Singular perturbation analysis of a coupled system involving the wave equation
Eduardo Cerpa, Christophe Prieur

To cite this version:
Eduardo Cerpa, Christophe Prieur. Singular perturbation analysis of a coupled system involving the wave equation. IEEE Transactions on Automatic Control, 2020, 65 (11), pp.4846-4853. 10.1109/TAC.2019.2960272. hal-03066813

HAL Id: hal-03066813
https://hal.science/hal-03066813
Submitted on 15 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Singular perturbation analysis of a coupled system involving the wave equation

Eduardo Cerpa and Christophe Prieur

Abstract—This article considers a system coupling an ordinary differential equation with a wave equation through its boundary data. The existence of a small parameter in the wave equation (as a factor multiplying the time derivative) suggests the idea of applying a singular perturbation method to get the stability of the full system by analyzing the stability of some appropriate subsystems given by the method. However, for infinite-dimensional systems it is known that, in some cases, this method does not work. Indeed, one can not be sure of the stability of the full system even if the given subsystems are stable. In this paper we prove that the singular perturbation method works for the system under study. Using this strategy we get the stability of the system and a Tikhonov theorem, which is the first of this kind for systems involving the wave equation. Simulations are performed to show the applicability of our results.

I. INTRODUCTION

The singular perturbation method (SPM) is a classical tool to study stability properties of coupled systems where there appear some small parameters. Roughly speaking, the idea is to deduce the stability of the original system by using the behavior of the system when those parameters are chosen to be zero. Depending on the applications and the particular equations, the parameters can play the role of different time scales allowing the modeling of different physical situations. As an example we can mention the Saint-Venant–Exner equations described in [13] and in [3, Section 1.5]. This hyperbolic system is used to study the dynamics of the flow in a reach, coupled with the sediment dynamics. The sediment dynamics has, by nature, a very slow dynamic with respect to the velocity flow in the fluid. Thus this model is a singularly perturbed hyperbolic system, as studied in [16] (see also [9] for control results on this system). Other examples of systems with different time scales appear when considering infinite-dimensional control systems with dynamics at the boundaries, as introduced for instance in [3, Section 3.4], and further considered in particular in [1] where sufficient conditions are derived for the stability of the coupled system. One naturally obtains partial differential equations (PDE) coupled to ordinary differential equations (ODE) at different time scales. In [22, Chapter 2] a slow ODE coupled with a fast PDE appears, and in [19] a fast ODE coupled with a slow PDE is studied.

As usual, the literature on singularly perturbed systems has first grown up for finite-dimensional systems (see for instance the seminal works [12], [14]). For infinite-dimensional systems, we find [10], [11] where delay systems are studied. Closer to the present contribution, let us cite [4] where a parabolic singularly perturbed PDE is considered. Regarding coupled hyperbolic PDEs, we mention [20] and [21] dealing with conservation laws and balance laws, respectively. In both papers, Lyapunov function approaches are useful to analyze stability properties.

However, the validity of the SPM in an infinite-dimensional framework depends on the system. Even linear systems can show unexpected behavior. This was shown in [19] for a first order hyperbolic system with different time scales and in [5] for a second order hyperbolic system coupled to a ODE. In these papers there are examples of unstable systems for which the SPM does not work. More precisely, it natural to think that we can deduce the stability of the full system (for small parameters) when some particular subsystems (reduced and boundary layer systems) are stable. Unfortunately this natural conjecture is false. Indeed, in [19], [5] we find examples of unstable full system giving stable subsystems. Thus, we can not deduce the stability of the full system by applying a SPM.

The main goal of this paper is to establish stability and Tikhonov results for an infinite-dimensional system by applying the SPM.

We consider as a model the wave equation coupled to an ordinary differential equation through boundary data (see [23], [8], [2] for similar couplings). More precisely, our system is given by

\[
\begin{align*}
\varepsilon^2 w_{tt}(t,x) - w_{xx}(t,x) &= 0, \quad t \geq 0, \quad 0 < x < 1, \\
\dot{w}(t,0) &= cz(t), \quad t \geq 0, \\
\dot{w}_x(t,1) &= -\varepsilon dw(t,1), \quad t \geq 0, \\
\dot{z}(t) &= az(t) + bw(t,1), \quad t \geq 0,
\end{align*}
\] (1)

with \(a, b, c, d\) constant values and a positive value \(\varepsilon > 0\). When \(\varepsilon > 0\) is small then the dynamics (1) have two different time scales and couplings, yielding to, roughly speaking, a wave equation with velocity \(\frac{1}{c}\) and an ODE with slow velocity. The sign conditions on the constant values will be justified by considering some subsystems where, in particular, it will be clear that \(d > 0\) and \(a + bc\) are necessary and sufficient conditions for the stability of the subsystems. We consider usual initial condition for (1) given by \(w^0\) in...
\(H^1(0,1), w^1 \) in \(L^2(0,1) \) and \(z^0 \) in \(\mathbb{R} \), that is
\[
\begin{align*}
 w(0,x) &= w^0(x), & 0 < x < 1, \\
 w_1(0,x) &= w^1(x), & 0 < x < 1, \\
 z(0) &= z^0.
\end{align*}
\] (2)

It is important to note here that the stability of this system can not be deduced from the results in [19]. Even if one-dimensional wave equations can be written in terms of first-order hyperbolic equations, system (1) presents troubles with the boundary conditions. By rewriting system (1) in Riemann coordinates, we get a system of conservation laws.

We consider usual initial condition for (3) and (4) given by \(w^0 \) in \(H^1(0,1) \), \(w^1 \) in \(L^2(0,1) \), \(z^0 \) in \(\mathbb{R} \), \(\bar{w}^0 \) in \(L^2(0,1) \), \(\bar{z}^0 \) in \(\mathbb{R} \) satisfying the compatibility conditions \(w^0(0) = cz^0, \bar{w}^0(0) = 0 \), and smallness conditions
\[
\begin{align*}
 ||w^0 - cz^0 - \bar{w}^0||_{H^1(0,1)} + ||w^1 - (a + bc)z^0 - \bar{w}^1||_{L^2(0,1)} + |z^0 - \bar{z}^0| &= O(\varepsilon^2) \\
 ||\bar{w}^0||_{H^1(0,1)} + ||\bar{w}^1||_{L^2(0,1)} &= O(\varepsilon^{3/2}), \quad |z^0| = O(\varepsilon^{3/2}),
\end{align*}
\]
the solution \(w \) in \(C([0,\infty); H^1(0,1)) \cap C^1([0,\infty); L^2(0,1)) \) and \(z \) in \(C^1([0,\infty)) \) to (1)-(2) satisfies, for all \(t \geq 0 \),
\[
\begin{align*}
 ||w(t) - cz(t) - \bar{w}(t/\varepsilon)||_{H^1(0,1)} + ||w_1(t) - c(a + bc)z(t) - \bar{w}_1(t/\varepsilon)||_{L^2(0,1)} &= e^{\delta t}O(\varepsilon),
\end{align*}
\] (7)
and
\[
|z(t) - \bar{z}(t)| = e^{\delta t}O(\varepsilon^{3/2}),
\] (8)
where \(\bar{w} \) in \(C([0,\infty); H^1(0,1)) \cap C^1([0,\infty); L^2(0,1)) \) is the solution to (4) and \(\bar{z} \) in \(C^1([0,\infty)) \) is the solution to (3) and (6).

Note that the assumptions on coefficients \(a, b, c \) are more restrictive in Theorem 2 than in Theorem 1 since \(\delta > a + bc \). Thus, the exponential decay rate in Theorem 2 is weaker than the one in Theorem 1. The interest of Theorem 2 is to give first order and second order approximations of the full system using the subsystems. Roughly speaking, it does not only imply that system goes to zero, but it explains how it does when the parameter \(\varepsilon \) is small enough. Moreover, we note that regarding the solution \(w \) there is a \(O(\varepsilon^2) \) in the initial condition hypothesis and a \(O(\varepsilon) \) in the conclusions of Theorem 2. This is due to the fact that our Lyapunov function depends on \(\varepsilon \). Since our method is based on the derivation of a strict Lyapunov function, we get also a robustness with respect to the solution. The speed of the wave and the estimation of the errors with the boundary layer and reduced systems. See the proof of Theorem 2 for more details. Only scalar wave and ODE equations are considered in this paper. The generalization to vectorial cases is omitted to ease the reading of this paper.

The second result of this paper states that the SPM gives us a Tikhonov approximation: the dynamics of (1) can be approximated by those of the boundary layer system (4) and of the reduced system (3).

Theorem 2: Let \(d > 0 \) and \(a, b, c \) such that \(\delta := a + \sqrt{3}[bc] < 0 \). There exists \(\varepsilon^* > 0 \) such that for any \(\varepsilon \in (0, \varepsilon^*) \), \(w^0 \) in \(H^1(0,1) \), \(w^1 \) in \(L^2(0,1) \), \(z^0 \) in \(\mathbb{R} \), \(\bar{w}^0 \) in \(H^1(0,1) \), \(\bar{w}^1 \) in \(L^2(0,1) \), \(\bar{z}^0 \) in \(\mathbb{R} \) satisfying the compatibility conditions \(w^0(0) = cz^0, \bar{w}^0(0) = 0 \), and smallness conditions

\[
\begin{align*}
 ||w^0 - cz^0 - \bar{w}^0||_{H^1(0,1)} + ||w^1 - (a + bc)z^0 - \bar{w}^1||_{L^2(0,1)} + |z^0 - \bar{z}^0| &= O(\varepsilon^2) \\
 ||\bar{w}^0||_{H^1(0,1)} + ||\bar{w}^1||_{L^2(0,1)} &= O(\varepsilon^{3/2}), \quad |z^0| = O(\varepsilon^{3/2}),
\end{align*}
\]
the solution \(w \) in \(C([0,\infty); H^1(0,1)) \cap C^1([0,\infty); L^2(0,1)) \) and \(z \) in \(C^1([0,\infty)) \) to (1)-(2) satisfies, for all \(t \geq 0 \),
\[
\begin{align*}
 ||w(t) - cz(t) - \bar{w}(t/\varepsilon)||_{H^1(0,1)} + ||w_1(t) - c(a + bc)z(t) - \bar{w}_1(t/\varepsilon)||_{L^2(0,1)} &= e^{\delta t}O(\varepsilon),
\end{align*}
\] (7)
and
\[
|z(t) - \bar{z}(t)| = e^{\delta t}O(\varepsilon^{3/2}),
\] (8)
where \(\bar{w} \) in \(C([0,\infty); H^1(0,1)) \cap C^1([0,\infty); L^2(0,1)) \) is the solution to (4) and \(\bar{z} \) in \(C^1([0,\infty)) \) is the solution to (3) and (6).

Note that the assumptions on coefficients \(a, b, c \) are more restrictive in Theorem 2 than in Theorem 1 since \(\delta > a + bc \). Thus, the exponential decay rate in Theorem 2 is weaker than the one in Theorem 1. The interest of Theorem 2 is to give first order and second order approximations of the full system using the subsystems. Roughly speaking, it does not only imply that system goes to zero, but it explains how it does when the parameter \(\varepsilon \) is small enough. Moreover, we note that regarding the solution \(w \) there is a \(O(\varepsilon^2) \) in the initial condition hypothesis and a \(O(\varepsilon) \) in the conclusions of Theorem 2. This is due to the fact that our Lyapunov function depends on \(\varepsilon \). Since our method is based on the derivation of a strict Lyapunov function, we get also a robustness with respect to some parameters, as the speed of the wave and the estimation of the errors with the boundary layer and reduced systems. See the proof of Theorem 2 for more details. Only scalar wave and ODE equations are considered in this paper. The generalization to vectorial cases is omitted to ease the reading of this paper.

The remaining part of the paper is organized as follows. In Section II we prove Theorem 1. Section III is devoted to the proof of Theorem 2. Section IV contains numerical simulations illustrating the stability and the Tikhonov approximation stated in our theorems. Finally, we give in Section V some conclusions. Appendix A shows as our system is written in Riemann coordinates while Appendix B is concerned with an important technical lemma.

Notation: In this section and in the remaining part of this paper, \(|\cdot| \) is the absolute value. Given any function...
$u = u(t, x)$, u_t and u_x denote the partial derivatives with respect to t and x, respectively. The set $L^2(0,1)$ is the set of measurable functions $v : [0, 1] \rightarrow \mathbb{R}$ such that $\|v\|_{L^2(0,1)} := \sqrt{\int_0^1 v(x)^2 dx} < \infty$. The set $H^1(0,1)$ is the set of functions in $L^2(0,1)$ such that $\|v\|_{H^1(0,1)} := \sqrt{\|v\|_{L^2(0,1)}^2 + \|v_x\|_{L^2(0,1)}^2} < \infty$. If $v \in H^1(0,1)$ and additionally $v(0) = 0$ and/or $v(1) = 0$, then we can use the equivalent norm $\sqrt{\|v_x\|_{L^2(0,1)}^2}$ thanks to Poincaré inequality.

II. Stability analysis

The goal of this section is to prove Theorem 1. We apply the SPM, which leads us to find some appropriate subsystems called the reduced order system and the boundary layer system. Theorem 1 makes sure that the full system is stable when the previous subsystems are stable and the parameter ε is small enough.

To formally compute the reduced order system, let $\varepsilon = 0$ in (1). We get from the boundary condition at $x = 1$ that $w_x(t, 1) = 0$ which gives $w_x = 0$ when $w_{xx} = 0$ (coming from the PDE). From the boundary condition at $x = 0$, it follows that $w(t, x) = cz(t)$ for all $t \geq 0$ and for all $x \in (0, 1)$. Thus, the reduced order system is

$$\frac{d}{dt} \bar{z} = (a + bc) \bar{z}, \quad t \geq 0. \tag{9}$$

Let us compute now the boundary layer system. We introduce $\tau = t/\varepsilon$ and let us define formally the variable $\bar{w}(\tau, x) = w(\tau, x) - cz(\tau)$ when $\varepsilon = 0$. We compute $\frac{d}{d\tau} \bar{w}(\tau, x) = \frac{d}{dt} w(\tau, x) - cz \frac{d}{dt} z(\tau) = \frac{d}{d\tau} w(\tau, x) - cz(\tau)$, by using the z dynamics. Therefore, letting $\varepsilon = 0$, we formally get $\frac{d}{d\tau} \bar{w} = \frac{d}{d\tau} w$. Moreover, $\frac{d^2}{d\tau^2} \bar{w} = \frac{d^2}{d\tau^2} w$, $\frac{d}{d\tau} \bar{w} = \frac{d}{d\tau} w$, and $\frac{d}{d\tau} \bar{w} = \frac{d}{d\tau} w$. Therefore $\bar{w}_{\tau\tau} = \bar{w}_{xx} = 0$. To compute the boundary conditions for the variable \bar{w}, let us note that $\bar{w}_x(\tau, 1) = w_x(\tau, 1) = -d\varepsilon w_t(\tau, 1) = -dw_t(\tau, 1) = -d\bar{w}_t(\tau, 1)$ by approximating ε by 0 in the last equation. To sum up, the reduced order system is written as

$$\begin{cases} \bar{w}_\tau(\tau, x) - \bar{w}_{xx}(\tau, x) = 0, \quad \tau \geq 0, \ 0 < x < 1, \\ \bar{w}(\tau, 0) = 0, \quad \tau \geq 0, \\ \bar{w}_x(\tau, 1) = -d\bar{w}_t(\tau, 1), \quad \tau \geq 0, \end{cases} \tag{10}$$

defining \bar{w}, up to an initial condition. The boundary layer system is known to be exponentially stable. In fact, this system is called a passive damped wave equation. As the following computation is used a couple of times later, we explain it here. Let us consider the following Lyapunov function

$$V_1(\bar{w}) = \int_0^1 e^{\mu \tau}(\bar{w}_x + \bar{w}_\tau)^2 dx + \int_0^1 e^{-\mu \tau}(\bar{w}_x - \bar{w}_\tau)^2 dx, \tag{11}$$

with $\mu > 0$ to be fixed later. This Lyapunov function appeared for the wave equation in [18] and is related to a Lyapunov function for first-order hyperbolic equations studied in [7].

Along the solutions to (10), it holds

$$\frac{d}{d\tau} V_1 = 2 \int_0^1 e^{\mu \tau}(\bar{w}_x + \bar{w}_\tau)(\bar{w}_{\tau\tau} + \bar{w}_{xx}) dx + 2 \int_0^1 e^{-\mu \tau}(\bar{w}_t - \bar{w}_\tau)(\bar{w}_{\tau\tau} - \bar{w}_{xx}) dx,$$

$$= 2 \int_0^1 e^{\mu \tau}(\bar{w}_x + \bar{w}_\tau)(\bar{w}_{xx} + \bar{w}_{x}) dx - 2 \int_0^1 e^{-\mu \tau}(\bar{w}_t - \bar{w}_\tau)(\bar{w}_{xx} - \bar{w}_{x}) dx,$$

$$= -\mu \int_0^1 e^{\mu \tau}(\bar{w}_x + \bar{w}_\tau)^2 dx + [e^{\mu \tau}(\bar{w}_x + \bar{w}_\tau)]^2_{\tau=0} - \mu \int_0^1 e^{-\mu \tau}(\bar{w}_t - \bar{w}_\tau)^2 dx - [e^{-\mu \tau}(\bar{w}_t - \bar{w}_\tau)]^2_{\tau=0} = 0.$$

Now, note that the boundary condition in the second line of (10) implies that $\bar{w}_\tau(\tau, 0) = 0$ and thus, for all $\tau \geq 0$,

$$[e^{\mu \tau}(\bar{w}_x + \bar{w}_\tau)]^2(\tau, 0) - [e^{-\mu \tau}(\bar{w}_t - \bar{w}_\tau)]^2(\tau, 0) = \bar{w}_x^2(\tau, 0) - \bar{w}_x^2(\tau, 0) = 0.$$

Therefore, we get

$$\frac{d}{d\tau} V_1 = -\mu V_1 + e^{\mu \tau}(\bar{w}_x(\tau, 1) + \bar{w}_\tau(\tau, 1))^2$$

$$- e^{-\mu \tau}(\bar{w}_t(\tau, 1) - \bar{w}_\tau(\tau, 1))^2,$$

and thus with the boundary condition in the last line of (10):

$$\frac{d}{d\tau} V_1 = -\mu V_1 + e^{\mu \tau}(\bar{w}_x(\tau, 1) + \bar{w}_\tau(\tau, 1))^2$$

$$- e^{-\mu \tau}(\bar{w}_t(\tau, 1) + \bar{w}_\tau(\tau, 1))^2,$$

$$= -\mu V_1 + \left(e^{\mu (1 - d)} - e^{-\mu (1 + d)} \right) \bar{w}_\tau(\tau, 1)^2. \tag{12}$$

We obtain the exponential stability by choosing μ such that $e^{\mu (1 - d)} < e^{-\mu(1 + d)}$, which is possible due to $d > 0$.

Let us now define the following variable $\tilde{w}(t, x) = w(t, x) - cz(t)$ (notice that the previously defined \tilde{w} is an approximation of \bar{w} for small ε). We compute successively

$$w_t = \tilde{w}_t + (a + bc)cz + bcw_t(1, 1),$$

$$w_{tt} = \tilde{w}_{tt} + (ab + b^2c^2)\tilde{w}_t(1, 1) + bc\tilde{w}_t(1, 1) + (a^2c^2 + 2abc^2 + b^2c^3)z,$$

$$\tilde{w}_x = w_x,$$

$$\tilde{w}_{xx} = w_{xx}.$$

Therefore we get the following dynamics, equivalent to (1)

$$\begin{cases} e^2 \tilde{w}_{tt} - \tilde{w}_{xx} + e^2(ab + b^2c^2)\tilde{w}_t(1, 1) + e^2bc\tilde{w}_t(1, 1) + e^2(a^2c^2 + 2abc^2 + b^2c^3)z(1, 1) = 0, \\ \tilde{w}(t, 0) = 0, \\ \tilde{w}_x(1, t) = -d\varepsilon c\tilde{w}_t(1, 1) - d\varepsilon \tilde{w}_x(1, 1) - d\varepsilon(a + bc)cz(1, t), \\ \varepsilon c\tilde{w}_x(1, t) + \varepsilon c(1 + ab + bc)z(1, t), \tag{13} \end{cases}$$

We are now in position to prove Theorem 1 by studying system (13).

Proof: In order to prove that system (13) is exponentially stable, we apply Lemma 1 in Appendix B. More precisely, we use (23) with $A = -(a^2c^2 + 2abc^2 + b^2c^3)$, $B = -(abc + b^2c^2)$, $C = -bc$, $D = -d$, $E = -d(a + bc)c$, $F = -bcd$, $G = a + bc$, $H = b$, $M = 0$, $d_1(t) = d_2(t) = d_3(t) = 0$, for all $t \geq 0$. Thus, defining $V(\tilde{w}, z) = V_1(\tilde{w}) + V_2(z)$, with

$$V_1 = \int_0^1 e^{\mu \tau}(\tilde{w}_x + \varepsilon \tilde{w}_t)^2 dx + \int_0^1 e^{-\mu \tau}(\tilde{w}_x - \varepsilon \tilde{w}_t)^2 dx$$
and $V_2 = z^2$, we get that, along the solutions to (13),

$$
\frac{d}{dt} V \leq \left[-\frac{\mu}{\varepsilon} + e^\mu (\kappa_1 + \kappa_2 + \kappa_3 + \kappa_4) + \frac{2\varepsilon B^2 C_1}{\kappa_2} + 3\varepsilon C_1 F^2 (e^\mu + e^{-\mu})(1 + \frac{|D| + 1}{\kappa_5}) + \frac{C_1 H^2}{\kappa_6} \right] V_1 \\
+ \left[2G + \kappa_6 + \kappa_7 + \frac{2\varepsilon A^2}{\kappa_1} + 3\varepsilon E^2 (e^\mu + e^{-\mu})(1 + \frac{|D| + 1}{\kappa_5}) \right] V_2 \\
+ \left[\varepsilon e^\mu (D + 1)^2 - \varepsilon e^{-\mu} (D - 1)^2 + 3\varepsilon \kappa_5 (e^\mu + e^{-\mu})(|D| + 1) + \frac{2\varepsilon C^2}{\kappa_3} \right] \beta_1(t, 1)^2
$$

for all positive values κ_i with $i \in \{1, 2, \ldots, 7\}$.

Note that, under the assumptions of Theorem 1, $D < 0$ and consequently $-(D - 1)^2 + (D + 1)^2 < 0$. Now letting

$$
\kappa_5 = \frac{1}{12} \frac{|(D + 1)^2 - (D - 1)^2|}{(|D| + 1)} \quad (14)
$$

we get the existence of μ^* such that, for all μ in $(0, \mu^*)$,

$$
\varepsilon e^\mu (D + 1)^2 - \varepsilon e^{-\mu} (D - 1)^2 + 3\varepsilon \kappa_5 (e^\mu + e^{-\mu})(|D| + 1) + \frac{2\varepsilon C^2}{\kappa_3} < 0.
$$

Then for any positive κ_3 we get the existence of ε^* such that, for all ε in $(0, \varepsilon^*)$,

$$
e e^\mu (D + 1)^2 - \varepsilon e^{-\mu} (D - 1)^2 + 3\kappa_3 (e^\mu + e^{-\mu})(|D| + 1) + \frac{2\varepsilon C^2}{\kappa_3} < 0.
$$

In this way, we obtain, along the solutions to (13),

$$
\frac{d}{dt} V \leq \left[-\frac{\mu}{\varepsilon} + e^\mu (\kappa_1 + \kappa_2 + \kappa_3 + \kappa_4) + \frac{2\varepsilon B^2 C_1}{\kappa_2} + 3\varepsilon C_1 F^2 (e^\mu + e^{-\mu})(1 + \frac{|D| + 1}{\kappa_5}) + \frac{C_1 H^2}{\kappa_6} \right] V_1 \\
+ \left[2G + \kappa_6 + \kappa_7 + \frac{2\varepsilon A^2}{\kappa_1} + 3\varepsilon E^2 (e^\mu + e^{-\mu})(1 + \frac{|D| + 1}{\kappa_5}) \right] V_2 \\
+ \left[\varepsilon e^\mu (D + 1)^2 - \varepsilon e^{-\mu} (D - 1)^2 + 3\varepsilon \kappa_5 (e^\mu + e^{-\mu})(|D| + 1) + \frac{2\varepsilon C^2}{\kappa_3} \right] \beta_1(t, 1)^2.
$$

This concludes the proof of Theorem 1.

III. Tikhonov theorem

Until now we have seen that the SPM gives us the reduced order system and the boundary layer, whose stability imply the stability of the full system. The goal of this section is to prove Theorem 2, that uses the subsystems to give a better approximation of the full system. The idea is not only saying that the system goes to zero but explaining how it does when the parameter ε is small enough. To be more specific we introduce the errors between the solutions to (1)-(2) with the solutions to the boundary layer system (4) and (5) and to the reduced system (3) and (6). This justify the introduction of the following variables, for all $t \geq 0$ and x in $[0, 1]$,

$$
\alpha(t) = z(t) - \tilde{z}(t) \\
\beta(t, x) = w(t, x) - c\tilde{z}(t) - \tilde{w}(\frac{t}{\varepsilon}, x).
$$

From (1) and (9), we get

$$
\dot{\alpha}(t) = az(t) + bw(t, 1) - (a + bc)\tilde{z}(t) \\
\dot{\beta}(t) = -bc\tilde{z}(t) + bw(t, 1) \\
\dot{\alpha}(t) = a\tilde{z}(t) + b\beta(t, 1) + b\tilde{w}(\frac{t}{\varepsilon}, 1).
$$

Moreover, we compute successively

$$
\beta_1(t, x) = w_1(t, x) - c(a + bc)\tilde{z} - \frac{1}{\varepsilon}\tilde{w}_{xx}(\frac{t}{\varepsilon}, x), \\
\beta_2(t, x) = w_2(t, x) - c(a + bc)\tilde{z} - \frac{1}{\varepsilon^2}\tilde{w}_{xx}(\frac{t}{\varepsilon}, x), \\
\beta_3(t, x) = w_3(t, x) - \tilde{w}_x(\frac{t}{\varepsilon}, x), \\
\beta_4(t, x) = w_4(t, x) - \tilde{w}_x(\frac{t}{\varepsilon}, x).
$$

Then, from (1) and (10) we get

$$
\varepsilon^2 \beta_1(t, x) - \beta_2(t, x) = -\varepsilon^2 c(a + bc)^2 \tilde{z}, \\
\beta_3(t, 0) = c(\tilde{z}(t) - \tilde{z}(t)), \\
\beta_4(t, 1) = -\varepsilon^2 w_1(t, 1) + \varepsilon \tilde{w}_{x}\left(\frac{1}{\varepsilon}, 1\right).
$$

Therefore, we have

$$
\begin{align*}
\varepsilon^2 \beta_1(t, x) - \beta_2(t, x) & = -\varepsilon^2 c(a + bc)^2 \tilde{z}, \\
\beta_3(t, 0) & = c(\tilde{z}(t) - \tilde{z}(t)), \\
\beta_4(t, 1) & = -\varepsilon^2 w_1(t, 1) + \varepsilon \tilde{w}_{x}\left(\frac{1}{\varepsilon}, 1\right).
\end{align*}
$$

(17)
The last boundary condition of (17) is
\[\beta_4(t, 1) = -d\varepsilon \beta_1(t, 1) - d\varepsilon c(a + bc)\bar{z}(t) \]
where the expression of \(\beta_4 \) has been used. To sum up the dynamics of \(\alpha \) and \(\beta \) can be rewritten as
\[
\begin{align*}
\varepsilon^2 \beta_{tt} - \beta_{xx} &= -\varepsilon^2 c(a + bc)^2 \bar{z}(t) \\
\beta(t, 0) &= \co(t) \\
\beta_x(t, 1) &= -\varepsilon d\beta_1(t, 1) - d\varepsilon c(a + bc)\bar{z}(t) \\
\dot{\alpha}(t) &= a\alpha(t) + b\beta(t, 1) + b\bar{w}(t, 1).
\end{align*} \tag{18}
\]
We are now in position to prove Theorem 2 by studying stability of system (18).

Proof: Let us apply Lemma 1 with \(A = B = C = E = F = 0, D = -d, G = a, H = b, \) and \(M = c. \) For now we keep the functions \(d_1(t), d_2(t), \) and \(d_3(t). \) With \(V \) defined as \(V(\beta, \alpha) = V_1(\beta) + V_2(\alpha) \) with
\[
\begin{align*}
V_1(\beta) &= \int_0^1 e^{\mu x} (\beta_x + \varepsilon \beta)^2 dx + \int_0^1 e^{-\mu x} (\beta_x - \varepsilon \beta)^2 dx \\
V_2(\alpha) &= \alpha^2,
\end{align*}
\]
and \(V_1(\beta) = \alpha^2, \) we get (24) along the solutions to (18). Thus,
\[
\frac{d}{dt} V(\beta, \alpha) \leq \left[-\frac{\mu}{\varepsilon} + e^\mu (\kappa_1 + \kappa_2 + \kappa_3 + \kappa_4) + 6\varepsilon^2 C_1 e^\beta + \frac{C_1 b^2}{\kappa_6} \right] V_1(\beta) \\
+ \left[2a + \kappa_6 + \kappa_7 + 3c^2 b^2 \right] V_2(\alpha) \\
+ \left[\frac{2\varepsilon^2}{\kappa_4} d_1(t)^2 + \frac{2\varepsilon^2}{\kappa_6} d_2(t)^2 + \frac{3\varepsilon^2}{\kappa_7} d_3(t)^2 \right] \\
\frac{\varepsilon \mu (1 - d)}{\kappa_5} + \frac{1}{\kappa_7} \right] V_1(\beta) \\
+ \left[\frac{\varepsilon (\varepsilon^2 + d_1(t)^2 + 2\varepsilon \kappa_6 (\varepsilon^2 - \varepsilon^-) d_2(t)^2 + 3\varepsilon \kappa_5 (\varepsilon^2 - \varepsilon^-) (|d| + 1) d_3(t)^2 \right].
\]
We select \(\kappa_i, i = 1, \ldots, 5 \) and \(\kappa_7 \) by adapting the proof of Theorem 1. See in particular from (14) to (16). In this way we get
\[
\frac{d}{dt} V \leq (2a + \kappa_6 + 3c^2 b^2) V + \frac{2\varepsilon^2}{\kappa_4} d_1(t)^2 \\
+ \frac{3\varepsilon (\varepsilon^2 + \varepsilon^-)(1 + |d| + 1) d_2(t)^2 \right)
\leq (2a + 2\sqrt{3} |bc|) V + \frac{2\varepsilon^2}{\kappa_4} d_1(t)^2 \\
+ \frac{3\varepsilon (\varepsilon^2 + \varepsilon^-)(1 + |d| + 1) d_2(t)^2 \left) \\
+ \left(\frac{6\varepsilon^2}{\kappa_6} \right) d_3(t)^2 .
\]
with \(\kappa_6 = \sqrt{3} |bc| \) (minimizing \(\kappa_6 + 3c^2 b^2) \kappa_6 \), Now we use the expressions
\[
d_1(t) = -c(a + bc)^2 \bar{z}(t),
\]
and \(d_3(t) = b\bar{w}(t, 1). \)
Due to (9), it holds \(|\bar{z}(t)| \leq e^{(a + bc)t}|\bar{z}(0)| \) and we note that there exists a constant value \(C_2 > 0 \) such that
\[
\frac{d_1(t)^2 + d_2(t)^2}{2} \leq C_2 e^{(a + bc)t}|\bar{z}(0)|^2 . \tag{20}
\]
Let us remark that under the hypothesis \(a + \sqrt{3} |bc| < 0, \) we also have \(a + bc < 0, \) which is essential when dealing with \(\bar{z}. \) Concerning \(d_3(t), \) from (12) we can easily see that there exists \(C_3 > 0 \) such that, for all \(t \geq 0 \)
\[
d_3(t)^2 \leq C_3 e^{-\frac{\mu}{\varepsilon} (\|\bar{w}\|_{L^2(0, 1)}^2 + c^2 \|\bar{z}\|_{L^2(0, 1)}^2) . \tag{21}
\]
Inspecting the choices of \(\kappa_4 \) and \(\kappa_5 \) done in (16) and (14) respectively, we have that \(\kappa_4 = O(1), \kappa_5 = O(1) \) and \(\kappa_7 = O(1). \) Note that \(2\delta = 2a + 2\sqrt{3} |bc| \) where \(\delta \) is negative and defined in the statement of Theorem 2. We first bound (19) using (20)-(21) to get
\[
\frac{d}{dt} V \leq 2\delta V + O(\varepsilon^2) e^{2(a + bc) t} |\bar{z}(0)|^2 + O(\varepsilon^2) e^{2(a + bc) t} |\bar{z}(0)|^2 \\
+ O(1) e^{-\frac{\mu}{\varepsilon} (\|\bar{w}\|_{L^2(0, 1)}^2 + \|\bar{w}\|_{L^2(0, 1)}^2) ,
\]
and then we integrate between 0 and \(t \) to obtain (with \(\delta > G \))
\[
V \leq \varepsilon^{2\delta t} (V(0)) + \varepsilon^{2\delta t} (\|\bar{w}\|_{L^2(0, 1)}^2) \\
\leq \varepsilon^{2\delta t} O(\varepsilon^3)
\]
where we used the hypothesis on the initial conditions. We have now to come back to the norm. To do that we use that there exists a positive constant \(C_4, \) not depending on \(\varepsilon, \) such that
\[
\varepsilon^2 C_4 \left(\|\bar{z}\|_{L^2(0, 1)}^2 \right) \leq \int_0^1 e^{\mu x} (f_x + \varepsilon g)^2 dx + \int_0^1 e^{\mu x} (f_x - \varepsilon g)^2 dx .
\]
From here we deduce Theorem 2.

IV. Numerical simulations

In this section, we illustrate Theorems 1 and 2, by some numerical simulations. We apply a Lax-Friedrichs method [17] to get the numerical solutions. The codes are available on [6].

Concerning Theorem 1, we simulate system (1) with \(a = -2, \ b = 1, \ c = -2, \) and \(d = 0.5 \) and the initial conditions \(w^0(x) = 2\pi \sin(2\pi x), \ w^1(x) = 2, \) for all \(x \) in \((0, 1)\) and \(z^0 = w^0(1)/c, \) so that the assumptions of Theorem 1 hold. Pick \(\varepsilon = 0.1 \) for the time scale. We can check on Figure 1 that the Lyapunov function \(V \) (with \(\mu = 0 \)) in the proof of Theorem 1 decreases exponentially fast to zero. We also see that the norm of the solution goes to zero. This is consistent with the conclusions of Theorem 1 giving the exponential stability of the full coupled system.

To illustrate Theorem 2, we also compute the numerical solutions to the reduced system (3), and to the boundary layer system (4) with the initial conditions \(z^0 = z^0, \ v^0 = w^0 - c \bar{z}^0, \) and \(\bar{w}^1(x) = \bar{w}^1 - c(a + bc)z^0, \) for all \(x \) in \((0, 1).\) We show the norms of the Tikhonov approximations
as given in (7). We compare a first approximation of w given by the reduced system $c\tilde{z}(t)$ with a second approximation given by the sum of the reduced system and the boundary layer $c\tilde{z}(t) + \bar{w}(t/\varepsilon, x)$. We check on Figure 2 that the second approximation is better than the first one, specially for small times, which is natural because the contribution of the boundary layer $\bar{w}(t/\varepsilon, x)$ is relevant for small times. Thus, the interest of the Tikhonov approximation is confirmed as stated in Theorem 2.

Using the code [6], we can numerically estimate the optimal values of ε^* in Theorem 1 and Theorem 2 for this example. It is obtained $\varepsilon^* \sim 0.42$ and $\varepsilon^* \sim 0.13$, respectively.

![Fig. 1. Time evolution of the Lyapunov function V and the norm along the solution to (1)](image1)

![Fig. 2. Errors between the solution to (1) with the first approximation (solid back line) and with the second approximation (dashed red line)](image2)

V. CONCLUSIONS

In this paper we have considered an infinite-dimensional system coupling a wave equation with a linear ODE. Some small parameters appear in the partial differential equation, which can be interpreted as having different time scales. Having in mind what is known for finite-dimensional systems, it is natural to apply the singular perturbation method. However, this does not always work in an infinite-dimensional framework as shown in recent literature (see the counterexample in [20]). In this context, we prove here that this kind of analysis can be performed for the system under study and we obtain stability and Tikhonov results. Our main tool is the use of Lyapunov functions. Simulations illustrating our results are presented.

Interesting open problems arise. For instance, performing similar analysis for other infinite-dimensional systems, maybe involving nonlinearities. Other possible research line is to relax the assumptions on the initial conditions in Theorem 2 with respect to their dependence on ε. This would ask for looking for a Lyapunov function not depending on ε. Another possible research line could be to consider more than two time scales in the dynamics. Finally connections of the present work with neutral equations may be an interesting open question.

APPENDIX

A. Rewriting system (1) in Riemann coordinates

Denote $v_1(t, x) = \varepsilon w_1(t, x) + w_x(t, x)$, $v_2(t, x) = w_x(t, x) - \varepsilon w_1(t, x)$, and $\tilde{Z}(t) = \tilde{z}(t)$. By differentiating the second and the fourth line of (1), we obtain from (1) the following system, for all $t \geq 0$, and for all $0 < x < 1$,

$$
\begin{align*}
\varepsilon v_{1t}(t, x) - v_{1x}(t, x) &= 0, \\
v_{2t}(0) - v_{2x}(t, 0) &= 2\varepsilon \tilde{Z}(t), \\
v_{1}(t, 1) + v_{2}(t, 1) &= -dv_{1}(t, 1) + dv_{2}(t, 1), \\
\tilde{Z}(t) &= aZ(t) + \frac{b}{2}\v_{1}(t, 1) - \frac{b}{2}\v_{2}(t, 1).
\end{align*}
$$

System (22) is a system of fast conservation laws coupled with an ODE. However, due to the presence of ε in the denominator of the last line of (22) and of the presence of ε in the second line, it differs from the class of coupled systems of conservation laws and ODE studied in [19]. Therefore the results in [19] do not apply to (22), as claimed in the Introduction.

B. A technical lemma and its proof

In this section, we prove a technical lemma. Roughly speaking this lemma analyses the stability of a general coupled ODE/hyperbolic system with constant coefficients in the internal and boundary couplings. It will be used in the proofs of Theorem 1 and Theorem 2.

Lemma 1: Let $\varepsilon, A, B, C, D, E, F, G, H, M$ be constant values, and d_1, d_2, d_3 be functions in $C([0, \infty))$. Let us consider the system

$$
\begin{align*}
\varepsilon^2 \beta_{tt} - \beta_{xx} &= \varepsilon^2 A_\alpha(t) + \varepsilon^2 B_\beta(t, 1) \\
&+ \varepsilon^2 C_\beta(t, 1) + \varepsilon^2 d_1(t), \\
\beta(t, 0) &= M_\alpha(t), \\
\beta(t, 1) &= E_\beta(t, 1) + \varepsilon F_\beta(t, 1) + \varepsilon d_2(t), \\
\hat{a}(t) &= G_\alpha(t) + H_\beta(t, 1) + d_3(t),
\end{align*}
$$

and the Lyapunov function candidate $V(\beta, \alpha) = V_1(\beta) + V_2(\alpha)$, where $V_2(\alpha) = \alpha^2$ and

$$
V_1(\beta) = \int_0^1 e^{\mu x} (\beta_x + \varepsilon \beta_\xi)^2 dx + \int_0^1 e^{-\mu x} (\beta_x - \varepsilon \beta_\xi)^2 dx.
$$
Then, there exists $C_1 > 0$ such that, for any positive values κ_i, $i = 1, \ldots, 7$, we have all solutions to (23)

$$\frac{d}{dt} V(\beta, \alpha) \leq \left[-\frac{\mu}{\varepsilon} + e^\alpha (\kappa_1 + \kappa_2 + \kappa_3 + \kappa_4) + \frac{2 \varepsilon^2 B^2 C_1}{\kappa_2} + 3 \varepsilon C_1 F^2 (e^\mu + e^{-\mu})(1 + \|D\| + 1) + 6M^2 C_1 \varepsilon H^2 + \frac{C_1 H^2}{\kappa_6} \right] V(\beta)$$

$$+ \left[2G + \kappa_6 + \kappa_7 + 3M^2 H^2_{\kappa_6} + \frac{2 \varepsilon^2 A^2}{\kappa_1} \right] \left(\varepsilon^2 + \kappa_5 \right) + 3 \varepsilon E^2 (e^\mu + e^{-\mu})(1 + \|D\| + 1) \varepsilon C_1 G^2$$

Then, there exists

$$d \varepsilon^2 V_1(\beta) \leq \left[-\frac{\mu}{\varepsilon} + \varepsilon \alpha \beta_t (\beta_x + \varepsilon \beta_t) + \frac{2 \varepsilon^2 B^2 C_1}{\kappa_2} \right] V(\beta)$$

$$+ \left[2G + \kappa_6 + \kappa_7 + 3M^2 H^2_{\kappa_6} + \frac{2 \varepsilon^2 A^2}{\kappa_1} \right] \left(\varepsilon^2 + \kappa_5 \right) + 3 \varepsilon E^2 (e^\mu + e^{-\mu})(1 + \|D\| + 1) \varepsilon C_1 G^2$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,

$$\frac{d}{dt} V_1(\beta) = \int_0^1 e^{\mu_x} (\beta_x + \varepsilon \beta_t) (\beta_x + \varepsilon \beta_t) dx$$

and thus, using integrations by parts,
Moreover, with the Poincaré inequality (see again Appendix A in [15]) it holds, for any positive value κ in $(0, 1)$,
\[
\|\beta(t)\|^2_{L^2(0,1)} = \int_0^1 (\beta(t,x) - \beta(t,0))^2 dx \\
+ 2\beta(t,0) \int_0^1 \beta(t,x) dx - \beta(t,0)^2 \\
\leq \frac{1}{\kappa^2} \|\beta(t)\|^2_{L^2(0,1)} + \frac{1}{2} \beta(t,0)^2 \\
+ \kappa |\beta(t)|_{L^2(0,1)} - \beta(t,0)^2 \\
\leq \frac{1}{\kappa} \|\beta_x(t)\|^2_{L^2(0,1)} + \left(\frac{1}{\kappa} - 1\right) \beta(t,0)^2 \\
+ \kappa |\beta(t)|_{L^2(0,1)}.
\]
Thus letting $\kappa = 1/2$ and one boundary condition of β in (23), it is deduced
\[
\|\beta(t)\|^2_{L^2(0,1)} \leq \frac{8}{\pi^2} \|\beta_x(t)\|^2_{L^2(0,1)} + 2M^2 \alpha(t)^2.
\]
It follows with (25) that
\[
\|\beta(t,1)\|^2 \leq \left(\frac{8}{\pi^2} + 1\right) \|\beta_x(t)\|^2_{L^2(0,1)} + 3M^2 \alpha(t)^2.
\]
In order to compare $\|\beta_x(t)\|^2_{L^2(0,1)}$ with $V_1(\beta)$ we notice that
\[
V_1(\beta) = \int_0^1 e^{\mu x}(\beta_x + \varepsilon \beta_x)^2 dx + \int_0^1 e^{-\mu x}(\beta_x - \varepsilon \beta_x)^2 dx \\
\geq \int_0^1 e^{-\mu x}(\beta_x + \varepsilon \beta_x)^2 dx + \int_0^1 e^{-\mu x}(\beta_x - \varepsilon \beta_x)^2 dx \\
\geq 2 \int_0^1 e^{-\mu x}(\beta_x^2 + \varepsilon^2 \beta_x^2) dx \geq 2e^{-\mu} \int_0^1 \beta_x^2 dx.
\]
Thus, we obtain
\[
|\beta(t,1)|^2 \leq C_1 V_1(\beta) + 3M^2 \alpha(t)^2, \tag{26}
\]
with $C_1 = \frac{\varepsilon^2}{2} \left(\frac{8}{\pi^2} + 1\right)$. Therefore, we get
\[
\frac{d}{dt} V_1(\beta) \leq \left[-\frac{\mu}{\varepsilon} + e^{\mu}(\kappa_1 + \kappa_2 + \kappa_3 + \kappa_4) + \frac{2\varepsilon^2 B^2 C_1}{\kappa_2} \\
+ 3\varepsilon C_1 F^2(e^{\mu} + e^{-\mu})(1 + \frac{|D| + 1}{\kappa_5}) + 6M^2 C_1 \varepsilon H^2) \right] V_1(\beta) \\
+ \left[\frac{2\varepsilon^2 A^2}{\kappa_1} + 3\varepsilon E^2(e^{\mu} + e^{-\mu})(1 + \frac{|D| + 1}{\kappa_5}) + 6M^2 C_1 G^2 \\
+ \left(\frac{2\varepsilon^2 B^2}{\kappa_2} + 3\varepsilon F^2(e^{\mu} + e^{-\mu})(1 + \frac{|D| + 1}{\kappa_5}) + 6M^2 \varepsilon H^2) \right) 3M^2 \right] \alpha(t)^2 \\
+ \frac{2\varepsilon^2}{\kappa_4} d_1(t)^2 + 3\varepsilon(e^{\mu} + e^{-\mu})(1 + \frac{|D| + 1}{\kappa_5}) d_2(t)^2 + 6M^2 \varepsilon d_3(t)^2 \\
+ \varepsilon(e^{\mu} + e^{-\mu})(1 + \frac{|D| + 1}{\kappa_5}) d_2(t)^2 + 6M^2 \varepsilon d_3(t)^2 \\
+ \frac{2\varepsilon^2 C^2}{\kappa_4} \beta(t,1)^2. \tag{27}
\]
Moreover, using the fourth line of (23), inequality (26) and $2f g \leq \frac{f^2}{k} + k g^2$ (for any values f and g and any positive value k), we have
\[
\frac{d}{dt} V_2(\alpha) = 20\alpha(t)G(\alpha(t) + H\beta(t,1) + d_3(t)) \\
2G V_2(\alpha) + 2H(\alpha(t),\beta(t,1) + d_3(t)) \\
\leq 2G V_2(\alpha) + \frac{H^2}{\kappa_6} \beta(t,1)^2 + \kappa_6 \alpha(t)^2 + \kappa_7 \alpha(t)^2 \\
+ \frac{1}{\kappa_7} d_3(t)^2 \\
\leq 2G V_2(\alpha) + \frac{H^2}{\kappa_6} (C_1 V_1(\beta) + 3M^2 \alpha(t)^2) \\
+ \kappa_6 \alpha(t)^2 + \kappa_7 \alpha(t)^2 + \frac{1}{\kappa_7} d_3(t)^2 \\
\leq (2G + \kappa_6 + \kappa_7 + 3M^2 \frac{H^2}{\kappa_6} V_2(\alpha) \\
+ \frac{C_1 H^2}{\kappa_6} V_1(\beta) + \frac{1}{\kappa_7} d_3(t)^2,}
\]