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Singular perturbation analysis of a coupled system
involving the wave equation

Eduardo Cerpa and Christophe Prieur

Abstract— This article considers a system coupling an or-
dinary differential equation with a wave equation through its
boundary data. The existence of a small parameter in the wave
equation (as a factor multiplying the time derivative) suggests
the idea of applying a singular perturbation method to get
the stability of the full system by analyzing the stability of
some appropriate subsystems given by the method. However,
for infinite-dimensional systems it is known that, in some cases,
this method does not work. Indeed, one can not be sure of
the stability of the full system even if the given subsystems are
stable. In this paper we prove that the singular perturbation
method works for the system under study. Using this strategy
we get the stability of the system and a Tikhonov theorem,
which is the first of this kind for systems involving the wave
equation. Simulations are performed to show the applicability
of our results.

I. INTRODUCTION

The singular perturbation method (SPM) is a classical
tool to study stability properties of coupled systems where
there appear some small parameters. Roughly speaking, the
idea is to deduce the stability of the original system by
using the behavior of the system when those parameters
are chosen to be zero. Depending on the applications and
the particular equations, the parameters can play the role
of different time scales allowing the modeling of different
physical situations. As an example we can mention the Saint-
Venant–Exner equations described in [13] and in [3, Section
1.5]. This hyperbolic system is used to study the dynamics
of the flow in a reach, coupled with the sediment dynamics.
The sediment dynamics has, by nature, a very slow dynamic
with respect to the velocity flow in the fluid. Thus this
model is a singularly perturbed hyperbolic system, as studied
in [16] (see also [9] for control results on this system).
Other examples of systems with different time scales appear
when considering infinite-dimensional control systems with
dynamics at the boundaries, as introduced for instance in
[3, Section 3.4], and further considered in particular in [1]
where sufficient conditions are derived for the stability of
the coupled system. One naturally obtains partial differential
equations (PDE) coupled to ordinary differential equations
(ODE) at different time scales. In [22, Chapter 2] a slow
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ODE coupled with a fast PDE appears, and in [19] a fast
ODE coupled with a slow PDE is studied.

As usual, the literature on singularly perturbed systems has
first grown up for finite-dimensional systems (see in parti-
cular the seminal works [12], [14]). For infinite-dimensional
systems, we find [10], [11] where delay systems are studied.
Closer to the present contribution, let us cite [4] where a
parabolic singularly perturbed PDE is considered. Regarding
coupled hyperbolic PDEs, we mention [20] and [21] dealing
with conservation laws and balance laws, respectively. In
both papers, Lyapunov function approaches are useful to
analyze stability properties.

However, the validity of the SPM in an infinite-
dimensional framework depends on the system. Even linear
systems can show unexpected behavior. This was shown
in [19] for a first order hyperbolic system with different
time scales and in [5] for a second order hyperbolic system
coupled to a ODE. In these papers there are examples
of unstable systems for which the SPM does not work.
More precisely, it natural to think that we can deduce the
stability of the full system (for small parameters) when
some particular subsystems (reduced and boundary layer
systems) are stable. Unfortunately this natural conjecture is
false. Indeed, in [19], [5] we find exemples of unstable full
system giving stable subsystems. Thus, we can not deduce
the stability of the full system by applying a SPM.

The main goal of this paper is to establish stability
and Tikhonov results for an infinite-dimensional system by
applying the SPM.

We consider as a model the wave equation coupled to
an ordinary differential equation through boundary data (see
[23], [8], [2] for similar couplings). More precisely, our
system is given by

ε2wtt(t, x)− wxx(t, x) = 0, t ≥ 0, 0 < x < 1,
w(t, 0) = cz(t), t ≥ 0,
wx(t, 1) = −εdwt(t, 1), t ≥ 0,
ż(t) = az(t) + bw(t, 1), t ≥ 0,

(1)

with a, b, c, d constant values and a positive value ε > 0.
When ε > 0 is small then the dynamics (1) have two
different time scales and couplings, yielding to, roughly
speaking, a wave equation with velocity 1

ε and an ODE with
slow velocity. The sign conditions on the constant values
will be justified by considering some subsystems where, in
particular, it will be clear that d > 0 and a+bc are necessary
and sufficient conditions for the stability of the subsystems.
We consider usual initial condition for (1) given by w0 in
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H1(0, 1), w1 in L2(0, 1) and z0 in R, that is w(0, x) = w0(x), 0 < x < 1,
wt(0, x) = w1(x), 0 < x < 1,
z(0) = z0.

(2)

It is important to note here that the stability of this
system can not be deduced from the results in [19]. Even if
one-dimensional wave equations can be written in terms of
first-order hyperbolic equations, system (1) presents troubles
with the boundary conditions. By rewriting system (1) in
Riemann coordinates, we get a system of conservation laws
coupled with an ODE. However, in Riemann coordinates, the
boundary conditions obtained from second and four lines in
(1) are different to the ones in [19]. See Appendix A for the
precise writing of system (1) in Riemann coordinates. In this
way, we can see that the results in [19] do not apply for (1)
and consequently our developments are a true contribution
with respect to the existing literature in the topic.

When applying SPM, we have to obtain what are called
the reduced and the boundary layer systems. In fact, as it
will be explained in Section II below, the reduced system is

d
dt z̄ = (a+ bc)z̄, t ≥ 0, (3)

while the boundary layer system for τ = t/ε is w̄ττ (τ, x)− w̄xx(τ, x) = 0, τ ≥ 0, 0 < x < 1,
w̄(τ, 0) = 0, τ ≥ 0,
w̄x(τ, 1) = −dw̄τ (τ, 1), τ ≥ 0.

(4)

We consider usual initial condition for (3) and (4) given by
w̄0 in H1(0, 1), w̄1 in L2(0, 1) and z̄0 in R, that is{

w̄(0, x) = w̄0(x), 0 < x < 1,
w̄t(0, x) = w̄1(x), 0 < x < 1

(5)

and
z̄(0) = z̄0. (6)

Remark 1: Let us notice that the stability of the reduced
system (3) is equivalent to a + bc < 0 and the stability
of the boundary layer (4) is equivalent to d > 0 (this can
be proved for instance using the Lyapunov function (11)
obtained in [18]). Thus, our first result is concerned with
the stability of system (1) when the subsystems are stable
and ε is small enough. It is worth to mention that Theorem
1 below appeared in the conference paper [5] but we give
here a different proof. The used approach allows to unify the
stability analysis in Theorem 1 with the Tikhonov result in
Theorem 2. ◦

Theorem 1: Let d > 0 and a, b, c such that a + bc < 0.
There exists ε? > 0 such that for any ε ∈ (0, ε?) the full
system (1) is exponentially stable, that is, there exists C0 >
0 such that, for all (w0, w1, z0) in H1(0, 1) × L2(0, 1) ×
R satisfying the compatibility condition w0(0) = cz0, the
solution z ∈ C([0,+∞)) and w ∈ C0([0,+∞);H1(0, 1))∩
C1([0,+∞);L2(0, 1)) to (1)-(2) satisfies, for all t ≥ 0,

‖(w(t), wt(t), z(t))‖H1(0,1)×L2(0,1)×R

≤ C0e
(a+bc)

2 t‖(w0, w1, z0)‖H1(0,1)×L2(0,1)×R.

The second result of this paper states that the SPM gives
us a Tikhonov approximation: the dynamics of (1) can be
approximated by those of the boundary layer system (4) and
of the reduced system (3).

Theorem 2: Let d > 0 and a, b, c such that δ := a +√
3|bc| < 0. There exists ε? > 0 such that for any ε ∈ (0, ε?),

w0 in H1(0, 1), w1 in L2(0, 1), z0 in R, w̄0 in H1(0, 1), w̄1

in L2(0, 1), z̄0 in R satisfying the compatibility conditions
w0(0) = cz0, w̄0(0) = 0, and smallness conditions

‖w0− cz̄0− w̄0‖H1(0,1) +‖w1− (a+ bc)cz̄0− w̄1‖L2(0,1)

+ |z0 − z̄0| = O(ε2)

‖w̄0‖H1(0,1) + ‖w̄1‖L2(0,1) = O(ε3/2) , |z̄0| = O(ε3/2),

the solution w in C([0,∞);H1(0, 1))∩C1([0,∞);L2(0, 1))
and z in C1([0,∞)) to (1)-(2) satisfies, for all t ≥ 0,

‖w(t)− cz̄(t)− w̄(t/ε)‖H1(0,1)

+ ‖wt(t)− c(a+ bc)z̄(t)− w̄τ (t/ε)‖L2(0,1) = eδtO(ε),
(7)

and
|z(t)− z̄(t)| = eδtO(ε3/2), (8)

where w̄ in C([0,∞);H1(0, 1))∩C1([0,∞);L2(0, 1)) is the
solution to (4) and (5) and z̄ in C1([0,∞)) is the solution
to (3) and (6).

Note that the assumptions on coefficients a, b, c are more
restrictive in Theorem 2 than in Theorem 1 since δ > a+bc.
Thus, the exponential decay rate in Theorem 2 is weaker
than the one in Theorem 1. The interest of Theorem 2 is to
give first order and second order approximations of the full
system using the subsystems. Roughly speaking, it does not
only imply that system goes to zero, but it explains how it
does when the parameter ε is small enough. Moreover, we
note that regarding the solution w there is a O(ε2) in the
initial condition hypothesis and a O(ε) in the conclusions of
Theorem 2. This is due to the fact that our Lyapunov function
depends on ε. Since our method is based on the derivation
of a strict Lyapunov function, we get also a robustness with
respect to some parameters, as the speed of the wave and the
estimation of the errors with the boundary layer and reduced
systems.See the proof of Theorem 2 for more details. Only
scalar wave and ODE equations are considered in this paper.
The generalization to vectorial cases is omitted to ease the
reading of this paper.

The remaining part of the paper is organized as follows.
In Section II we prove Theorem 1. Section III is devoted
to the proof of Theorem 2. Section IV contains numeri-
cal simulations illustrating the stability and the Tikhonov
approximation stated in our theorems. Finally, we give in
Section V some conclusions. Appendix A shows as our
system is written in Riemann coordinates while Appendix
B is concerned with an important technical lemma.

Notation: In this section and in the remaining part of
this paper, | · | is the absolute value. Given any function
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u = u(t, x), ut and ux denote the partial derivatives with
respect to t and x, respectively. The set L2(0, 1) is the
set of measurable functions v : [0, 1] 7→ R such that

‖v‖L2(0,1) :=
√∫ 1

0
v(x)2dx < ∞. The set H1(0, 1) is

the set of functions in L2(0, 1) such that ‖v‖H1(0,1) :=√
‖v‖2L2(0,1) + ‖vx‖2L2(0,1) < ∞. If v ∈ H1(0, 1) and

additionally v(0) = 0 and/or v(1) = 0, then we can use the
equivalent norm

√
‖vx‖2L2(0,1) thanks to Poincaré inequality.

II. STABILITY ANALYSIS

The goal of this section is to prove Theorem 1. We apply
the SPM, which leads us to find some appropriate subsystems
called the reduced order system and the boundary layer
system. Theorem 1 makes sure that the full system is stable
when the previous subsystems are stable and the parameter
ε is small enough.

To formally compute the reduced order system, let ε = 0
in (1). We get from the boundary condition at x = 1 that
wx(t, 1) = 0 which gives wx = 0 when using wxx = 0
(coming from the PDE). From the boundary condition at
x = 0, it follows that w(t, x) = cz(t) for all t ≥ 0 and for
all x ∈ (0, 1). Thus, the reduced order system is

d
dt z̄ = (a+ bc)z̄, t ≥ 0. (9)

Let us compute now the boundary layer system. We
introduce τ = t/ε and let us define formally the vari-
able w̄(τ, x) = w(τ, x) − cz(τ) when ε = 0. We com-
pute d

dτ w̄(τ, x) = d
dτw(τ, x) − cε ddtz(τ) = d

dτw(τ, x) −
cε(az(τ) + bw(τ, 1)), by using the z dynamics. Therefore,
letting ε = 0, we formally get d

dτ w̄ = d
dτw. Moreover,

d2

dτ2 w̄ = d2

dτ2w, d
dx w̄ = d

dxw, and d2

dx2 w̄ = d2

dx2w. Therefore
w̄ττ − w̄xx = 0. To compute the boundary conditions for
the variable w̄, let us note that w̄x(τ, 1) = wx(τ, 1) =
−dεwt(τ, 1) = −dwτ (τ, 1) = −dw̄τ (τ, 1) by approximating
ε by 0 in the last equation. To sum up, the boundary layer
system is written as w̄ττ (τ, x)− w̄xx(τ, x) = 0, τ ≥ 0, 0 < x < 1,

w̄(τ, 0) = 0, τ ≥ 0,
w̄x(τ, 1) = −dw̄τ (τ, 1), τ ≥ 0,

(10)

defining w̄, up to an initial condition. The boundary layer
system is known to be exponentially stable. In fact, this
system is called a passive damped wave equation. As the
following computation is used a couple of times later, we
explain it here. Let us consider the following Lyapunov
function

V1(w̄) =

∫ 1

0

eµx(w̄x + w̄τ )2dx+

∫ 1

0

e−µx(w̄x − w̄τ )2dx,

(11)
with µ > 0 to be fixed later. This Lyapunov function
appeared for the wave equation in [18] and is related to
a Lyapunov function for first-order hyperbolic equations
studied in [7].

Along the solutions to (10), it holds

d
dτ V1 = 2

∫ 1

0
eµx(w̄τ + w̄x)(w̄ττ + w̄xτ )dx

+2
∫ 1

0
e−µx(w̄τ − w̄x)(w̄ττ − w̄xτ )dx ,

= 2
∫ 1

0
eµx(w̄τ + w̄x)(w̄xx + w̄xτ )dx

−2
∫ 1

0
e−µx(w̄τ − w̄x)(w̄xτ − w̄xx)dx ,

= −µ
∫ 1

0
eµx(w̄τ + w̄x)2dx

+[eµx(w̄τ + w̄x)2]x=1
x=0

−µ
∫ 1

0
e−µx(w̄τ − w̄x)2dx

−[e−µx(w̄τ − w̄x)2]x=1
x=0 .

Now, note that the boundary condition in the second line of
(10) implies that w̄τ (τ, 0) = 0 and thus, for all τ ≥ 0,

[eµx(w̄τ + w̄x)2](τ, 0)− [e−µx(w̄τ − w̄x)2](τ, 0)
= w̄2

x(τ, 0)− w̄2
x(τ, 0) = 0.

Therefore, we get
d
dτ V1 = −µV1 + eµ(w̄τ (τ, 1) + w̄x(τ, 1))2

−e−µ(w̄τ (τ, 1)− w̄x(τ, 1))2 ,

and thus with the boundary condition in the last line of (10):

d

dτ
V1 = −µV1 + eµ(w̄τ (τ, 1)− dw̄τ (τ, 1))2

−e−µ(w̄τ (τ, 1) + dw̄τ (τ, 1))2 ,

= −µV1 (12)

+
(
eµ(1− d)2 − e−µ(1 + d)2

)
w̄τ (τ, 1)2 .

We obtain the exponential stability by choosing µ such that
eµ(1− d)2 < e−µ(1 + d)2, which is possible due to d > 0.

Let us now define the following variable w̃(t, x) =
w(t, x) − cz(t) (notice that the previously defined w̄ is an
approximation of w̃ for small ε). We compute successively

wt = w̃t + (a+ bc)cz + bcw̃(t, 1) ,
wtt = w̃tt + (abc+ b2c2)w̃(t, 1)

+bcw̃t(t, 1) + (a2c+ 2abc2 + b2c3)z ,
w̃x = wx ,
w̃xx = wxx.

Therefore we get the following dynamics, equivalent to (1)
ε2w̃tt − w̃xx + ε2(abc+ b2c2)w̃(t, 1)

+ε2bcw̃t(t, 1) + ε2(a2c+ 2abc2 + b2c3)z(t) = 0,
w̃(t, 0) = 0,
w̃x(t, 1) = −εbcdw̃(t, 1)− dεw̃t(t, 1)− εd(a+ bc)cz(t),
ż(t) = (a+ bc)z(t) + bw̃(t, 1).

(13)
We are now in position to prove Theorem 1 by studying

system (13).
Proof: In order to prove that system (13) is expo-

nentially stable, we apply Lemma 1 in Appendix B. More
precisely, we use (23) with A = −(a2c + 2abc2 + b2c3),
B = −(abc+ b2c2), C = −bc, D = −d, E = −d(a+ bc)c,
F = −bcd, G = a + bc, H = b, M = 0, d1(t) =
d2(t) = d3(t) = 0, for all t ≥ 0. Thus, defining V (w̃, z) =
V1(w̃) + V2(z), with

V1 =

∫ 1

0

eµx(w̃x + εw̃t)
2dx+

∫ 1

0

e−µx(w̃x − εw̃t)2dx
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and V2 = z2, we get that, along the solutions to (13),

d

dt
V ≤

[
− µ

ε
+ eµ(κ1 + κ2 + κ3 + κ4) +

2ε2B2C1

κ2

+ 3εC1F
2(eµ + e−µ)(1 +

|D|+ 1

κ5
) +

C1H
2

κ6

]
V1

+
[
2G+κ6+κ7+

2ε2A2

κ1
+3εE2(eµ+e−µ)(1+

|D|+ 1

κ5
)
]
V2

+
[
εeµ(D+1)2−εe−µ(D−1)2 +3εκ5(eµ+e−µ)(|D|+1)

+
2ε2C2

κ3

]
βt(t, 1)2

for all positive values κi with i ∈ {1, 2, . . . , 7}.
Note that, under the assumptions of Theorem 1, D < 0

and consequently −(D − 1)2 + (D + 1)2 < 0. Now letting

κ5 =
1

12

|(D + 1)2 − (D − 1)2|
(|D|+ 1)

(14)

we get the existence of µ? such that, for all µ in (0, µ?],

eµ(D+ 1)2 − e−µ(D− 1)2 + 3κ5(eµ + e−µ)(|D|+ 1) < 0.

Then for any positive κ3 we get the existence of ε? such
that, for all ε in (0, ε?),

εeµ(D+ 1)2− εe−µ(D− 1)2 + 3εκ5(eµ + e−µ)(|D|+ 1)

+
2ε2C2

κ3
< 0.

In this way, we obtain, along the solutions to (13),

d

dt
V ≤

[
− µ

ε
+ eµ(κ1 + κ2 + κ3 + κ4) +

2ε2B2C1

κ2

+ 3εC1F
2(eµ + e−µ)(1 +

|D|+ 1

κ5
) +

C1H
2

κ6

]
V1

+
[
2G+ κ6 + κ7 +

2ε2A2

κ1

+ 3εE2(eµ + e−µ)(1 +
|D|+ 1

κ5
)
]
V2 . (15)

We make negative the factor multiplying V2 in (15). As
G < 0, A = O(1), D = O(1), E = O(1), for any positive
value κ1, there exist sufficiently small values κ6 > 0, κ7 > 0
and ε?, such that for all ε in (0, ε?) (up to reducing ε?) and
for all µ in (0, µ?), it holds

2G+κ6+κ7+
2ε2A2

κ1
+3εE2(eµ+e−µ)(1+

|D|+ 1

κ5
) <

3

2
G.

Remark 2: Of course, in previous line the factor 3
2 mul-

tiplying G can be changed to any factor in the interval (0, 2).
We can get a factor as near to 2 as we want. ◦

Thanks to the term −µ/ε we can make negative the factor
multiplying V1 in (15). As B = O(1), D = O(1), F = O(1),
and H = O(1), for any positive value κ2 > 0 we have that
for all ε in (0, ε?) (up to reducing ε?) and for all µ in (0, µ?),

it holds

− µ

ε
+ eµ(κ1 + κ2 + κ3 + κ4) +

2ε2B2C1

κ2

+ 3εC1F
2(eµ + e−µ)(1 +

|D|+ 1

κ5
) +

C1H
2

κ6
< − µ

2ε
.

(16)

We arrive in this way to

d

dt
V (t) ≤ − µ

2ε
V1(t)+

3

2
GV2(t) ≤ −min

{
µ

2ε
,

3

2
G

}
V (t)

≤ −3

2
GV (t) ,

for all ε ∈ (0, ε?) with a sufficiently small positive value ε?.
Therefore, the function V decreases to zero exponentially

fast, along the solutions to (13). Note that this exponential
decreasing for the Lyapunov function V (w̃, z) is equivalent,
up to a factor ε2, to the exponential decreasing of the usual
norm in H1(0, 1) × L2(0, 1) × R thanks to the fact that
w̃(t, 0) = 0.

This concludes the proof of Theorem 1.

III. TIKHONOV THEOREM

Until now we have seen that the SPM gives us the reduced
order system and the boundary layer, whose stability imply
the stability of the full system. The goal of this section is to
prove Theorem 2, that uses the subsystems to give a better
approximation of the full system. The idea is not only saying
that the system goes to zero but explaining how it does when
the parameter ε is small enough. To be more specific we
introduce the errors between the solutions to (1)-(2) with the
solutions to the boundary layer system (4) and (5) and to the
reduced system (3) and (6). This justify the introduction of
the following variables, for all t ≥ 0 and x in [0, 1],

α(t) = z(t)− z̄(t)

and
β(t, x) = w(t, x)− cz̄(t)− w̄(

t

ε
, x).

From (1) and (9), we get

α̇(t) = az(t) + bw(t, 1)− (a+ bc)z̄(t)
= aα(t)− bcz̄(t) + bw(t, 1)
= aα(t) + bβ(t, 1) + bw̄( tε , 1).

Moreover, we compute successively

βt(t, x) = wt(t, x)− c(a+ bc)z̄ − 1

ε
w̄τ (

t

ε
, x) ,

βtt(t, x) = wtt(t, x)− c(a+ bc)2z̄ − 1

ε2
w̄ττ (

t

ε
, x) ,

βx(t, x) = wx(t, x)− w̄x(
t

ε
, x) ,

and
βxx(t, x) = wxx(t, x)− w̄xx(

t

ε
, x) .

Therefore, from (1) and (10) we get ε2βtt − βxx = −ε2c(a+ bc)2z̄,
β(t, 0) = c(z(t)− z̄(t)),
βx(t, 1) = −dεwt(t, 1) + dw̄τ ( tε , 1).

(17)
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The last boundary condition of (17) is

βx(t, 1) = −dεβt(t, 1)− dεc(a+ bc)z̄(t)

where the expression of βt has been used. To sum up the
dynamics of α and β can be rewritten as


ε2βtt − βxx = −ε2c(a+ bc)2z̄(t)

β(t, 0) = cα(t)
βx(t, 1) = −dεβt(t, 1)− dεc(a+ bc)z̄(t)

α̇(t) = aα(t) + bβ(t, 1) + bw̄( tε , 1).
(18)

We are now in position to prove Theorem 2 by studying
stability of system (18).

Proof: Let us apply Lemma 1 with A = B = C =
E = F = 0, D = −d, G = a, H = b, and M = c. For
now we keep the functions d1(t), d2(t), and d3(t). With V
defined as V (β, α) = V1(β) + V2(α) with

V1(β) =

∫ 1

0

eµx(βx + εβt)
2dx+

∫ 1

0

e−µx(βx − εβt)2dx

and V2(α) = α2, we get (24) along the solutions to (18).
Thus,

d

dt
V (β, α) ≤

[
− µ

ε
+ eµ(κ1 + κ2 + κ3 + κ4)

+ 6c2C1εb
2 +

C1b
2

κ6

]
V1(β)

+
[
2a+ κ6 + κ7 + 3c2

b2

κ6
+ 6c2εC1a

2 + 18c4εb2
]
V2(α)

+
2ε2

κ4
d1(t)2 + (6c2ε+

1

κ7
)d3(t)2

+ 3ε(eµ + e−µ)(1 +
|d|+ 1

κ5
)d2(t)2

+
[
εeµ(1−d)2−εe−µ(1+d)2+3εκ5(eµ+e−µ)(|d|+1)

]
βt(t, 1)2 .

We select κi, i = 1, . . . , 5 and κ7 by adapting the proof
of Theorem 1. See in particular from (14) to (16). In this
way we get

d

dt
V ≤ (2a+ κ6 + 3c2

b2

κ6
)V +

2ε2

κ4
d1(t)2

+3ε(eµ + e−µ)(1 +
|d|+ 1

κ5
)d2(t)2

+
(

6c2ε+
1

κ7

)
d3(t)2

≤ (2a+ 2
√

3|cb|)V +
2ε2

κ4
d1(t)2

+3ε(eµ + e−µ)(1 +
|d|+ 1

κ5
)d2(t)2

+
(

6c2ε+
1

κ7

)
d3(t)2, (19)

with κ6 =
√

3|cb| (minimizing κ6 +3c2 b
2

κ6
). Now we use the

expressions
d1(t) = −c(a+ bc)2z̄(t),

d2(t) = −cd(a+ bc)z̄(t),

and
d3(t) = bw̄(

t

ε
, 1).

Due to (9), it holds |z̄(t)| ≤ e(a+bc)t|z̄(0)| and we note
that there exists a constant value C2 > 0 such that

d1(t)2 + d2(t)2 ≤ C2e
2(a+bc)tz̄(0)2. (20)

Let us remark that under the hypothesis a+
√

3|bc| < 0, we
also have a+ bc < 0, which is essential when dealing with
z̄. Concerning d3(t), from (12) we can easily see that there
exists C3 > 0 such that, for all t ≥ 0

d3(t)2 ≤ C3e
−µt
ε (‖w̄0‖H1(0,1) + ‖w̄1‖L2(0,1))

2. (21)

Inspecting the choices of κ4 and κ5 done in (16) and (14)
respectively, we have that κ4 = O(1), κ5 = O(1) and κ7 =
O(1). Note that 2δ = 2a+ 2

√
3|bc| where δ is negative and

defined in the statement of Theorem 2. We first bound (19)
using (20)-(21) to get

d

dt
V ≤ 2δV +O(ε2)e2(a+bc)tz̄(0)2 +O(ε)e2(a+bc)tz̄(0)2

+O(1)e−
µt
ε (‖w̄0‖H1(0,1) + ‖w̄1‖L2(0,1))

2,

and then we integrate between 0 and t to obtain (with δ > G)

V ≤ e2δt(V (0) + z̄(0)2 + (‖w̄0‖H1(0,1) + ‖w̄1‖L2(0,1))
2),

≤ e2δtO(ε3)

where we used the hypothesis on the initial conditions. We
have now to come back to the norm. To do that we use that
there exists a positive constant C4, not depending on ε, such
that

ε2C4

(
‖f‖H1(0,1) + ‖g‖L2(0,1)

)2
≤
∫ 1

0

eµx(fx + εg)2 dx+

∫ 1

0

e−µx(fx − εg)2 dx .

From here we deduce Theorem 2.

IV. NUMERICAL SIMULATIONS

In this section, we illustrate Theorems 1 and 2, by some
numerical simulations. We apply a Lax-Friedrichs method
[17] to get the numerical solutions. The codes are available
on [6].

Concerning Theorem 1, we simulate system (1) with a =
−2, b = 1, c = −2, and d = 0.5 and the initial conditions
w0(x) = 2π sin(2πx), w1(x) = 2, for all x in (0, 1) and
z0 = w0(1)/c, so that the assumptions of Theorem 1 hold.
Pick ε = 0.1 for the time scale. We can check on Figure 1
that the Lyapunov function V (with µ = 0) in the proof of
Theorem 1 decreases exponentially fast to zero. We also see
that the norm of the solution goes to zero. This is consistent
with the conclusions of Theorem 1 giving the exponential
stability of the full coupled system.

To illustrate Theorem 2, we also compute the numerical
solutions to the reduced system (3), and to the boundary
layer system (4) with the initial conditions z̄0 = z0, w̄0 =
w0 − cz̄0, and w̄1(x) = w1 − c(a + bc)z̄0, for all x in
(0, 1). We show the norms of the Tikhonov approximations
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as given in (7). We compare a first approximation of w given
by the reduced system cz̄(t) with a second approximation
given by the sum of the reduced system and the boundary
layer cz̄(t) + w̄(t/ε, x)). We check on Figure 2 that the
second approximation is better than the first one, specially for
small times, which is natural because the contribution of the
boundary layer w̄(t/ε, x) is relevant for small times. Thus,
the interest of the Tikhonov approximation is confirmed as
stated in Theorem 2.

Using the code [6], we can numerically estimate the
optimal values of ε? in Theorem 1 and Theorem 2 for
this example. It is obtained ε? ∼ 0.42 and ε? ∼ 0.13,
respectively.

t
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

140

160

Lyapunov
norm

Fig. 1. Time evolution of the Lyapunov function V and the norm along
the solution to (1)

t
0 0.05 0.1 0.15 0.2

0

50

100

150

200

250
error with first approximation
error with second approximation

Fig. 2. Errors between the solution to (1) with the first approximation
(solid back line) and with the second approximation (dashed red line)

V. CONCLUSIONS

In this paper we have considered an infinite-dimensional
system coupling a wave equation with a linear ODE. Some
small parameters appear in the partial differential equation,
which can be interpreted as having different time scales. Hav-
ing in mind what is known for finite-dimensional systems, it
is natural to apply the singular perturbation method. How-
ever, this does not always work in an infinite-dimensional

framework as shown in recent literature (see the counter-
example in [20]). In this context, we prove here that this kind
of analysis can be performed for the system under study and
we obtain stability and Tikhonov results. Our main tool is
the use of Lyapunov functions. Simulations illustrating our
results are presented.

Interesting open problems arise. For instance, perform-
ing similar analysis for other infinite-dimensional systems,
maybe involving nonlinearities. Other possible research line
is to relax the assumptions on the initial conditions in
Theorem 2 with respect to their dependence on ε. This would
ask for looking for a Lyapunov function not depending on
ε. Another possible research line could be to consider more
than two time scales in the dynamics. Finally connections of
the present work with neutral equations may be an interesting
open question.

APPENDIX

A. Rewriting system (1) in Riemann coordinates

Denote v1(t, x) = εwt(t, x) + wx(t, x), v2(t, x) =
wx(t, x) − εwt(t, x), and Z(t) = ż(t). By differentiating
the second and the fourth line of (1), we obtain from (1) the
following system, for all t ≥ 0, and for all 0 < x < 1,

εv1t(t, x)− v1x(t, x) = 0 , εv2t(t, x) + v2x(t, x) = 0,
v1(t, 0)− v2(t, 0) = 2εcZ(t),
v1(t, 1) + v2(t, 1) = −dv1(t, 1) + dv2(t, 1),

Ż(t) = aZ(t) + b
2εv1(t, 1)− b

2εv2(t, 1).
(22)

System (22) is a system of fast conservation laws coupled
with an ODE. However, due to the presence of ε in the
denominator of the last line of (22) and of the presence of ε
in the second line, it differs from the class of coupled systems
of conservation laws and ODE studied in [19]. Therefore
the results in [19] do not apply to (22), as claimed in the
Introduction.

B. A technical lemma and its proof

In this section, we prove a technical lemma. Roughly
speaking this lemma analyses the stability of a general
coupled ODE/hyperbolic system with constant coefficients
in the internal and boundary couplings. It will be used in the
proofs of Theorem 1 and Theorem 2.

Lemma 1: Let ε, A, B, C, D, E, F , G, H , M be
constant values, and d1, d2, d3 be functions in C([0,∞)).
Let us consider the system

ε2βtt − βxx = ε2Aα(t) + ε2Bβ(t, 1)
+ε2Cβt(t, 1) + ε2d1(t),

β(t, 0) = Mα(t),
βx(t, 1) = εDβt(t, 1) + εEα(t) + εFβ(t, 1) + εd2(t),
α̇(t) = Gα(t) +Hβ(t, 1) + d3(t),

(23)
and the Lyapunov function candidate V (β, α) = V1(β) +
V2(α), where V2(α) = α2 and

V1(β) =

∫ 1

0

eµx(βx + εβt)
2dx+

∫ 1

0

e−µx(βx − εβt)2dx.
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Then, there exists C1 > 0 such that, for any positive values
κi, i = 1, . . . , 7, we have along all solutions to (23)

d

dt
V (β, α) ≤

[
− µ
ε

+ eµ(κ1 +κ2 +κ3 +κ4) +
2ε2B2C1

κ2

+3εC1F
2(eµ+e−µ)(1+

|D|+ 1

κ5
)+6M2C1εH

2+
C1H

2

κ6

]
V1(β)

+
[
2G+ κ6 + κ7 + 3M2H

2

κ6
+

2ε2A2

κ1

+ 3εE2(eµ + e−µ)(1 +
|D|+ 1

κ5
) + 6M2εC1G

2

+
(2ε2B2

κ2
+3εF 2(eµ+e−µ)(1+

|D|+ 1

κ5
)+6M2εH2

)
3M2

]
× V2(α)

+
2ε2

κ4
d1(t)2 + 3ε(eµ + e−µ)(1 +

|D|+ 1

κ5
)d2(t)2

+ (6M2ε+
1

κ7
)d3(t)2

+
[
εeµ(D+1)2−εe−µ(D−1)2 +3εκ5(eµ+e−µ)(|D|+1)

+
2ε2C2

κ3

]
βt(t, 1)2 . (24)

Proof: Along the solutions to (23), we compute

d
dtV1(β) = 2

∫ 1

0
eµx(βxt + εβtt)(βx + εβt)dx

+2
∫ 1

0
e−µx(βxt − εβtt)(βx − εβt)dx

= 2
ε

∫ 1

0
eµx(εβxt + βxx)(βx + εβt)dx

− 2
ε

∫ 1

0
e−µx(−εβxt + βxx)(βx − εβt)dx

+2(εAα(t) + εBβ(t, 1)

+εCβt(t, 1) + εd1(t))
∫ 1

0
eµx(βx + εβt)dx

−2(εAα(t) + εBβ(t, 1) + εCβt(t, 1)

+εd1(t))
∫ 1

0
e−µx(βx − εβt)dx

and thus, using integrations by parts,

d
dtV1(β) = −µε

∫ 1

0
eµx(βx + εβt)

2dx

−µε
∫ 1

0
e−µx(βx − εβt)2dx

+ 1
ε

[
eµx(βx + εβt)

2 − e−µx(βx − εβt)2
]1
0

+2(εAα(t) + εBβ(t, 1) + εCβt(t, 1)

+εd1(t))
∫ 1

0
eµx(βx + εβt)dx

−2(εAα(t) + εBβ(t, 1) + εCβt(t, 1)

+εd1(t))
∫ 1

0
e−µx(βx − εβt)dx .

Now using the inequalities 2ef ≤ e2

k + kf2, (e+ f + g)2 ≤
3(e2 + f2 + g2) (for any values e, f , and g and any positive

value k), and (23), we get

d

dt
V1(β) ≤ −µ

ε
V1(β) + {[

∫ 1

0

eµx(βx + εβt)dx]2

+ [

∫ 1

0

e−µx(βx − εβt)dx]2}(κ1 + κ2 + κ3 + κ4)

+
2ε2A2

κ1
α(t)2 +

2ε2B2

κ2
β(t, 1)2 +

2ε2C2

κ3
βt(t, 1)2

+
2ε2

κ4
d1(t)2

+
eµ

ε
[ε(D + 1)βt(t, 1) + εEα(t) + εFβ(t, 1) + εd2(t)]2

− e−µ

ε
[ε(D − 1)βt(t, 1) + εEα(t) + εFβ(t, 1) + εd2(t)]2

+
2

ε
M2ε2(Gα(t) +Hβ(t, 1) + d3(t))2

≤ −µ
ε
V1(β) + {eµ

∫ 1

0

eµx(βx + εβt)
2dx

+

∫ 1

0

e−µx(βx − εβt)2dx}(κ1 + κ2 + κ3 + κ4)

+
(2ε2A2

κ1
+6M2εG2

)
α(t)2+

(2ε2B2

κ2
+6M2εH2

)
β(t, 1)2

+
2ε2C2

κ3
βt(t, 1)2 +

2ε2

κ4
d1(t)2

+ εeµ{(D + 1)2βt(t, 1)2 + (Eα(t) + Fβ(t, 1) + d2(t))2

+ 2(Eα(t) + Fβ(t, 1) + d2(t))(D + 1)βt(t, 1)}
− εe−µ{(D − 1)2βt(t, 1)2 + (Eα(t) + Fβ(t, 1) + d2(t))2

+2(Eα(t)+Fβ(t, 1)+d2(t))(D−1)βt(t, 1)}+6M2εd3(t)2

≤ [−µ
ε

+ eµ(κ1 + κ2 + κ3 + κ4)]V1(β)

+[
2ε2A2

κ1
+3εE2(eµ+e−µ)(1+

|D|+ 1

κ5
)+6M2εG2]α(t)2

+[
2ε2B2

κ2
+3εF 2(eµ+e−µ)(1+

|D|+ 1

κ5
)+6M2εH2]β(t, 1)2

+
2ε2

κ4
d1(t)2+6M2εd3(t)2+3ε(eµ+e−µ)(1+

|D|+ 1

κ5
)d2(t)2

+ [εeµ(D+ 1)2− εe−µ(D−1)2 + 3εκ5(eµ+ e−µ)(|D|+ 1)

+
2ε2C2

κ3
]βt(t, 1)2 ,

for any positive values κi, i = 1, . . . , 5. Using first the Ag-
mon inequality (see Appendix A in [15]) and one boundary
condition of β in (23), it holds

β(t, 1)2 ≤ β(t, 0)2 + 2‖β(t)‖L2(0,1)‖βx(t)‖L2(0,1) ,

≤ M2α(t)2 + ‖β(t)‖2L2(0,1)

+‖βx(t)‖2L2(0,1) . (25)
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Moreover, with the Poincaré inequality (see again Appendix
A in [15]) it holds, for any positive value κ in (0, 1),

‖β(t)‖2L2(0,1) =
∫ 1

0
(β(t, x)− β(t, 0))2dx

+2β(t, 0)
∫ 1

0
β(t, x)dx− β(t, 0)2

≤ 4
π2 ‖βx(t)‖2L2(0,1) + 1

κβ(t, 0)2

+κ‖β(t)‖2L2(0,1) − β(t, 0)2

≤ 4
π2 ‖βx(t)‖2L2(0,1) + ( 1

κ − 1)β(t, 0)2

+κ‖β(t)‖2L2(0,1)

Thus letting κ = 1/2 and one boundary condition of β in
(23), it is deduced

‖β(t)‖2L2(0,1) ≤ 8
π2 ‖βx(t)‖2L2(0,1) + 2M2α(t)2.

It follows with (25) that

|β(t, 1)|2 ≤
( 8

π2
+ 1
)
‖βx(t)‖2L2(0,1) + 3M2α(t)2.

In order to compare ‖βx(t)‖2L2(0,1)with V1(β) we notice that

V1(β) =

∫ 1

0

eµx(βx + εβt)
2 dx+

∫ 1

0

e−µx(βx − εβt)2 dx

≥
∫ 1

0

e−µx(βx + εβt)
2 dx+

∫ 1

0

e−µx(βx − εβt)2 dx

≥ 2

∫ 1

0

e−µx(β2
x + ε2β2

t ) dx ≥ 2e−µ
∫ 1

0

β2
x dx.

Thus, we obtain

|β(t, 1)|2 ≤ C1V1(β) + 3M2α(t)2, (26)

with C1 = eµ

2

(
8
π2 + 1

)
. Therefore, we get

d

dt
V1(β) ≤ [−µ

ε
+ eµ(κ1 + κ2 + κ3 + κ4) +

2ε2B2C1

κ2

+ 3εC1F
2(eµ + e−µ)(1 +

|D|+ 1

κ5
) + 6M2C1εH

2]V1(β)

+
[2ε2A2

κ1
+ 3εE2(eµ + e−µ)(1 +

|D|+ 1

κ5
) + 6M2C1εG

2

+
(2ε2B2

κ2
+3εF 2(eµ+e−µ)(1+

|D|+ 1

κ5
)+6M2εH2

)
3M2

]
α(t)2

+
2ε2

κ4
d1(t)2+3ε(eµ+e−µ)(1+

|D|+ 1

κ5
)d2(t)2+6M2εd3(t)2

+ [εeµ(D+ 1)2− εe−µ(D−1)2 + 3εκ5(eµ+ e−µ)(|D|+ 1)

+
2ε2C2

κ3
]βt(t, 1)2 . (27)

Moreover, using the fourth line of (23), inequality (26) and
2fg ≤ f2

k + kg2 (for any values f and g and any positive
value k), we have
d
dtV2(α) = 2α(t)(Gα(t) +Hβ(t, 1) + d3(t))

= 2GV2(α) + 2Hα(t)β(t, 1) + 2α(t)d3(t)

≤ 2GV2(α) + H2

κ6
β(t, 1)2 + κ6α(t)2 + κ7α(t)2

+ 1
κ7
d3(t)2

≤ 2GV2(α) + H2

κ6
(C1V1(β) + 3M2α(t)2)

+κ6α(t)2 + κ7α(t)2 + 1
κ7
d3(t)2

≤ (2G+ κ6 + κ7 + 3M2H2

κ6
)V2(α)

+C1H
2

κ6
V1(β) + 1

κ7
d3(t)2 ,

for any positive values κ6 and κ7. Combining the previous
inequality with (27) we readily obtain (24). This concludes
the proof of Lemma 1.
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