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Abstract
We propose a generalisation of liquid democracy in
which a voter can either vote directly on the issues
at stake, delegate her vote to another voter, or ex-
press complex delegations to a set of trusted voters.
By requiring a ranking of desirable delegations and
a backup vote from each voter, we are able to put
forward and compare four algorithms to solve dele-
gation cycles and obtain a final collective decision.

1 Introduction
Advances in information technology are opening up av-
enues for the improvement of democratic practices and col-
lective decision-making processes (see, e.g., Brill [2018]).
One of the most popular ideas is to explore the space be-
tween direct democracy—often infeasible due to the limited
amount of resources decision-makers can invest in each direct
vote—and representative democracy, by allowing for transi-
tive delegations to take place among agents. This method
is named liquid democracy, in contrast to proxy voting in
which delegations are not transitive [Miller, 1969]. Liq-
uid democracy has been the subject of numerous recent in-
vestigations in AI, ranging from analysing its truth-tracking
power [Cohensius et al., 2017; Bloembergen et al., 2019;
Kahng et al., 2018] to its adaptation for multiple issues and
alternatives [Christoff and Grossi, 2017; Brill and Talmon,
2018]. In its simplest form, liquid democracy works as fol-
lows: a collective decision needs to be taken on a binary issue;
agents can either vote directly or delegate their vote to a sin-
gle other agent; direct votes are then weighted by the number
of transitive delegations received, and a final decision is taken
using a standard voting rule.

In this paper we propose to push forward the idea of liquid
democracy under two aspects. First, while most implemen-
tations of liquid democracy [see, e.g., Behrens et al., 2014]
introduce a platform for the elicitation of voters’ delegations,
we aim at a decentralised voting system in which voters’ bal-
lots and delegations can remain private. Thus, we define a
language for voters to express a direct vote, or a delegation to
a single other agent, or a combination of the votes of multiple
other agents. Second, to tackle the issue of delegation cycles
we allow voters to express a number of prioritized delega-
tions, with a final backup vote with the lowest priority. An
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Figure 1: A profile of binary votes in liquid democracy on the left:
voter A delegates her vote to B, who in turn delegates to C, who casts
a direct vote in favour, unlike D who casts a direct vote against.
On the right, a profile of smart ballots: voter A wants her vote to
coincide with the majority of B, C, and D’s votes, and in case this
leads to a delegation cycle she gives a single delegation to B. Voter
B delegates to D, who casts a direct vote against, while C votes in
favour. Voters A and B abstain (*) as their final backup option.

example of what we call a smart ballot can be seen on the
right-hand side of Figure 1.

Two possible practical implementations can be envisaged
for smart voting. The first is a fully decentralised version
that might make use of smart contract technology (hence the
title of this paper), where a smart ballot would be a piece
of self-executable and publicly available code included in a
blockchain, with full transparency and accountability of the
election procedure.1The second, in applications where vote
secrecy is crucial, is a more standard method of votes be-
ing collected by a trusted central authority—raising interest-
ing computational questions on providing a certificate to each
voter that their ballot has been taken into account.
Our contribution. We define a script language for voters
to express ranked, possibly complex, delegations in collective
decisions with multiple issues (Section 2). The intended ap-
plication is voting in a purely preferential setting (deciding on
food is a perfect example [see, e.g., Hardt and Lopes, 2015]),
and delegations are seen as a way to elicit trust or influence
relations among voters. To transform profiles of smart ballots
into direct votes for alternatives we propose four unravelling
procedures (Section 2), and we show that they terminate in
polynomial time (Section 3). The final objective of smart vot-
ing is that of obtaining a collective decision from the agents’

1Recent work by Dhillon et al. [2019] conducts a detailed anal-
ysis of smart contracts for electronic voting and liquid democracy.
See also the reports of Kotsialou et al. [2018] and Riley et al. [2019].



ballots, and we assume here that a standard voting rule is ap-
plied on the outcome of the proposed unravelling procedures.
We investigate further algorithmic properties of our setting in
Section 3, and we conclude with a study of ranked delegations
to single voters and participation axioms (Section 4). Some
proofs are sketched or omitted due to space constraints.
Related work. Recent papers have analysed the efficacy of
liquid democracy and proxy voting as a truth-tracking mech-
anism, mostly for a binary decision [Green-Armytage, 2015;
Cohensius et al., 2017; Kahng et al., 2018; Caragiannis and
Micha, 2019; Bloembergen et al., 2019]. We do not study
truth-tracking here, and rather propose a method to elicit mu-
tual influence from voters and infer a collective decision.

This work takes inspiration from papers trying to solve the
issue of delegation cycles. As in the work of Kotsialou and
Riley [2020] and Escoffier et al. [2019; 2020], we let vot-
ers express a ranking of possible delegates, to break poten-
tial cycles of delegations.2 We also draw inspiration from
Degrave [2014] and Abramowitz and Mattei [2019] in allow-
ing a delegation to be spread to multiple voters. However,
we keep the transitivity of delegations and stick to the prin-
ciple of “one person, one vote” in not splitting the voting
power of any individual. We also borrow from Christoff and
Grossi [2017] the requirement that voters must specify a de-
fault value (i.e., a backup vote) on each issue.

Generalisations of liquid democracy have been studied by
Christoff and Grossi [2017] on multiple logically connected
issues, and by Brill and Talmon [2018], who consider delega-
tions on pairwise preferences on alternatives. We assume here
votes on multiple independent issues, and we also do not con-
sider aspects of strategic voting or analysis of voters power,
as done by Escoffier et al. [2019] and Gölz et al. [2018].

In allowing voters to express complex delegations com-
bining the votes of other agents, we follow the vast litera-
ture on social influence and opinion diffusion on networks
[see, e.g., Easley and Kleinberg, 2010], and most notably,
research studying the use of aggregation functions such as
majority in binary opinion diffusion [Grandi et al., 2015;
Bredereck and Elkind, 2017; Auletta et al., 2018].

2 Formal Framework
We define here the components of our model for smart voting.

2.1 Smart Ballots
In smart voting we have a set N of n agents (or voters) who
decide on a set I of m issues. The alternative values, or sim-
ply alternatives, for each issue i ∈ I range over a non-empty
finite domain D(i), which can also include abstention.

An agent a expresses her opinion over an issue i ∈ I by
submitting a (valid) smart ballot Bai defined as follows:
Definition 1 (Smart Ballot). A smart ballot of agent a for an
issue i ∈ I is an ordering ((S1, F 1) > · · · > (Sk, F k) > x)
where k ≥ 0 and for 1 ≤ h ≤ k we have that Sh ⊆ N is a
set of agents, Fh : D(i)S

h → D(i) is a resolute aggregation
function and x ∈ D(i) is an alternative.

2We note in passing that ranked delegations for collective deci-
sions were also experimented by Google [Hardt and Lopes, 2015].

Thus, a smart ballot can be seen as a preference order-
ing over the agent’s desired delegations, ending with a direct
backup vote for an alternative in the issue’s domain.

Definition 2 (Valid Smart Ballot). A valid smart ballot of
agent a for an issue i ∈ I is a smart ballot such that, for
all 1 ≤ s 6= t ≤ k, (i) if Ss ∩ St 6= ∅ then F s is not equiva-
lent to F t, and (ii) a /∈ Ss.

The two validity requirements ensure that agents are not
manipulating the election by submitting many equivalent ver-
sions of the same delegation function, and that they are not
generating delegation loops by including themselves in the
set of delegates. The following example shows the expres-
siveness of smart ballots:

Example 1. Alice, Bob, Carl, and Diana, wonder whether to
try a new restaurant (1) or stay in (0). Alice knows that her
friends are real foodies, and she is too tired to check online
reviews. She would like to state this complex delegation: “I
vote to go if and only if Bob, and at least one of Carl or Diana,
think it’s worth it.3 If that creates a delegation cycle, I will
copy Bob’s vote. If that also creates a cycle, I will vote to
go”. She submits the following smart ballot:

• (({B,C,D}, B ∧ (C ∨D)) > ({B}, B) > 1).

The next ballot represents Alice wanting to delegate to Bob,
then Carl, then Diana, and as a last resort voting to go:

• (({B}, B) > ({C}, C) > ({D}, D) > 1).

This last ballot expresses Alice wanting to vote with the ma-
jority opinion of her friends, and otherwise voting to go:

• (({B,C,D},Maj) > 1).

Let Bh
ai denote the hth preference level given by agent a

on issue i in her smart ballot Bai—thus, Bh
ai = (Sh

ai, F
h
ai) or

Bh
ai = x with x ∈ D(i). For instance, in Example 1 we have

in the second case that B2
Ai = (S2

Ai, F
2
Ai) = ({C}, C).

Given n smart ballots for an issue i ∈ I from each
agent in N , a (smart) profile for this issue i, is a vector
Bi = (B1i, . . . , Bni). A valid (smart) profile is a smart pro-
file where each smart ballot is valid (as per Definition 2).

2.2 Unravelling Procedures
In this section we propose four procedures that transform a
valid smart profile into a profile of direct votes, i.e., votes
supporting a single alternative in the issue’s domain, D(i).

Definition 3 (Unravelling Procedure). An unravelling proce-
dure U for issue i ∈ I and agents in N is any function

U : (B1i × · · · ×Bni)→ D(i)n.

Due to possible delegation cycles, it may be unclear how to
assign direct votes to agents. We follow two principles in our
definitions: use the highest preference level of voters when
breaking delegation cycles (cf. Definition 4), and keep the
unravelling process polynomial (cf. Section 3). Algorithm 1
outlines our general unravelling procedure UNRAVEL.

The input of UNRAVEL is a smart profile Bi. A vector X is
initialised with placeholders ∆ at each position xa for a ∈ N

3This can be expressed by propositional formula B ∧ (C ∨D).



Algorithm 1 General unravelling procedure UNRAVEL

1: X := (∆, . . . ,∆) . empty vector for direct votes
2: while X /∈ D(i)n do
3: lev := 1 . reset preference level counter to 1
4: Y := X . a copy of X to compute changes
5: while X = Y do
6: procedure UPDATE({U,RU,DU,DRU})
7: lev := lev + 1
8: return X . output vector of direct votes

and it is returned when a vote in D(i) is found for all agents.
Counter lev is set at the first preference level of the agents
and an additional vector Y is added to help computation. In
line 6 a subroutine with one update procedure is executed.4

We give four update procedures, defined by the presence
or absence of two properties. Namely, direct vote priority
(D), prioritising direct votes over those that can be computed
from the current vector Y of votes; and random voter selec-
tion (R), randomly choosing an agent whose vote is added (or
computed) next. The four procedures are thus: basic update
(U), update with direct vote priority (DU), update with ran-
dom voter selection (RU), update with direct vote priority
and random voter selection (DRU).

Unless otherwise specified, if the condition in an if state-
ment fails, the program skips to the next step. Moreover, Y�S
denotes the restriction of vector Y to the elements in set S.

Algorithm 2 UPDATE(U)

1: for a ∈ N such that xa = ∆ do
2: if Blev

ai ∈ D(i) then . a has a direct vote at lev
3: xa := Blev

ai
4: else if F lev

ai (Y�Slev
ai

) ∈ D(i) then
5: xa := F lev

ai (Y�Slev
ai

) . add a’s computable vote

UPDATE(U) checks for each agent without a direct vote
at lev (line 1): if their preference at lev is either a direct
vote (line 3) or can be computed from the current values in Y
(line 5), then vector X is updated with the new direct votes.

Algorithm 3 UPDATE(DU)

1: for a ∈ N such that xa = ∆ do
2: if Blev

ai ∈ D(i) then . add direct votes
3: xa := Blev

ai

4: if Y = X then . if no direct vote added to X
5: for a ∈ N such that xa = ∆ do
6: if F lev

ai (Y�Slev
ai

) ∈ D(i) then . find computables

7: xa := F lev
ai (Y�Slev

ai
)

UPDATE(DU) first tries to add directs votes to X (line 2);
if there are none (line 4) it tries with votes computable at lev.

At line 1 of UPDATE(RU) an empty set P is initialised to
hold agents with either a direct vote or a computable vote at

4In what follows, we simply write UNRAVEL(#) to indicate the
UNRAVEL algorithm using UPDATE procedure #.

Algorithm 4 UPDATE(RU)

1: P := ∅ . initialise an empty set
2: for a ∈ N such that xa = ∆ do
3: if Blev

ai ∈ D(i) or F lev
ai (Y�Slev

ai
) ∈ D(i) then

4: P := P ∪ {a}
5: if P 6= ∅ then . there are direct/computable votes
6: select b from P uniformly at random
7: if Blev

bi ∈ D(i) then
8: xb := Blev

bi
9: else if F lev

bi (Y�Slev
bi

) ∈ D(i) then
10: xb := F lev

bi (Y�Slev
bi

)

lev (line 3); if P is non-empty, one agent will be randomly
chosen and her direct/computable vote is added to X .

Algorithm 5 UPDATE(DRU)

1: P, P ′ := ∅ . initialise an empty set
2: for a ∈ N such that xa = ∆ do
3: if Blev

ai ∈ D(i) then . add agents with direct vote to P
4: P := P ∪ {a}
5: else if F lev

ai (Y �Slev
ai

) ∈ D(i) then
6: P ′ := P ′ ∪ {a}
7: if P 6= ∅ then . there are agents with direct votes
8: select b from P uniformly at random
9: xb := Blev

bi
10: else if P ′ 6= ∅ then . there are computable votes
11: select b from P ′ uniformly at random
12: xb := F lev

bi (Y �Slev
bi

)

UPDATE(DRU) first selects agents with a direct vote at
level lev (line 3) and chooses one randomly to update X
(line 9). If not, UPDATE(DRU) will repeat this process, but
it will now look for computable votes at level lev.

The following example shows how UPDATE(U) works:
Example 2. Consider a binary issue i with D(i) = {0, 1}
and agents N = {A, . . . , E}. Their valid ballots in Bi,
stating their preferences for delegations or direct votes, are
shown schematically in the table below and in Figure 2.

1st 2nd 3rd

A ({B,C}, B ∧ C) ({D}, D) 1
B 1 - -
C ({D}, D) 0 -
D ({E}, E) 1 -
E ({A}, A) ({B}, B) 0

We spell out here the unravelling UNRAVEL(U) on Bi:

• Starting at lev = 1, the direct vote of B is stored in
X = (∆, 1,∆,∆,∆).
• As there are no direct or computable votes at lev = 1

(using Y ), the level counter is increased to lev = 2.
• The procedure adds the direct votes of C and D, and

computes the vote of E from the current Y by copying
the vote of B, obtaining X = (∆, 1, 0, 1, 1).



A 1

B ∧ C C 0B 1
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Figure 2: A network representation of Bi from Example 2. Solid
lines represent first preferences and dashed lines second preferences.
The final preference for a direct vote is next to the agent’s name.

• The preference level is set back to lev = 1.

• A’s vote can be computed from her first preference level,
and vector X = (0, 1, 0, 1, 1) is thus returned.

An important clarification is that in all our procedures,
when checking if an agent’s vote can be computed from a
partial profile of other agents’ votes, we test the existence of
a necessary winner [Konczak and Lang, 2005]. Formally,
F lev
ai (X�Slev

ai
) has a necessary winner y ∈ D(i) if for all

a ∈ Slev
ai such that xa = ∆, for all z ∈ D(i) such that

xa = z we have that F lev
ai (X�Slev

ai
) = y.5

We conclude with two further definitions. The notion of
vote certificate can explain to an agent which part of their
ballot was used to compute the unravelled profile, without
revealing the full profile:

Definition 4 (Certificates). An agent a’s certificate of an un-
ravelled profile U(Bi) is CertU (Bi, a) = (k,X�Sk

ai
), where

k is a preference level and X�Sk
ai

is the partial profile of direct
votes used by U to compute a’s vote.

We can then define the set of voters influenced by a voter a:

Definition 5 (Influence). The set of voters influenced by voter
a in profile Bi using unravelling procedure U is IU (Bi, a) =

{b | a ∈ Sk
bi for CertU (Bi, b) = (k,X�Sk

bi
)}.

Let IU∗ (Bi, a)=IU (Bi, a)∪{c|c∈IU (Bi, b)∧b∈IU (Bi, a)}
∪. . . be the voters b indirectly influenced by a. In Example 2,
we have that CertU(Bi, C) = (2, ∅) and IU(Bi, C) = {A}.

2.3 Restricting the Language of Smart Ballots
In this section, we define useful restrictions to the language of
smart ballots. Firstly, we focus on binary Boolean functions
compactly expressed as contingent (i.e., neither a contradic-
tion, nor a tautology) propositional formulas in DNF:

Definition 6 (BOOL Ballots). A smart ballot Bai for agent a
and binary issue i belongs to language BOOL if every Fh

ai in
Bai is a contingent propositional formula in DNF.

Therefore, BOOL ballots can only contain Boolean
functions—as, for instance, all the delegating ballots in Ex-
ample 2. Atomic boolean functions are equivalent to the iden-
tity function, i.e., copying another agent’s vote. The require-
ment for a contingent formula is to prevent agents from over-
riding the delegation structure by giving a direct vote for 1

5In Example 2, in case xB = 0 then necessarily B ∧ C will be
false, and thus xA = 0 (even if xC = ∆).

or 0 in disguise at multiple preference levels. When using
language BOOL, we will write ϕlev

ai instead of F lev
ai .

Next, we define a restriction for smart ballots where all of
the (possibly many) delegations must be to single agents:

Definition 7 (LIQUID Ballots). Smart ballot Bai for agent a
and issue i belongs to LIQUID if every delegating Bh

ai in Bai

is of the form ({b}, id) for b ∈ N \ {a} and id the identity
function, and if h > 1 the final vote of a is abstention (∗).

Finally, for a given language L we write Lk to indicate
smart ballots in L having at most k delegations in their order-
ing. For instance, in Example 2 the smart ballots of all agents
belong to the language BOOL2.

2.4 Voting Rules
The final step of smart voting aggregates the vector of direct
votes into an outcome. For the remainder of the paper, we will
use the following rules (for a domain with abstentions ∗): the
majority rule (Maj) returns the alternative in the domain hav-
ing more than n/2 votes, and ∗ otherwise; the relative majority
rule (RMaj) returns the plurality outcome among D(i) \ {∗},
and if there is a tie it returns ∗.

3 Algorithmic Analysis
We here analyse the unravelling procedures introduced in
Section 2.2. For simplicity, in the rest of the paper we assume
that I contains a single issue (thus, we drop the subscript i).

3.1 Properties of Unravelling
Given the four update procedures, our first result shows that
for any valid smart profile the general unravelling procedure
UNRAVEL always terminates:

Proposition 1. Algorithms UNRAVEL(U), UNRAVEL(DU),
UNRAVEL(RU) and UNRAVEL(DRU) always terminate on
a valid smart profile B.

Proof (sketch). The proof (omitted in the interest of space)
rests on the fact that the two while loops in UNRAVEL cannot
be in an infinite cycle due to each Ba having a finite number
of preference levels,6 the final preference being a direct vote,
and each procedure updating at least one agent’s direct vote
in X at each iteration (and removing none).

In the next proposition we prove that the four update pro-
cedures actually give different results.

Proposition 2. There exists a valid smart profile B for
which UNRAVEL(U), UNRAVEL(DU), UNRAVEL(RU),
and UNRAVEL(DRU) give different outputs.

Proof. Consider the smart profile of Example 2: the out-
comes of the four unravelling procedures are shown in Ta-
ble 1. It is clear that procedures U and DU lead to differ-
ent outcomes than the others. Although procedures RU and
DRU give the same profiles of direct votes, these outcomes
occur at different rates.

6Recall that since D(i) and the possible sets of delegates are
finite, and since all functions given in an agent’s valid ballot must
differ, the possible number of functions must also be finite.



UNRAVEL Output X ∈ D(i)n Random voter
U (0, 1, 0, 1, 1) -
DU (0, 1, 0, 1, 0) -
RU (0, 1, 0, 0, 0) C

(1, 1, 1, 1, 1) D
(1, 1, 1, 1, 1) E

DRU (0, 1, 0, 0, 0) C
(1, 1, 1, 1, 1) D

Table 1: The last column indicates, for procedures RU and DRU,
which voters have been picked (only one random choice here).

Observe that the proof above implies that the collective de-
cision can be different depending on the unravelling used, and
on the randomly chosen voter. The majority outcome would
be 1 in two thirds of the cases with procedure RU, whereas
only in half of the cases when using procedure DRU.

3.2 Computational Complexity
The first problem we study is how hard it is to verify that
a smart ballot is valid with respect to language L. The
VALIDB(L) problem takes as input a smart ballot Ba in L
and agents N , and it asks if Ba is valid for L.

Theorem 1. VALIDB(BOOLk) is NP-complete, for k ≥ 1.

Proof. For membership, observe that for Ba to be a valid
BOOLk ballot, it needs to verify the following properties (for
1 ≤ h, ` ≤ k), that can either be checked in polynomial
time by reading Ba, or require a (polynomial) certificate. The
properties are: there are ≤ k top preferences of the form
(Sh

a , ϕ
h
a); there is one direct vote in {0, 1} as final preference;

each ϕh
a is in DNF; each Sh

a is such that a /∈ Sh
a ; and each ϕh

a
is such that V ar(ϕh

a) ⊆ Sh
a ⊆ N . For the final three prop-

erties, we have to guess certificates: at most k to check that
each ϕh

a is not a tautology (¬ϕh
a is satisfiable); at most k to

check that each ϕh
a is not a contradiction (ϕh

a is satisfiable); at
most k

2 (k−1) to check that for all ϕh
a and ϕ`

a such that h 6= `,
ϕh
a and ϕ`

a are not logically equivalent (i.e., ¬(ϕh
a ↔ ϕ`

a) is
satisfiable). All this requires at most k

2 (k + 3) certificates for
constant k. Thus, VALIDB(BOOLk) is in NP.

For hardness, we reduce from the NP-complete problem
DNF-FALSIFIABLE,7 whose input is a formula ϕ in DNF.
We create an instance of VALIDB(BOOLk) where N =
V ar(ϕ) ∪ {a, b}, for fresh variables a and b, D(i) = {0, 1}
and Ba = ((N\{a}, ϕ ∨ b) > 1). We now show that DNF-
FALSIFIABLE has a positive answer if and only if the answer
to VALIDB(BOOLk) on our instance is also positive.

Assume that ϕ is falsifiable. By construction of Ba, we
only need to check that ϕ ∨ b is neither a contradiction nor
a tautology: this follows from ϕ being falsifiable and b be-
ing a fresh variable. Assume that ϕ is not falsifiable, i.e.,
ϕ is a tautology. Thus, agent a provides a function ϕ ∨ b
which is a tautology, and hence Ba is not valid. Therefore,
VALIDB(BOOLk) is NP-complete.

7Since SAT-CNF is NP-hard, by the duality principle DNF-
FALSIFIABLE is also NP-hard; for membership in NP it suffices to
verify a falsifying truth assignment in polynomial time.

Although checking if a BOOLk smart ballot is valid is not a
tractable problem, it is as hard as the SAT problem for propo-
sitional formulas, for which efficient solvers exist.

Next, we show that our unravelling procedures terminate in
polynomial time given BOOL ballots. We refer to this prob-
lem as UNRAVEL(#)L for # ∈ {U,DU,RU,DRU}. Ob-
serve that the size of the input for UNRAVEL(#)BOOL is in
O(maxp(B) · n · maxϕ(B)), where maxp(B) is the high-
est preference level of any ballot in B and maxϕ(B) is the
maximum length of any formula from an agent in B.
Proposition 3. UNRAVEL(#)BOOL terminates in at most
O(n2 · maxp(B) · 2 maxϕ(B)) time steps, for # ∈
{U,DU,RU,DRU}.

Proof. The while loop from line 2 in UNRAVEL can be re-
peated at most n times (in case just one direct vote is added
to X at each iteration). Moreover, the while loop from line 5
can be repeated at most maxp(B) times, in case all smart bal-
lots are of the same length and no vote is computable in the
first maxp(B)− 1 positions for any agent.

The following is executed at most n ·maxp(B) times: UP-
DATE(#) checks that for each agent a such that xa = ∆ (at
most n) either Blev

a ∈ D(i) or ϕlev
a has a necessary winner

(depending on the # used). As each ϕlev
a is in DNF, i.e., a

disjunction of conjunctions of literals (called cubes), to verify
if it has a necessary winner we check if either:

1. all literals of a cube of ϕlev
a are made true by X�Slev

a
,

2. one literal in each cube is made false by X�Slev
a

,
returning a direct vote of 1 or 0, respectively. The use of
UPDATE(#) takes at most O(n · 2 maxϕ(B)) steps. Hence,
in O(n2 · maxp(B) · 2 maxϕ(B)) time steps a profile X of
direct votes is output by UNRAVEL(#)BOOL .

4 Ranked Singleton Delegations
In this section we focus on the language LIQUIDk from Def-
inition 7. Agents are restricted to express either a direct vote
or a (partial) ranking of single-agent delegations.

4.1 Liquid Democracy
We begin by showing that our unravelling procedures yield
the same result on the language LIQUID1, corresponding to
the simplest setting of liquid democracy:
Proposition 4. If B ∈ LIQUID1 then UNRAVEL(#) outputs
the same result for # ∈ {U,DU,RU,DRU}.

Proof (sketch). At the first iteration step, all direct votes are
added to the vector X . Each unravelling procedure then com-
putes the votes of those agents who are delegating but are not
in a delegation cycle (possibly not in the same order, but with
the same result). Cycles are broken by looking at backup
votes of possibly different agents, which are all abstentions
by the definition of LIQUID1.

Now, consider an example of liquid democracy. By cre-
ating a profile of smart ballots with Ba = (({b}, id) > ∗)
if agent a was delegating her decision to agent b ∈ N\{a}
and Ba = (x) with x 6= ∗ if agent a was voting directly, we
obtain the following result:



Proposition 5. Liquid Democracy can be translated
into a smart voting election with LIQUID1 ballots and
UNRAVEL(#) for # ∈ {U,DU,RU,DRU}.

The proof of Proposition 5 is omitted for lack of space.

4.2 Participation Axioms
In this section we study two properties of unravelling proce-
dures, focussing on a binary domain (with abstentions). The
first, proposed by Kotsialou and Riley [2020], was inspired by
the classical participation axiom from social choice [Moulin,
1988]. Both properties focus on a voter’s incentive to partic-
ipate in the election, either by voting directly or by delegat-
ing. Thus, we assume that an agent a expressing a direct vote
for alternative x ∈ {0, 1} prefers x over 1 − x, denoted by
x >a 1− x, and that a prefers x over abstention, x >a ∗.
Definition 8 (Cast-Participation). A voting rule r and unrav-
elling procedure U satisfy cast-participation if for all valid
smart profiles B and agents a ∈ N such that Ba ∈ D(i)\{∗}

r(U(B)) ≥a r(U(B−a, B
′
a))

for all B′a 6= Ba, and B−a is equal to B without a’s ballot.
Cast-participation implies that agents who vote directly

have an incentive to do so, rather than to express any other
ballot (recall our restriction to ranked singleton delegations).

A voting rule r on the domain {0, 1, ∗}N satisfies mono-
tonicity if for any profile X , if r(X) = x with x ∈ {0, 1}
then r(X+x) = x, where profile X+x is obtained from X
by having one voter switch from an initial vote of 1− x to x
or ∗, or from an initial vote of ∗ to x. Observe that all rules
introduced in Section 2.4 satisfy this property. Due to this
definition we can now show the following:
Theorem 2. Any monotonic rule r with unravelling proce-
dure UNRAVEL(#) for # ∈ {U,DU,RU,DRU} satisfies
cast-participation for LIQUID.

Proof (sketch). Without loss of generality, assume that for
agent a ∈ N we have Ba = (1); thus for a it is the case
that 1>a0. To falsify cast-participation, we need to construct
a profile B such that r(UNRAVEL(#)(B))=0 or ∗, and a
smart ballot B′a such that r(UNRAVEL(#)(B−a, B

′
a))=1.

If a now delegates to an agent with a direct vote for 1, the
outcome does not change. Therefore, all voters c ∈ I#∗ (a,B)
vote for 1 in B, but vote for either 0 or ∗ in B′ (i.e., the final
votes of B′ can be obtained from those of B by switching 1s
to 0s or ∗s). Moreover, all c 6∈ I#∗ (a,B) do not change their
vote from B to B′. Thus, this contradicts the monotonicity
assumption of voting rule r.

The theorem above does not hold for non-singleton
delegations—we omit the proof in the interest of space.

We now focus on the incentive that a voter has to receive
and accept delegations. Recall that I#∗ (B, a) is the set of
agents who are directly or indirectly influenced by a’s vote.
Definition 9 (Guru-participation). A voting rule r and un-
ravelling procedure U satisfy the guru-participation property
if and only if for all profiles B and all agents a ∈ N such
that Ba = (x) with x ∈ D(i) \ {∗} we have that

r(U(B)) ≥a r(U(B−b, (∗)))

for any b ∈ I#∗ (B, a), and B−b is B without b’s ballot.

We now show that all four unravelling procedures we pro-
pose do not satisfy this property for a specific rule r:
Theorem 3. RMaj and UNRAVEL(#) do not satisfy guru-
participation for # ∈ {U,DU,RU,DRU} for LIQUID.

Proof. Consider a smart profile B with Ba = (1), Bb =
(({c}, id)>({a}, id)>∗), Bc = (({d}, id)>({f}, id)>∗),
Bd = (({b}, id) > ({f}, id) > ∗), Be = (1) and Bf = (0)
and profile B′ = (B−b, (∗)) obtained from B by switching
b’s vote to B′b = (∗).

The outcomes of the four procedures are shown here:

# B B′

U/ DU X1 = (1, 1, 0, 0, 1, 0)

X2 = (1, ∗, ∗, ∗, 1, 0)
RU/ X3 = (1, 1, 1, 1, 1, 0)
DRU X4 = (1, 0, 0, 0, 1, 0)

X5 = (1, 0, 0, 0, 1, 0)

By applying unravelling procedures U and DU, agent a
prefers the outcome from B′ to B, since RMaj(X1) = ∗ and
RMaj(X2) = 1. For procedures RU and DRU, the outcome
on B′ is RMaj(X2) = 1. However, their outcome on B
can be either RMaj(X4) = RMaj(X5) = 0 or RMaj(X3) =
1. Agent a strictly prefers the outcome from B′, which is
certainly 1, over profile B which leads to an outcome of 0 for
two thirds of the cases.

Observe that the profile in the above proof shows that our
unravelling procedures differ from those of Kotsialou and Ri-
ley [2020], as their depth-first procedure on B would out-
put (1, 0, 1, 0, 1, 0), while their breadth-first procedure on B′

would give (1, ∗, 0, 0, 1, 0). The breadth-first procedure does
satisfy guru-participation, but at the price of using delegations
that are quite low in the voters’ rankings.

5 Conclusion
In this paper we propose and study an extension of liquid
democracy that accounts for ranked and multi-voter delega-
tions. We introduce four unravelling procedures to transform
voters’ ballots into profiles of direct votes, on which a collec-
tive decision is taken using a standard voting rule. Our proce-
dures are polynomial, and aim at making use of the highest-
ranked delegations when breaking delegation cycles.

With our proposal we want to put forward a general frame-
work to study delegative voting, with notable examples being
the classical settings of liquid democracy. Future work will
include the investigation of further axiomatic properties for
unravelling procedures and delegative voting, in line with the
participation axioms, and a more fine-grained analysis of re-
stricted languages for smart ballots.
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