [−2] = ∅ and call

Alg(G, t− 1, t− 1, a, b, C [1], C [0], C [−1], C [−2]).
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The answer is ‘yes’ if one of these calls returns ‘yes’ for some t ∈ [n].

For the case b > a the analysis is similar. In this case, we need to decide whether there
exists a value of t ∈ [n] such that sc1(a, V u) = t and

(a) sc1(b, V u) = t−1, sc1(c, V u) ≤ t for all c ∈ C \{a, b} with a > c, and sc(c, V u) ≤ t−1
for all c ∈ C \ {a, b} with c > a, or

(b) sc1(b, V u) = t− 2, sc1(c, V u) ≤ t− 1 for all c ∈ C \ {a, b} with b > c, and sc(c, V u) ≤
t− 2 for all c ∈ C \ {a, b} with c > b.

Again, this can be decided by calling the procedure Alg with appropriate parameters; we
omit the details.

Case (ii): wu = a, wv = w for some w with a �1 w. In this case, we go over all candidates
w ∈ C \ {a, b} with a �1 w and all values of t ∈ [n] and call Alg with appropriate
parameters.

Specifically, if a > w, we start by setting r = t− 1, r′ = t, and

C [1] = {c ∈ C \ {a,w, b} | w > c}, C [0] = {c ∈ C \ {a,w, b} | c > w}, C [−1] = C [−2] = ∅.

We then place b in C [0] if w > b and in C [−1] otherwise; our treatment of b reflects the fact
that she gets an extra point at V v.

If w > a we start by setting r = t− 1, r′ = t− 1, and

C [1] = ∅, C [0] = {c ∈ C \ {a,w, b} | w > c}, C [−1] = {c ∈ C \ {a,w, b} | c > w}, C [−2] = ∅.

We then place b in C [−1] if w > b and in C [−2] otherwise.

Finally, we call
Alg(G, r, r′, a, w,C [1], C [0], C [−1], C [−2]).

The answer is ‘yes’ if one of these calls returns ‘yes’ for some t ∈ [n] and some w with
a �1 w.

Case (iii): wu = w, wv = b for some w with w �1 b. The analysis is similar to the previous
case; we omit the details.

Theorem 4 immediately implies that natural questions concerning level-2 strategies and
improving strategies are computationally easy.

Corollary 5. Given a GS-game G = (V,R1, (Ai)i∈N(V,R1)) and a strategy v′1 ∈ L(C) of voter 1
we can decide in polynomial time whether v′1 is a level-2 strategy or an improving strategy.
Moreover, we can decide in polynomial time whether voter 1 has a level-2 strategy or an improving
strategy in G.

Proof. Let a = top(v′1). To decide whether v′1 is an improving strategy, we use the algorithm
described in the proof of Theorem 4 to check whether v′1 weakly dominates v1. Similarly, to
decide whether v′1 is a level-2 strategy, for each c ∈ C\{a} we construct a vote vc with top(vc) = c
and check whether vc weakly dominates v′1 using the algorithm from the proof of Theorem 4.
As every strategy of voter 1 is equivalent either to v′1 or to one of the votes we constructed, v′1
is a level-2 strategy if and only if it is not weakly dominated by any of the votes vc, c ∈ C \ {a}.

Similarly, to decide whether voter 1 has a level-2 strategy (respectively, an improving strat-
egy), we consider all of his m pairwise non-equivalent strategies, and check if any of them is a
level-2 strategy (respectively, an improving strategy), as described in the previous paragraph.
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Observe that, as the number of non-equivalent strategies available to a voter under the
plurality rule is m, the problem of deciding whether voter 1 has an improving or a manipulative
strategy has the same computational complexity as the problem of finding it, and the proposed
algorithms can be used for the latter task as well.

6 2-Approval

In this section, we study the computational complexity of identifying level-2 strategies and
improving strategies in GS-games under 2-approval. We show that if the level-2 player believes
that level-1 players can only contemplate minimal manipulations, he can efficiently compute his
level-2 strategies as well as his improving strategies. As argued in Section 4, minimality is a
reasonable assumption, as level-1 players have no reason to use complex strategies when simple
strategies can do the job.

Specifically, we prove that, under the minimality assumption, given two strategies v′ and
v′′, the level-2 player can decide in polynomial time whether one of these strategies weakly
dominates the other; just as in the case of the plurality rule, this implies that he can check
in polynomial time whether a given strategy is a level-2 (respectively, improving) strategy or
identify all of his level-2 (respectively, improving) strategies.

The following observations play a crucial role in our analysis.

Proposition 2. Consider a GS-game G = (V,R2, (Ai)i∈N(V,R2)). Let w be the 2-approval
winner at V . Then for each player i ∈ N(V,R2) \ {1} such that w ∈ top2(vi) it holds that
top(vi) 6= w and the candidate top(vi) is ranked in the top two positions in every vote v ∈ Ai.

Proposition 2 concerns voters who are demoters, and follows immediately from Lemma 1;
note also that it does not depend on the minimality assumption.

Proposition 3. Consider a GS-game G = (V,R2, (Ai)i∈N(V,R2)). Let w be the 2-approval
winner at V . Consider a player i ∈ N(V,R2)\{1} such that w 6∈ top2(vi) and the set Ai consists
of i’s truthful vote and a subset of i’s minimal manipulations. Let top2(v) = {a, a′}. Then there
is a candidate c ∈ C \{a, a′} such that for each v ∈ Ai we have top2(v) ∈ {{a, a′}, {a, c}, {a′, c}}.

Proof. Player i cannot lower the score of w by changing his vote, but he can raise the scores
of some candidates in C \ top2(vi) by moving these candidates into the top two positions. In
general, i can do that for two candidates simultaneously; however, the minimality assumption
implies that i only moves one candidate into the top two positions. Thus, i is a promoter (see
Section 2). For a vote v′1 to be a level-1 strategy the promoted candidate has to be i’s most
preferred candidate in S(V, 2) \ top2(vi) (let us denote this candidate by p). Thus, in this case
voter i has three options: (1) to vote truthfully, (2) to swap p with the candidate that he ranks
first or (3) to swap p with the the candidate he ranks second. This completes the proof.

Propositions 2 and 3 enable us to establish an analogue of Lemma 3 for 2-approval under
the minimality assumption.

Lemma 6. There is a polynomial-time procedure

Alg ′ = Alg ′(G, r, r′, x, y, C [1], C [0], C [−1], C [−2])

that, given a GS-game G = (V,R2, (Ai)i∈N(V,R2)) with |V | = n, where for each i ∈ N \ {1}
the set Ai consists of i’s truthful vote and a subset of i’s minimal manipulations, two integers
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r, r′ ∈ {0, . . . , n}, two distinct candidates x, y ∈ C, and a partition of candidates in C \ {x, y}
into C [1], C [0], C [−1] and C [−2], decides whether there is a strategy profile V ∗ in G such that

• sc2(x, V [V ∗]−1) = r,

• sc2(y, V [V ∗]−1) = r′, and

• for each ` ∈ {1, 0,−1,−2} and each c ∈ C [`] it holds that sc2(c, V [V ∗]−1) ≤ r + `.

Proof. We transform an instance of our problem into an instance of the network flow problem
using essentially the same construction as in the proof of Lemma 3. Let w be the 2-approval
winner at V . If S(V, 2) 6= ∅, set p∗ = p∗(V, 2). We construct a flow network as follows. The set
of nodes consists of a source, a sink, one node for each voter in [n] \ {1}, and one node for each
candidate c ∈ C. For each i ∈ [n] \ {1}, the capacity and the lower bound of the arc from the
source to node i are equal to 2, and the capacities and lower bounds of the arcs from candidates
to the sink are defined as in the proof of Lemma 3. It remains to describe the arcs connecting
voters and candidates.

If i 6∈ N , we add an arc from i to c for each c ∈ top2(vi); the capacity and the lower bound
of these arcs are 1, encoding the fact that i has to vote for his top two candidates.

Now, consider a voter i ∈ N \{1} who is a demoter; if such a voter exists, we have S(V, 2) 6= ∅
and hence p∗ is well-defined. By Proposition 2 we have top2(vi) = {p∗, w} and Ai = {vi[w; c] |
c ∈ Ci} for some Ci ⊂ C \ {p∗, w}. Then we introduce an arc from i to p∗ whose capacity
and lower bound are both set to 1, and arcs with capacity 1 and lower bound 0 from i to each
c ∈ Ci ∪ {w}.

Finally, consider a voter i ∈ N \ {1} who is a promoter; let top2(vi) = {a, a′} and let p be i’s
most preferred candidate in S(V, 2)\{a, a′}. If Ai contains both a vote v′ with top2(v′) = {a, p}
and a vote v′′ with top2(v′′) = {a′, p}, then by Proposition 3 it suffices to add arcs with capacity
1 and lower bound 0 that go from i to a, a′, and p. If we have top2(v) ∈ {{a, a′}, {a, p}} for each
v ∈ Ai, we add an arc with capacity 1 and lower bound 1 from i to a and arcs with capacity 1
and lower bound 0 from i to a′ and p. Similarly, if we have top2(v) ∈ {{a, a′}, {a′, p}} for each
v ∈ Ai, we add an arc with capacity 1 and lower bound 1 from i to a′ and arcs with capacity 1
and lower bound 0 from i to a and p.

It is clear from the construction that a valid integer flow in this network corresponds to a
strategy profile V ∗ with the desired properties.

We are now ready to prove the main result of this section.

Theorem 7. Given a GS-game G = (V,R2, (Ai)i∈N(V,R2)), where for each i ∈ N \ {1} the set
Ai consists of i’s truthful vote and a subset of i’s minimal manipulations, and two strategies
v′1, v

′′
1 ∈ L(C) of voter 1, we can decide in polynomial time whether v′1 weakly dominates v′′1 .

Proof. Just as in the proof of Theorem 4, it suffices to design a polynomial-time procedure
that, given two strategies u, v of voter 1, decides if there exists a profile V ∗−1 of other players’
strategies such that R2(V [V ∗−1, u]) �1 R2(V [V ∗−1, v]). Let top2(u) = {a, a′}, top2(v) = {b, b′}.
We can assume that {a, a′} 6= {b, b′}, and we will focus on the case where {a, a′} ∩ {b, b′} = ∅;
the case where {a, a′} ∩ {b, b′} is a singleton is similar (and simpler).

We use the same notation as in the proof of Theorem 4: given a profile V ∗−1 of other players’
strategies, we let V u = V [V ∗−1, u], V v = V [V ∗−1, v], wu = R2(V u), wv = R2(V v). Our goal
then is to decide if there exists a profile V ∗−1 such that wu �1 w

v. To this end, we go over all
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values of t ∈ [n] and all candidates w,w′ ∈ C with w �1 w
′, and ask if there is a profile V ∗−1

such that w wins at V [V ∗−1, u] with t points, whereas w′ wins at V [V ∗−1, v]. As in the proof of
Theorem 4, for each triple (t, w,w′) we have to consider a number of possibilities, depending on
whether w ∈ {a, a′}, w′ ∈ {b, b′} as well as on the relative positions of w, w′, a, a′, b, and b′ with
respect to the tie-breaking order. The analysis is straightforward; to illustrate the main points,
we consider two representative cases.

w = a,w′ = b, a > a′ > b > b′ In this case, a wins with t points at V u if and only if
sc2(a′, V u

−1) ≤ t − 1 and for each c ∈ C \ {a, a′} we have sc2(c, V u
−1) ≤ t if a > c and

sc2(c, V u
−1) ≤ t − 1 if c > a. Suppose that these conditions are satisfied. Then b can win

at V v with t+ 1 or t points. The former case is possible if and only if sc2(b, V u
−1) = t. The

latter case is possible if and only if sc2(b, V u
−1) = t − 1, sc2(b′, V u

−1) ≤ t − 1, and for each
c ∈ C \ {a, b, b′} we have sc2(c, V u

−1) ≤ t if b > c and sc2(c, V u
−1) ≤ t− 1 if c > b.

Thus, to decide whether this situation is possible, we have to call Alg ′ twice. For our
first call, we set C [1] = {c ∈ C \ {a′, b} | a > c}, C [0] = {c ∈ C \ {a′} | c > a} ∪ {a′},
C [−1] = C [−2] = ∅ and call

Alg ′(G, a, b, t− 1, t, C [1], C [0], C [−1], C [−2]).

For our second call, we set C [1] = {c ∈ C \ {b′} | b > c}, C [0] = {c ∈ C \ {a} | c > b}∪{b′},
C [−1] = C [−2] = ∅ and call

Alg ′(G, a, b, t− 1, t− 1, C [1], C [0], C [−1], C [−2]).

w 6∈ {a, a′, b, b′}, w′ = b, b′ > b > a′ > w > a If w wins at V u with t points, this means
that sc2(w, V u

−1) = t, sc2(a′, V u
−1) ≤ t − 2, sc2(a, V u

−1) ≤ t − 1, sc2(c, V u
−1) ≤ t for all

c ∈ C \ {w, a, a′} with w > c, and sc2(c, V u
−1) ≤ t− 1 for all c ∈ C \ {w, a, a′} with c > w.

Suppose that these conditions are satisfied. As w still receives t points at V v, this means
that b wins at V v if and only if sc2(b, V u

−1) = t − 1, sc2(b′, V u
−1) ≤ t − 2. Thus, we set

C [1] = ∅, C [0] = {c ∈ C \ {a} | w > c}, C [−1] = {c ∈ C \ {a′, b, b′} | c > w}, C [−2] = {a′, b′}
and call

Alg ′(G,w, b, t, t− 1, C [1], C [0], C [−1], C [−2]).

Just as for the plurality rule, we obtain the following corollary, which describes the complexity
of finding and testing level-2 strategies and improving strategies under 2-approval.

Corollary 8. Given a GS-game G = (V,R2, (Ai)i∈N(V,R2)), where for each i ∈ N the set Ai
consists of i’s truthful vote and a subset of his minimal manipulations, and a strategy v′1 ∈ L(C)
of voter 1 we can decide in polynomial time whether v′1 is a level-2 strategy and whether v′1 is an
improving strategy. Moreover, we can decide in polynomial time whether voter 1 has a level-2
strategy or an improving strategy in G.

We remark that the minimality assumption plays an important role in our analysis. Indeed,
in the absence of this assumption a promoter i may manipulate by swapping two different
candidates into the top two positions. Let vi[top2(vi); {p, c}] be some such manipulation, where
p is i’s most preferred candidate in S(V, 2) \ top2(vi). If we try to model this possibility via a
network flow construction, we would have to add edges from i to both p and c; the lower bounds
on these edges would have to be set to 0, to allow i to vote truthfully. However, there may then
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be a flow that uses the edge (i, c), but not (i, p), which corresponds to a vote that promotes c,
but not p; such a vote is not a level-1 strategy.

Interestingly, a level-2 player may want to swap two candidates into the top two positions,
even if he assumes that all level-1 players use minimal strategies. In fact, the following example
shows that a strategy of this form may weakly dominate all other non-equivalent strategies.

Example 5. Let the profile of sincere preferences be as in Table 5, and assume that the voting
rule is 2-approval and the tie-breaking order is given by a > b > c > d > . . . . Assume that
voter 1 is the level-2 player. The winner under 2-approval is a with two points; candidates b, c,
and d also have two points each. Voters 4 and 5 are GS-manipulators; voter 4 may manipulate
by swapping c into the top two positions, and voter 5 may manipulate by swapping d into the
top two positions.

Consider the GS-game where N = {1, 4, 5}, A4 = {v4, v4[b; c]}, and A5 = {v5, v5[b; d]} (note
that both A4 and A5 only contain a proper subset of the respective player’s minimal manip-
ulations; for instance, v4[u1; c] 6∈ A4). We claim that v1[{u5, u6}; {b, c}] is a weakly dominant
strategy for voter 1. Indeed, consider the four possible scenarios:

• Voters 4 and 5 are truthful. Then the best outcome that voter 1 can ensure is that b wins.

• Voter 4 is truthful, but voter 5 manipulates. Then the best outcome that voter 1 can
ensure is that c wins.

• Voter 4 manipulates, but voter 5 is truthful. Then the best outcome that voter 1 can
ensure is that c wins.

• Voters 4 and 5 both manipulate. Then the best outcome that voter 1 can ensure is that c
wins.

Now, it is clear that only votes that rank b and c in the top two positions achieve all of these
objectives simultaneously.

voter 1 voter 2 voter 3 voter 4 voter 5 voter 6 voter 7

u5 a a b b c c
u6 d d u1 u2 u3 u4

b . . . . . . c d a a
c . . . . . . . . . . . . . . . . . .
d . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

Table 5: The strategy bc . . . of voter 1 weakly dominates all non-equivalent strategies.

7 k-Approval for k ≥ 3

Regrettably, our analysis of k-approval under the minimality assumption does not extend from
k = 2 to k = 3. Specifically, the argument breaks down when we consider a potential demoter
under 3-approval who can only help his top candidate by swapping his second and third candidate
out of the top three positions. If he chooses to manipulate, he has to perform both of these
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swaps at once; he can also remain truthful and not perform any swaps. It is not clear how to
capture this all-or-nothing behaviour via network flows. We conjecture that finding a level-2
strategy under 3-approval is computationally hard, even under the minimality assumption. We
will now prove a weaker result, showing that this problem is NP-hard for k-approval with k ≥ 4
(and without the minimality assumption). Moreover, we will also show that it is coNP-hard to
decide whether a given strategy is improving.

Theorem 9. For every fixed k ≥ 4, given a GS-game G = (V,Rk, (Ai)i∈N ) and a strategy v of
voter 1, it is NP-hard to decide whether v is a level-2 strategy, and it is coNP-hard to decide
whether v is an improving strategy.

Proof. Our hardness proof proceeds by a reduction from the classic NP-complete problem Exact
Cover by 3-Sets (X3C). An instance of this problem is given by a ground set Γ = {g1, . . . , g3ν}
and a collection Σ = {σ1, . . . , σµ} of 3-element subsets of Γ. It is a ‘yes’-instance if there is a
subcollection Σ′ ⊆ Σ with |Σ′| = ν such that ∪σ∈Σ′σ = Γ, and a ‘no’-instance otherwise.

We will first establish that our problems are hard for k = 4; towards the end of the proof,
we will show how to extend our argument to k > 4.

Consider an instance I0 = (Γ0,Σ0) of X3C with |Γ0| = 3ν ′. We will first modify this
instance as follows. We add three new elements to Γ0 and a set containing them to Σ0. We
then add ν ′ + 2 triples xi, yi, zi, i ∈ [ν ′ + 2], of new elements to Γ0 and for each such triple we
add the set Si = {xi, yi, zi} to Σ0. Finally, we add sets S′i = {yi, zi, xi+1}, i ∈ [ν ′ + 1], and
S′ν′+2 = {yν′+2, zν′+2, x1} to Σ0. We then renumber the elements of the ground set so that the
elements added at the first step are numbered g1, g2, g3. We denote the resulting instance by
(Γ,Σ), and let ν = |Γ|/3, µ = |Σ|. Clearly, I = (Γ,Σ) is a ‘yes’-instance of X3C if and only if
I = (Γ0,Σ0) is. We let Σ̂ = {Si, S′i | i ∈ [ν ′ + 2]}; we have ν = 2ν ′ + 3, |Σ̂| = 2(ν ′ + 2).

We construct a GS-game as follows. We introduce a set of candidates C ′ = {c1, . . . , c3ν}
that correspond to elements of Γ, three special candidates w, p, c, and, finally, a set of dummy
candidates

D =

µ⋃
i=0

Di ∪Dc ∪
ν+1⋃
j=1

Ej ∪
3ν⋃
i=1

ν+1⋃
j=1

Fi,j ,

where |Di| = 4 for i = 0, . . . , µ, |Dc| = 3, and |Ej | = 2, |Fi,j | = 3 for i ∈ [3ν], j ∈ [ν + 1]. Thus,
the set of candidates is C = {w, p, c} ∪ C ′ ∪ D. We define the tie-breaking order > on C by
setting

w > c > p > c1 > · · · > c3ν > D.

For each j ∈ [µ], we let Cj = {ci | gi ∈ σj}.
In what follows, when writing X � Y in the description of an order �, we mean that all

elements of X are ranked above all elements of Y , while the elements within X and within Y are
ranked according to the tie-breaking order >. The profile V consists of 2 + µ+ (3ν + 1)(ν + 1)
votes defined as follows:

z0 = D0 � p � c1 � c � C ′ \ {c1} � . . . ,
zi = Di � Ci � c � . . . , i ∈ [µ],

u = c � Dc � w � . . . ,
uj = w � p � Ej � . . . , j ∈ [ν + 1],

ui,j = ci � Fi,j � w � . . . i ∈ [3ν], j ∈ [ν + 1].
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We have
sc4(w, V ) = sc4(p, V ) = sc4(ci, V ) = ν + 1 for all i ∈ [3ν],

sc4(c, V ) = 1, and sc4(d, V ) ≤ 1 for each d ∈ D. Thus, w wins under 4-approval because of the
tie-breaking rule.

We have S(V, 4) = C ′ ∪ {p}. The set of GS-manipulators in this profile consists of the first
µ+ 1 voters; we assume that the first voter (i.e., voter 0) is the level-2 voter. We now define a
GS-game for this profile by constructing the players’ sets of strategies as follows:

z′i = zi[Di;Ci ∪ {c}], Ai = {zi, z′i} for all i ∈ [µ].

Observe that for each i ∈ [µ] the vote z′i is a level-1 strategy for voter i, which makes i’s top
candidate in Ci the winner with ν + 2 points (note that voter i orders Ci in the same way as >
does, so tie-breaking favours i’s most preferred candidate in Ci). This completes the description
of the game G.

Fix some d, d′ ∈ D0 and let

z′0 = z0[{d, d′}; {p, c}], z′′0 = z0[d; p].

Note that both z′0 and z′′0 are level-1 strategies for voter 0, which make p the winner with ν + 2
points. Clearly, we can construct the profile V and the players’ sets of strategies in polynomial
time given I.

We will now argue that z′0 is an improving strategy if and only if I = (Γ,Σ) is a ‘no’-instance
of X3C, and that z′′0 is a level-2 strategy if and only if I = (Γ,Σ) is a ‘yes’-instance of X3C.

As a preliminary observation, consider some strategy z of voter 0 such that top4(z) consists
of p and three dummy candidates. By construction, for every profile of other players’ strategies,
z and z′′0 result in the same outcome. Moreover, if everyone except voter 0 votes truthfully,
voter 0 strictly prefers z′′0 to every strategy ẑ with top4(ẑ) ⊆ D. Thus, z′′0 can only be weakly
dominated by a strategy that places at least one candidate from C ′ ∪ {c, w} in top 4 positions.

Suppose first that I is a ‘yes’-instance of X3C. Fix a subcollection Σ′ witnessing this, and
consider a profile V ′ where the GS-manipulators that correspond to sets in Σ′ vote strategically,
whereas everyone else votes truthfully. We have sc4(p, V ′) = sc4(c, V ′) = sc4(w, V ′) = ν + 1,
sc4(ci, V

′) = ν + 2 for all ci ∈ C ′, so c1 wins. However, if voter 0 changes his vote to z′0, the
winner would be c, and voter 0 prefers c1 to c, so voter 0 strictly prefers voting z0 over voting
z′0 in this case, i.e., z′0 is not an improving strategy.

Now, if voter 0 changes her vote to z′′0 instead, p becomes the election winner, which is
the best feasible outcome from voter 0’s perspective. The only way for voter 0 to achieve this
outcome is to rank p and some dummy candidates in the top 4 positions; any vote ẑ with
top4(ẑ) ∩ (C ′ ∪ {c, w}) 6= ∅ is strictly worse for voter 0, and hence cannot weakly dominate z′′0 .
As we have already observed that no strategy ẑ with top4(ẑ) ∩ (C ′ ∪ {c, w}) = ∅ can weakly
dominate z′′0 , it follows that if I is a ‘yes’-instance of X3C then z′′0 is a level-2 strategy.

On the other hand, suppose that I is a ‘no’-instance of X3C. Consider a strategy profile V ∗ in
G, and let Σ′′ be a subcollection of Σ that corresponds to players in [µ] who vote non-truthfully
in V ∗; we know that Σ′′ is not an exact cover of Γ. We will argue that voter 0 weakly prefers z′0
to both z0 and z′′0 for every choice of Σ′′, and there are choices of Σ′′ for which this preference
is strict.

If Σ′′ = ∅, i.e., all voters in [µ] are truthful, then voter 0 benefits from changing his vote from
z0 to z′0, as this vote makes p the winner. Similarly, suppose that all sets in Σ′′ are pairwise
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disjoint (and hence |Σ′′| ≤ ν − 1). Then candidate c gets at most ν points and the winner in
V [V ∗−0, z0] is one of the candidates from C ′ (with ν + 2 points). On the other hand, the winner
in V [V ∗−0, z

′
0] is p (with ν + 2 points), so voter 0 benefits from changing his vote to z′0. In both

of these cases, z′′0 has the same effect as z′0.
Now, suppose that the sets in Σ′′ are not pairwise disjoint. Let X be the set of elements that

appear in the largest number of sets in Σ′′, and let g` be the element of X with the smallest
index. Note that g` 6= g1, since we modified our instance of X3C so that g1 only occurs in one
set. The winner in V [V ∗−0, z0] is either c` or c, and the winner’s score is at least ν + 3. Suppose
that voter 0 changes his vote from z0 to z′0. If the winner in V [V ∗−0, z0] was c, this remains to be
the case, and if the winner was c` then either c` remains the winner or c becomes the winner,
and voter 0 prefers c to c`. Thus, in this case voting z′0 is at least as good as voting z0, and
voting z′′0 has the same effect as voting z0.

We conclude that whenever Σ′′ is not an exact cover of Γ, voting z′0 is at least as good
as voting z0 or z′′0 . It remains to establish that z′0 is sometimes strictly better than either of

these strategies. To this end, suppose that Σ′′ = Σ̂. If voter 0 votes z′0, then the scores of the

candidates covered by sets in Σ̂ are ν+3, the score of c is 1+2(ν ′+2)+1 = 2ν ′+6 = ν+3, and
all other candidates have lower scores, so c wins. However, if voter 0 votes z0 or z′′0 , c’s score
is ν + 2, and therefore the winner is a candidate in C ′. Thus, in those circumstances, voter 0
strictly prefers z′0 to both z0 and z′′0 . Hence, if I is a ‘no’-instance of X3C, z′0 weakly dominates
z0 and z′′0 , and hence z′′0 is not a level-2 strategy. This completes the proof for k = 4.

For k > 4, we modify the construction by introducing |V | additional groups of dummy
candidates H1, . . . ,H|V | of size k − 4 each. We renumber the voters from 1 to |V | and modify
the preferences of the i-th voter, i ∈ [µ], by inserting the group Hi in positions 5, . . . , k, and
adding all other new dummy candidates at the bottom of his ranking. Then the k-approval
scores of all candidates in C remain the same as in the original construction, and the k-approval
score of each new dummy candidate is 1. The rest of the proof then goes through without
change.

We note that the strategies of level-1 players in our hardness proof are not minimal; determin-
ing whether our hardness result remains true under the minimality assumption is an interesting
research challenge.

Our complexity lower bounds are not tight: we do not know whether the computational
problems we consider are in, respectively, NP and coNP. The following argument provides upper
bounds on their complexity. Recall that the complexity class DP (difference polynomial-time)
is composed by languages that are an intersection of an NP-language and a coNP-language
(Papadimitriou and Yannakakis, 1984; Wechsung, 1985).

Proposition 4. For every GS-game based on a polynomial-time voting rule (including k-approval)
the problem of checking whether a given strategy is improving is in DP.

Proof. For every n-player game G = (N, (Ai)i∈N , (�i)i∈N ), where each relation �i is represented
by a polynomial-time computable function of its arguments, and for every pair of strategies u,
v of player 1, the problem of deciding whether u weakly dominates v belongs to the complexity
class DP. Indeed, u weakly dominates v if and only if

(a) for every profile P−1 of other players’ strategies we have (P−1, u) �1 (P−1, v) (which can
be checked by a coNP algorithm), and
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(b) for some profile P−1 of other players’ strategies we have (P−1, u) �1 (P−1, v) (which can
be checked by an NP algorithm),

i.e., the language associated with our problem is an intersection of an NP-language and a coNP-
language.

As a corollary, we obtain that for k-approval with a fixed value of k the problem of checking
whether a given strategy is a level-2 strategy belongs to the Boolean hierarchy (see, e.g., Cai
et al. (1988, 1989)). Indeed, there are only

(
m
k

)
≤ mk pairwise non-equivalent votes, and it

suffices to check that none of these votes weakly dominates the given strategy.

8 Conclusions and Further Research

We have initiated the analysis of voting games from the perspective of the appropriately modified
cognitive hierarchy framework. We have adopted a distribution-free approach that uses the
concept of weak dominance in order to reason about players’ actions. The resulting framework is
mathematically rich, captures some interesting behaviours, and presents a number of algorithmic
challenges, even for simple voting rules. To illustrate this, we focused on a well-known family of
voting rules, namely, k-approval with k ≥ 1, and investigated the complexity of finding level-2
strategies and improving strategies with respect to various rules in this family. This choice
enabled us to start from one of the simplest and most used voting rules, i.e., the plurality rule,
and then move upward in order to identify the boundary between tractable and intractable
questions. For the plurality rule, i.e., for k = 1, we found that level-2 strategies and improving
strategies are easy to find, and for k ≥ 4 the associated problems are computationally hard,
but for k = 2, 3 we do not have a full understanding of their computational complexity. We
identify a natural assumption (namely, the minimality assumption), which is sufficient to obtain
an efficient algorithm for k = 2; however, it is not clear if it remains useful for larger values of
k. We list a few specific algorithmic questions that remain open:

• Is there a polynomial-time algorithm for computing level-2 strategies and improving strate-
gies under 2-approval without the minimality assumption?

• Does Theorem 9 remain true under the minimality assumption?

• What can be said about 3-approval, with or without the minimality assumption?

• What can be said about other prominent voting rules, most importantly the Borda rule?

In our analysis, we have focused on level-1 and level-2 players. It would also be interesting
to extend our formal definitions to level-` players for ` ≥ 3 and to investigate the associated
algorithmic issues. While it is intuitively clear that the view of the game for these players will
be more complex, it appears that for the plurality rule our algorithm can be extended in a
straightforward manner; however, it is not clear if this is also the case for 2-approval. Another
interesting question, which can be analysed empirically, is whether truthful voting is likely to be
a level-2 strategy, or, more broadly, how many votes in L(C) are level-2 strategies; again, this
question can also be asked for level-` strategies with ` ≥ 2.

A yet broader question, which can only be answered by combining empirical data and theo-
retical analysis, is whether the cognitive hierarchy approach provides a plausible description of
strategic behaviour in voting. While our paper makes the first steps towards answering it, there
is more to be done to obtain a full picture.
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