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Introduction

Quantum Monte Carlo (QMC) methods use a stochastic approach to solve the Schrödinger equation. Their scaling with the system size considering the computational costs is very much favourable compared to deterministic quantum chemistry methods. A great flexibility in the choice of the wave function allows to efficiently treat both dynamical as well as statical correlation. As such QMC has been used extensively for the description of excited states [START_REF] Feldt | Excited-state calculations with quantum Monte Carlo[END_REF] and materials.

A great challenge for QMC methods is the unfavourable scaling with the atomic number Z. The presence of the core electrons which are at a distance O(1/Z) from the nucleus have two undesirable consequences. First, they are usually slowing down the dynamics of the valence degrees of freedom. Second, the core electrons contribute to a large degree to the energy (O(Z 2 ) for a hydrogenoid atom) and as we will emphasize later also to the statistical fluctuations. A common way to circumvent this problem is employing effective core potentials (ECP) which are simply removing the core electrons and consequently allow for efficient sampling of the remaining valence electrons. While this is a practical approach it is as well an approximate one which spoils the high accuracy which is expected from QMC. For instance, the widely used Burkatzki-Filippi-Dolg pseudopotentials 2 have been parametrized for Hartree-Fock completely disregarding the correlation energy and the error introduced by such empirical ECPs cannot be directly judged. Comparing all-electron and valence-only calculations it has been shown that the effect is even larger for properties of excited states than for the ground state. [START_REF] Scemama | Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion Monte Carlo[END_REF] So far progresses in all-electron calculations have been focused only on alleviating the first undesirable consequence of the presence of core electrons, improving the sampling, both the ergodicity and the numerical cost. For example a spatial discretization using a double grid method allows adapting the moves close to nuclei in the Diffusion Monte Carlo method (DMC), [START_REF] Nakano | Speeding up ab initio diffusion Monte Carlo simulations by a smart lattice regularization[END_REF] leading to a gain in correlation time up to a factor 10 (for Z = 118).

In the Variational Monte Carlo (VMC) framework the correlation time for large Z atoms can be reduced using spherical coordinates. [START_REF] Umrigar | Accelerated Metropolis method[END_REF] Minimizing the computational time is also a possible route, for example the two-level Metropolis sampling [START_REF] Dewing | Improved efficiency with variational Monte Carlo using two level sampling[END_REF] factorizes the wave function in two terms and lowers the number of evaluations of one of the terms. The scaling of computing multi-determinant expansion and optimizing them has been strongly reduced. [START_REF] Clark | Computing the energy of a water molecule using multideterminants: A simple, efficient algorithm[END_REF][START_REF] Filippi | Simple formalism for efficient derivatives and multideterminant expansions in quantum Monte Carlo[END_REF][START_REF] Assaraf | Optimizing the Energy with Quantum Monte Carlo: A Lower Numerical Scaling for Jastrow-Slater Expansions[END_REF] This method is based on the determinant Lemma which allows to update a Slater determinant efficiently when only a few columns are modified.

Here we focus on the second undesirable consequence due to the presence of the core electrons, namely their large contribution to the variance. We will describe a method to build an improved estimator which enables to almost completely remove the variance coming from the core electrons. The idea is to exploit that most of the fluctuations come from a few electrons in the core regions and that the core regions are physically separated. This allows to draw an improved estimator of any random variable (here the local energy) depending on the electron coordinates (a walker) based on subsampling the core region with sidewalks.

Because these sidewalks displace a few electrons at a time their numerical cost is negligible when the number of electrons N is large, in particular for a large molecule.

Theory: Subsampling

We want to compute the expectation value of a random variable X on a density π, E(X).

In the Variational Monte Carlo framework π = Ψ 2 is the square of the trial or variational wave function and X can be the local energy for the Schrödinger Hamiltonian H,

X = E L = HΨ Ψ . (1) 
We suppose that there exists a small region Ω of the probability space which is responsible for most of the variance. This region will correspond here to free moves in the core region of an atom with frozen valence electrons. We define in this work a core region as the largest sphere centered on a nucleus which contains n core electrons of a given configuration. The radius of this sphere is the distance of the first valence electron to the nucleus. Note that Ω is a random subspace as it depends on the coordinates v of the valence electrons. We will first consider the conditional expectation value E(X|Ω) as an estimator. We recall the meaning of this standard notation in probability theory using the language of integrals. For a given set of valence positions v, the coordinates c of the core electrons which are subject to a constraint c ∈ C(v) which is to be closer to the nucleus than the valence electrons. For a given valence configuration v the conditional expectation value is a number

E(X|Ω(v)) = c∈C(v) X(c, v)π(c, v)dc c∈C(v) π(c, v)dc (2) 
which can be interpreted numerically as a partial average of X on a subset of walkers sampling π = Ψ 2 sharing the same valence configuration v. According to the law of total expectation the random variable E(X|Ω) which depends on v is an unbiased estimator of X i.e. E(E(X|Ω)) = E(X). This standard property in probability theory can be understood also in an integral calculus formulation

E(X) = dv c∈C(v) π(c, v)X(c, v)dc = dv c∈C(v) π(c, v)E(X|Ω(v))dc (3) 
The first line is a definition of the expectation value and the second line which corresponds to the definition of E(E(X|Ω)) is easy to check by replacing E(X|Ω(v)) by its expression (2).

Since the estimator E(X|Ω) depends only on the positions of valence electrons this random variable can be seen as the effective valence property which include an (exact) ECP contribution.

This estimator fluctuates much less than X because of the variance decomposition theorem (see Appendix B).

V (X) = E(V (X|Ω)) + V (E(X|Ω)), (4) 
where V (X|Ω) is the conditional variance on Ω, it is the variance obtained when the valence configuration v is frozen. The expectation value E(V (X|Ω)) can be interpreted as the contribution of the core electrons to the total variance V (X). Computing E(X|Ω) is also equivalent to adding the covariate E(X|Ω) -X to X in order to cancel the effect of the core electrons on the statistical fluctuations. For a molecule (i.e. many atoms) the estimator E(X|Ω) could be applied with Ω being defined as the union of all the core regions. We prefer instead this estimator

X = X + i (E(X|Ω i ) -X) (5) 
where Ω i is a set which corresponds to moving only the core electrons of the i th atom and freezing all the other electrons. The motivation is that moving a few electrons at a time will be numerically much cheaper than moving all the electrons of the core regions. However, we expect almost the same variance reduction due to the following physical consideration.

Given a valence configuration v, two distant core regions c i and c j should be close to be separable for a physical random variable X. Mathematically, denoting by c i the electronic configuration of the core region of the i th atom, the cores are separable if the core coordinates are independent for a given valence configuration v and we can write

X = α(v)+ i β i (v, c i ).
This property implies that

E(X|Ω i ) -X = E(β i |Ω i ) -β i (v, c i ). It follows that X = α(v) and of course X = E(X|Ω).
The conditional expectation values in formula (5) are not known and have to be sampled.

In practice a covariate can be constructed by carrying out M s additional steps for each of the core regions the so-called sidewalks. The main walk is carried out in the usual manner.

After each sweep of single-electron moves in the main walk, the sidewalks for the cores are started from the current configuration. After completion of the sidewalks the main walk continues from the original configuration before the sidewalks started (Figure 1). The improved estimator of X is then computed by the subsampling process i.e. using the following estimator

X(ω, M s ) = X(ω) + λ i Ms k=1 X(ω k i ) -X(ω) M s (6) 
where ω represents a particular configuration in the main walk and ω k i is the configuration ω modified by k steps of the i th sidewalk (only the electrons in the i th core region differ between ω k i and ω). Regarding the local energy the control variate E L (ω k i ) -E L (ω) can be computed with a cost O(N ) for a Jastrow-Slater function (see Eq. ( 21) in appendix). This cost can be reduced to O(1) by removing terms in the expression of the control variate

E L (ω k i ) -E L (ω)
involving the far environment of the core. They are zero in the separability limit and should be small in practice. This modification is equivalent to building a generalization of Expr. ( 5) using a function parameterized by i

X = X + λ i E(X i |Ω i ) -X i (7) 
In practice we use the following formula

X(ω, M s ) = X(ω) + λ i Ms k=1 X i (ω k i ) -X i (ω) M s (8) 
The term multiplied by λ is of course still a control variate (its expectation value is zero).

For the local energy a simplified expression (E i L (ω i )-E i L (ω)) is presented in Eq. ( 22) when Ψ is a Jastrow-Slater function. This form has been found to be much more efficient numerically (the scaling is O(1) and the variance is about the same).

We need to optimize M s to maximize the efficiency. The efficiency of a Monte Carlo calculation is related to the time to achieve a given statistical uncertainty σ. Given a sample of size M the statistical uncertainty is σ with

σ 2 = V c M ( 9 
)
where V is the variance, c is a correlation factor (c ≥ 1) which takes into account that the points in the sample are not independent. The CPU time is T = M t where t is the time for one Monte Carlo step (a sweep over the electrons). The method is all the more efficient that the cost parameter

σ 2 T = V ct (10) 
is small. Note that this parameter is independent of T for a simulation sufficiently long.

Given a random variable X parametrized by M s all the parameters on the r.h.s of Eq. (10) are functions of M s , including t because the optimal parameters of the main walk may depend on X. It is natural to consider that in the limit M s = 0 (no sidewalk) we have X = X. If t s is the CPU time of the sidewalk with M s = 1 the total computational time for a general value of M s is t(M s ) + M s t s . The gain in efficiency is

G(M s ) = V (X)t(0)c(0) V ( X)(t(M s ) + M s t s )c(M s ) = 1 r(M s )(1 + M s ts t(Ms) ) c(0)t(0) c(M s )t(M s ) (11) 
where r(M s ) is the reduction of variance. The parameter t s /t(M s ) should be negligible for large N , so for a large molecule M s should approach infinity and asymptotically the gain is

G ∞ = 1 r ∞ c 0 c ∞ t 0 t ∞ (12) 
where r ∞ = lim Ms→∞ r(M s ) etc. . . If the three factors (ratio of variances, ratio of correlation factors, ratio of CPU times of a single step of the main walk) for large M s are transferable from an atom to a molecule the gain in numerical efficiency for large molecules can be estimated using single atoms. Next, we will consider isolated atoms before checking this transferability property.

Reduction of the Variance for single atoms

We first investigate a series of isolated atoms to understand the properties of the core subsampling as a function of Z and the number of core electrons n core . The subsampling can be done with any method involving the Metropolis scheme but with an additional rejection step when the move is leaving Ω. Such rejection does not modify the detailed balance property ensuring that π = Ψ 2 stays the invariant measure of the subsampling process.

The simulations have been carried out for the elements Li (Z = 3) to Ar (Z = 18) with a varying number of core electrons and M s = 100 • n core steps so that they are converged or very close to the converged value E(X|Ω). The limiting value can be better estimated with an hyperbolic fit as detailed in Equation 34. The results as a function of the fraction of core electrons x are shown in Figure 2. First, one can see clearly that the variance converges correctly towards 0 for an increasing number of core electrons. The zero-variance limit is obtained when all electrons are included in the subsampling and for an infinite long sidewalk.

Of course, in this limit the subsampling is exactly equivalent to the main walk itself and the computational efficiency is not improved. However, it becomes apparent that for all values of Z the two inner electrons contribute to most of the variance, from 95% for Lithium down to 50% for Argon. This trend is analyzed in more detail in Figure 3 where results are shown for n core = 2 and 10 for (Z = 11 -18) which is equivalent to the chemical core for the second period. One can see, that the gain is larger going from the smaller to the larger core definition. The parameters n core and M s should be as small as possible to obtain numerically cheap sidewalks, but they also have to be as large as possible to reduce as much as possible the variance, leading to an optimal compromise which has to be determined. In Figure 4 the convergence of V ( X)/V (X) = r(M s ) with M s is shown for a range of number of core electrons. Independently of the size of the subsystem one can distinguish an initial quick decay in the range of 0-20 steps and a 1/M S convergence to the asymptotic limit (Eq. 34). In this initial phase most of the reduction in the variance is obtained and the differently sized subsystems which look like very similar for a small number of steps increasingly separate from each other. Figure 4: The reduction of the variance V ( X)/V (X) as a function of the number of subsampling steps M s for various number of core electrons n core for a single Aluminium atom.

Transferability to molecules, gain in variance and computational time

We first check for systems of many atoms that the gain in the variance for M s = ∞ for a single atom is transferred to molecular systems and materials. We are using linear alkanes C n H 2n+2 of increasing length with n = 1 -35 and an increasingly larger part of a silicon unit cell (Fd3m) 10 with 1-8 atoms. The results for the alkanes are shown in Figure 5 in comparison to the gain for a single carbon atom represented by the dashed line. The gain for converged sidewalks, i.e. with large M S shown in blue, does not change with the length of the alkane chain. Furthermore, one can see that the gain differs by only 5%-10% from the single carbon atom case. This result confirms the transferability of the gain in variance from an atom to a molecule. It is even systematically slightly better (by 5%-10%) for the molecule, this suggests that the separability between the core and the valence regions is enhanced by the chemical bonds. Next, the results for the silicon clusters are shown in Figure 6. Again, the gain in the variance does not change with the system size and it is about 20% above the gain of 82 for a single silicon atom. Compared to carbon the gain in the variance is about 17 times larger for silicon. Note that the gain on these curves looks like to have rather large fluctuations (∼ 10%). The fluctuations come mainly from the infinite variance of the estimator of V (E L ) and we cannot rely on the central limit theorem (the rate of convergence is slower than 1/ √ M ). In Figure 5 the gain in variance is shown for the value M * s of M s which minimizes the computational cost. This gain increases from about 3

for CH 4 to about 5 for 30 carbon atoms. Silicon atom Gain V (X)/V ( X)

Silicon atoms Si n

Figure 6: The gain in the variance for alkanes of increasing length for converged sidewalks (large M s ). In dashed the gain for a converged sidewalk for a single carbon atom.

The numerical gain is much larger, it is shown in Figure 7. The speedup, i.e. the gain in computational time is the product of the gain in the variance and the gain in the correlation factor, but it includes also a reduction of the computational time of the main walk. This is because the sidewalks in the core regions take most of the information from that region, allowing to reduce the sampling of the core electrons in the main-walk (see the computational details). In practice the reduction of CPU time for a step of the main walk comes from a reduction of the acceptation probability from 0.95 to 0.57 for Alkanes and from 0.93 to 0.42 for silicons. These acceptation probabilities do not depend on the size of the molecules in the error bars which confirms that they are transferable. The corresponding gains in CPU times G 420 for large clusters of silicon. This large variance reduction for Silicon is due the large atomic charge Z but also to a choice of large cores (10 electrons). If the asymptotic limit is much better it should also be reached for much larger molecules according to Eq. ( 42), not only because r ∞ is smaller but also because t s is larger (by a factor 10). The gain we observe for the silicon cluster with 7 atoms is only 4.5, it is the same as for an alkane molecule of equal size. step. This is the standard process used in the more accurate Diffusion Monte Carlo method (DMC). [START_REF] Toulouse | Electron Correlation in Molecules -ab initio Beyond Gaussian Quantum Chemistry[END_REF] The motivation is that we want to open the extension of this work to DMC. We are introducing different time steps, two time steps τ A and τ v for the main walk and τ s for the sidewalk. The time steps τ s and τ A are small and adapted to the core electrons. The time step τ v is adapted for the valence electrons and is therefore much larger. The frequency ν A of using the small time step τ A is also a parameter to be optimized. The complete scheme is displayed in Fig. 9. A main walk with two time steps but without subsampling has not been found more efficient than a simple main walk with a single time step, this is because the fluctuations coming from the valence region are hidden by the fluctuations coming from the core. The sidewalk recovers most of the information of the core which gives us the flexibility to move the core electrons less frequently within the main walk. When resorting to the improved estimator the computational time of the main walk can be reduced because moving electrons and rejecting the moves has a O(1) CPU cost, using the algebra we develop in the appendix A, while accepting the moves implies a O(N 2 ) scaling since we update the Slater determinant with the Sherman-Morrison formula. Finally, the two time steps dy-namics enable to reduce the correlation factor but also the computational time of the main walk.

We applied the following simple protocol to obtain optimized parameters for the three time steps τ v , τ S and τ A and the ideal number of subsampling steps M s . All optimizations are carried out with the alternative small time step τ A . First, the time step of the sidewalk is determined for a sidewalk with large M s = 100 by minimizing the variance of the improved estimator and with a rough estimate of τ v and ν S = 1. Next, the time step τ v of the main walk (including subsampling) is optimized by minimizing the cost (see Eq. 10) with ν S = 1.

A single simulation with large M s allows to extract as well the results for all possible shorter sidewalks and therefore the optimization of M s . The correlation factor of the improved estimator is generally between 1-2 for these optimized parameters. Therefore, the sidewalk length M S has been determined for the subsampling frequency ν S of 1 and 2 (for the alkanes 10-16) but in all instances the former turns out to be more efficient. The parameters for molecular systems can be transferred from single atoms or small model systems e.g. the parameters for a carbon atom in arbitrary alkanes can be determined from the CH 4 molecule.

For heavier elements like silicon the time step of the subsampling is simply identical to the time step of an ideal main walk without subsampling. With the multiple time steps adapted for core and valence electrons we can reduce the correlation factor from about 4-5 for carbon or silicon with a simple main walk to about 2 with our scheme. The wavefunction Ψ comes from an SCF calculations performed with Quantum Package. [START_REF] Garniron | Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs[END_REF] The basis is made of Slater atomic orbitals from the reference, [START_REF] Van Lenthe | Optimized Slater-type basis sets for the elements 1-118[END_REF] TZP for alkanes and SZ for silicon clusters. These atomic orbitals have been fitted using a large sum of Gaussians to be treated by Quantum Package.

Conclusion

In this work we are exploiting that most of the statistical fluctuations come from the core region and that the core regions are separable to efficiently remove the statistical fluctuations coming from the core electrons. This is done by sidewalks for each core region, i.e. moving the core electrons while freezing the environment. The computational cost is considerably reduced especially for molecular systems as each sidewalk includes only very few electrons.

The gain in computational time is about 22 for alkanes and should be 420 for large silicon clusters when computing the variational energy with a free Jastrow Slater determinant.

Overall, the presented method is a proof of concept for all-electron QMC calculations, with a numerical scaling comparable to the one obtained using pseudo-potentials. Of course the clear advantage is to avoid the related uncontrolled approximations. The obvious next step to obtain physical meaningful results is to use a Jastrow factor, adapt the scheme to other kinds of wavefunctions, and to other properties than the energy, like for example its derivatives to optimize Ψ. Note that the gain in the variance especially for large molecules with larger atoms is more significant than the gain one can obtain by improving the ergodicity of the dynamic. Very intriguing is the perspective to extend this work to Diffusion Monte Carlo (DMC).

functions are called atomic spin-orbitals. We suppose them to be localized that is they reduce to zero if the distance from a given atom is larger than a threshold. Given the configuration ω that is the N positions r i of the electrons we define X the N × p rectangular matrix of spin-orbitals.

X ij = χ j (r i ) (13) 
A Slater determinant is

Φ(X) = det(XC) (14) 
where C is a p × N matrix of the so-called molecular orbital coefficients. The local energy like the drift can be written as a logarithmic derivative of Φ. [START_REF] Filippi | Simple formalism for efficient derivatives and multideterminant expansions in quantum Monte Carlo[END_REF] That property holds also if the Jastrow factor is included. Here we choose to separate the kinetic energy from the local potential energy

E L = ∂ λ ln Φ X - λ 2 ∆X + ij 1 r ij + iA Z A r iA (15) 
The first term is the kinetic energy, the second term is the electron-electron potential and the third is the electron-nuclei potential (Z A is the nuclear charge of the atom A). r ij is of course the distance between electron i and j while r iA is the distance between the electron i and the nucleus A. If C and X depend on a parameter λ

∂ λ ln Φ = tr(D ∂ λ X) + tr((XC) -1 X ∂ λ C) (16) 
where

D ≡ C(XC) -1 (17) 
represents the logarithmic gradient of Φ with respect to X. A given configuration ω defines Ω which is subsampled by moving a few electrons of ω evolving in this way to ω ∈ Ω.

Correspondingly, if X differs from X by a few lines, the determinant and its derivatives can be updated with efficient formulas. First we define the operator P which applied on the left selects those lines, P X are the lines which may differ from the lines of P X. We also define the operator Q T which applied on the right of P X or P X removes zero columns of P X and P X .

X ≡ P X Q T Using the determinant lemma Φ(X ) = det(XC) det(P X C(XC) -1 P T ) = det(XC) det(P X Q T QC(XC) -1 P T ) = det(XC) det( X C) (18) 
where X and C are submatrices of X and D.

X ≡ P X Q T (19) C ≡ QC(XC) -1 P T = QDP T (20) 
The second term of the r.h.s of expression (18) is a Slater determinant for the subsystem with reduced numbers of electrons and atomic orbitals, the matrix C represents effective molecular orbitals. Expr (18) performs an update of the Slater determinant for the full system using a reduced Slater determinant.

Introducing

ᾱ ≡ ( X C) -1 D ≡ C( X C) -1
the logarithmic derivative of the expression (18) is

∂ λ ln Φ(X ) = tr(D ∂ λ X) + tr( D ∂ λ X) + tr(ᾱ X ∂ λ C) = tr(D ∂ λ X) + tr( D ∂ λ X) -tr(ᾱ XQD ∂ λ X DP T )
Note that this expression does not depend on the lines of ∂ λ X which are replaced by the lines of ∂ λ X , in other words ∂ λ X can be replaced by (1 -P T P )X in Expr (21). This property can be checked algebraically and will be used later. The control variate for the local energy is

E L (X ) -E L (X) = tr D ∂ λ X -tr(ᾱ XQD ∂ λ X DP T ) + i∈Ω,j ( 1 r ij - 1 r ij ) + i∈Ω,A ( Z A r iA - Z A r iA ) (21) 
where r ij and r iA represent distances from the electron i in the new configuration ω ∈ Ω.

The matrix QD ∂ λ X DP T is computed for a O(N 3 ) cost and stored once for the sidewalk.

Computing the control variate (21) has a O(N ) scaling because of the two last Coulombic terms. Indeed the index i runs only on the electrons of the subsystem Ω (core electrons), but there are N -1 electrons j and O(N ) atoms A.

We can take instead an Ω-dependent approximation of E L by considering only the interaction of the electrons in Ω with particles within a fixed distance from the center of Ω.

This reduces the Coulombic sum to a O(1) numerical cost, however we expect with little effect on the statistical fluctuations. This is because we only neglect interactions with distant particles, distant dipoles, quadrupoles or higher moments.

We propose also to remove the kinetic energy of particles which are not in the core region which defines Ω. Physically if this core region is independent of the rest of the system, we can replace the one-body terms outside Ω without modifying the difference (21). Mathematically canceling the kinetic energy outside the core region is equivalent to replacing (1 -P T P )X

C Optimal gain in efficiency/computational time

Combining Expressions (11, 12) we can write when M s is sufficiently large and the three gain factors do not depend anymore on M s

G(M s ) = G ∞ r(M s )(1 + M s ts t∞ ) (37)
Maximizing the efficiency in Eq. ( 11) is equivalent to minimizing the function

1 G(M s ) = (1 + M s t s t ∞ ) 1 + 1 M s 1 -r ∞ r ∞ cs 1 G ∞ (38) 
The optimal value of M s is

M * s = t ∞ t s cs (1 -r ∞ ) r ∞ (39) 
for an optimal gain G(M * s ) such that

1 G(M * s ) = 1 G ∞   1 + t s t ∞ cs (1 -r ∞ ) r ∞   2 (40) 
For a large molecule ts t∞ is small and a first order Taylor expansion gives for r ∞ = 0

1 G(M * s ) = 1 G ∞   1 + 2 t s t ∞ cs (1 -r ∞ ) r ∞ + o t s r ∞ t ∞   (41) 
When computing the variational energy with a Jastrow-Slater determinant and using the simplified control variate in Eq. ( 22) we have t s /t ∞ = O(N -2 ) and

1 G(M * s ) = 1 G ∞ 1 + o( 1 N √ r ∞ ) . (42) 
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 1 Figure 1: Schematic representation of the core subsampling.
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 2103 Figure 2: The reduction of the variance V ( X)/V (X) as a function of the fraction of core electrons x. M s = 100 • n core for all simulations.

Figure 5 :

 5 Figure 5: The gain in the variance for alkanes of increasing length for converged sidewalks (large M s ) and for the optimized M * s . In dashed the gain for a converged sidewalk for a single carbon atom.
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  ∞ /t are 0.95/0.57 = 1.7 for Alkanes and 0.93/0.41 = 2.3 for silicons. Finally, The correlation factors are reduced from 4.4 to 1.8 for the alkanes and 4.5 to 2.1 for the silicons which results in a gain of 2.4 and 2.1, respectively. Again, within the error bars the correlation factors do not depend on the system size and is transferable. Overall, this leads to an asymptotic value of the gain G which is 22 for carbon atoms. The numerical gain increases from G 2 for CH 4 to G 12 for 35 carbon atoms. The gain converges as O(1/N ) with the number of nuclei (see Eq. 42) and the ideal M * s increases as a linear function of N in accordance to Eq. 43. Based on the linear fit in Figure 8 for the alkane chains, M * S = 100 is for example reached for about 192 carbon atoms. One can estimate the asymptotic value of the gain
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 5 Computational detailsA single iteration (our main walk or sidewalk) consists of a usual drift (logarithmic derivative of Ψ) and Brownian diffusion process, completed by a Metropolis acceptation-rejection

Figure 7 :

 7 Figure7: The speedup compared to a simple main walk for alkanes of increasing length. The theoretical limit (dashed line) is estimated as the product of the gain in variance and the gain in correlation factor for CH 4 .
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 8 Figure 8: The ideal M * s for the alkane chains with a linear fit according to Equation 43.

Figure 9 :

 9 Figure 9: Complete scheme of the subsampling with the dual time step scheme with the main walk VMC steps (M), the subsampling steps (S) with frequency ν S and the alternative time steps (A) with frequency ν A .
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A Subsampling and updating Slater determinants

The wave-function is built on p functions of χ i (r) where r represents the 3 spatial coordinates of an electron and the spin (± [START_REF] Feldt | Excited-state calculations with quantum Monte Carlo[END_REF] 2 ). Because they are usually centered on each atom these by 0 in Expr (21). This leads to the (zero-expectation-value) control variate

where the sums over j and A are restricted on the electrons and the atoms in a sphere around the center of Ω. This expression is simpler as it has the same form as the expression of the local energy for the full system, and is computationally less demanding. These formulas apply with a Jastrow factor since the later only modifies the definition of the derivative

B Convergence as a function of M s , the size of a sidewalk

Given a set of random variables Ω, E(X|Ω) is an unbiased estimator of E(X) since E(X) =

E(E(X|Ω)).

Let us prove that it is a variance-reduced estimator. The conditional variance is

Now taking the expectation value of the two sides of this equation and isolating E(X) 2 on the l.h.s. we find

which becomes after removing E(X 2 ) on the two sides of this identity

The variance of the conditional estimator E(X|Ω) is then lower than V (X).

Here, X is the local energy for an atom and Ω is the set of coordinates of the valence electrons. In practice we perform a main walk and sidewalks to sample Ω i.e. moving the core electrons while freezing the valence region

For a given Ω the variance of X is

where c s is a correlation factor which takes into account that the points on a sidewalk are not independent. We assume here that c s depends only on Ω and not on M s . This property holds in a regime where M s is sufficiently large. Reminding that

We combine the two last equations and apply the expectation value

In the calculation we do not use E(X|Ω) as an improved estimator, we use instead X which converges to E(X|Ω) for large M s (ergodicity theorem). Eq. (29) tells that the variance of X converges to the variance of E(X|Ω) hyperbolically. The variance of X is a fraction

which becomes the full gain only in the limit M s → ∞. Introducing the mean correlation

Equation (29) becomes

where we used Eq. ( 24) for the last expression. A hyperbolic fit of the function r(M s ) can provide the two parameters r ∞ and cs . One can also use two values M s and αM s

The explicit dependence on M s should not make forget that cs is converging to a constant when M s is sufficiently large.

Regarding the corresponding optimal value of M s the Taylor expansion gives

which means that the number of side-steps (of the subsampling) for each core is optimally proportional to the number of cores.