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Solvability by radicals

Rodney Coleman, Laurent Zwald

December 10, 2020

Abstract
In this note we present one of the fundamental theorems of algebra, namely Galois’s theorem
concerning the solution of polynomial equations. We will begin with a study of cyclic
extensions, before moving onto radical extensions.

1 Cyclic extensions
We say that a finite extension E of a field F is cyclic if the Galois group Gal(E/F ) is cyclic. In
this section we aim to present some elementary properties of such extensions. We begin with a
preliminary result known as Hilbert’s theorem 90.

EXTSOLVcycth1 Theorem 1 Let E/F be a finite cyclic Galois extension of degree n. We suppose that σ is a
generator of the Galois group Gal(E/F ). If α ∈ E, then NE/F (α) = 1 if and only if there exists
β ∈ E∗ such that α = β

σ(β) .

proof If α = β
σ(β) , then

NE/F (α) = ασ(α) · · ·σn−1(α) = βσ(β)σ2(β) · · ·σn−1(β)
σ(β)σ2(β) · · ·σn−1(β)σn(β)

= 1,

because σn(β) = β.
Now suppose that NE/F (α) = 1, i.e., ασ(α) · · ·σn−1(α) = 1. We define a finite sequence

(δi)
n−1
i=0 as follows:

δ0 = α, δ1 = ασ(α), δ2 = ασ(α)σ2(α), . . . , δn−1 = ασ(α) · · ·σn−1(α) = NE/F (α) = 1.

From Result
REDUCdedcor1
1 the characters 1, σ, . . . , σn−1 form an independant set and so there exists γ ∈ E

such that
δ0γ + δ1σ(γ) + · · ·+ δn−2σ

n−2(γ) + σn−1(γ) 6= 0.

We note this sum β. Then

σ(β) = σ(δ0)σ(γ) + σ(δ1)σ
2(γ) + · · ·+ σ(δn−2)σ

n−1(γ) + σn(γ)

= α−1
(
δ1σ(γ) + δ2σ

2(γ) + · · ·+ δn−1σ
n−1(γ)

)
+ σn(γ),

because α−1δi = σ(δi−1). As σn = idE , we have

σn(γ) = γ = α−1δ0γ,

hence σ(β) = α−1β. 2

The theorem which we have just proved is often refered to as the ’multiplicative’ version of
Hilbert’s theorem 90 to distinguish from the ’additive’ version, which we will now present.
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EXTSOLVcycth2 Theorem 2 If E/F is a finite cyclic Galois extension of degree n, then TE/F (α) = 0 if and only
if there exists β ∈ E such that α = β − σ(β).

proof Let σ be a generator of the Galois group G = Gal(E/F ), so that σn = idn.
If α = β − σ(β), then

TE/F (α) =

n−1∑
k=0

σk(α) =

n−1∑
k=0

σk(β)−
n∑
k=1

σk(β) = 0,

because σn(β) = β.
Conversely, suppose that TE/F (α) = 0. As TE/F 6= 0, we may find an element x such that

TE/F (x) 6= 0. Let

w = ασ(x) + (α+ σ(α))σ2(x) + · · ·+
(
α+ σ(α) + · · ·+ σn−2(α)

)
σn−1(x).

Then

σ(w) = σ(α)σ2(x) +
(
σ(α) + σ2(α)

)
σ3(x) + · · ·+

(
σ(α) + σ2(α) + · · ·+ σn−1(α)

)
σn(x).

Since TE/F (α) = 0, we have
−α = σ(α) + · · ·+ σn−1(α),

so the last summand in the expression for σ(w) is −αx, hence

w − σ(w) = α
(
x+ σ(x) + σ2(x) + · · ·+ σn−1(x)

)
= αTE/F (x).

Setting β = w
TE/F (x)

, we obtain

β − σ(β) = w

TE/F (x)
− σ(w)

σ(TE/F (x))
=
w − σ(w)
TE/F (x)

,

because TE/F (x) ∈ F . Therefore

β − σ(β) =
αTE/F (x)

TE/F (x)
= α,

as required. 2

In the following we consider extensions E/F of a particular sort, namely where the field F
contains a primitive nth root of unity, for some positive integer n.

EXTSOLVcycth3 Theorem 3 Let E/F be a cyclic Galois extension of degree n, where F contains a primitive nth
root of unity ζ. Then there exists an irreducible polynomial f(X) = −α+Xn ∈ F [X] such that
E is a splitting field of f .

proof Let σ be a generator of the Galois group Gal(E/F ). Since ζ ∈ F , we have NE/F (ζ) =
ζn = 1 and so, by Hilbert’s theorem 90 (multiplicative version), there is an element β ∈ E∗ such
that ζ = β

σ(β) . Then

σ(β) = ζ−1β

σ2(β) = σ(ζ)−1σ(β) = ζ−1(ζ−1β) = ζ−2β

σ3(β) = σ(ζ)−2σ(β) = ζ−2(ζ−1β) = ζ−3β
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and generally σm(β) = ζ−mβ, for all m ∈ N∗. As the elements σi(β), for 0 ≤ m < n are distinct,
the automomorphisms id|F (β), σ|F (β), . . . , σ

n−1
|F (β) form a set of n distinct elements of the Galois

group Gal(F (β)/F ). Then [F (β) : F ] ≥ n and

n = |Gal(E/F )| = [E : F ] = [E : F (β)][F (β) : F ] =⇒ [F (β) : F ] ≤ n.

Therefore [F (β) : F ] = n, which implies that E = F (β).
We claim that βn ∈ F . Now

σ(βn) = σ(β)n = ζ−nβn = βn,

and it follows that βn belongs to the fixed field of Gal(E/F ), i.e., F . Thus there exists α ∈ F
such that βn = α. We have shown that E = F (β), where β is a root of the polynomial
f(X) = −α + Xn. The roots of f have the form ζiβ, for 0 ≤ i < n and ζ ∈ F by hypoth-
esis, so E contains all the roots of f and hence is a splitting field of the polynomial f . Since
[F (β) : F ] = n, the degree of the minimal polynomial m(β, F ) is n, hence f = m(β, F ); it follows
that f is irreducible. 2

The theorem which we have just proved has a converse.

EXTSOLVcycth4 Theorem 4 Let F be a field containing an nth primitive root of unity ζ and E a splitting field
of the polynomial f(X) = −α +Xn ∈ F [X], with α 6= 0. Then E = F (β), where β is a root of
f , and the Galois group G = Gal(E/F ) is cyclic of order dividing n. The order of G is equal to
n if and only if f is irreducible.

proof If β is root of f , then the roots of f have the form ζiβ, for 0 ≤ i < n. As ζ ∈ F , all the
roots of f lie in F (β), so F (β) is a splitting field of f and so E = f(β).

Let σ ∈ G = Gal(E/F ). As σ permutes the roots of f , we may write σ(β) = ζk(σ)β, where
k(σ) is uniquely determined modulo n. We thus obtain a mapping

φ : G −→ (Zn,+), σ 7−→ [k(σ)],

which is clearly a group homomorphism. If φ(σ) = [0], then σ(β) = β, which implies that σ is
the identity on F (β) and so φ is a monomorphism. Since G is isomorphic to a subgroup of the
cyclic group (Zn,+), G is cyclic of order dividing n.

If f is irreducible, then G acts transitively on the roots of f (Result
thGALPOLYirred2
4). Thus there exists

σ ∈ G such that σ(β) = ζiβ, for 0 ≤ i < n. It follows that φ is surjective, so G is isomorphic to
(Zn,+).

Now suppose that f is reducible. As f has no multiple roots, f has two distinct irreducible
factors, so G does not act transitively on the roots of f (Result

propGALPOLYirred1
5). Thus there exist roots ζiβ

and ζjβ, with j > i, for which there exists no element σ ∈ G such that σ(ζiβ) = ζjβ, i.e.,
σ(β) = ζj−iβ. It follows that φ is not surjective and so |G| < n. 2

Corollary 1 Let p be prime, F a field containing a primitive pth root of unity and E a splitting
field of the polynomial f(X) = −α +Xp ∈ F [X], with α 6= 0. Then either f is irreducible and
Gal(E/F ) ' Zp or f splits in F and GalE/F ) = {idF }.

proof The order of Gal(E/F ) = p or 1. In the first case, from Theorem
EXTSOLVcycth4
4, f is irreducible and

Gal(E/F ) ' Zp, because Gal(E/F ) is cyclic. Suppose now that the order of Gal(E/F ) is 1.
Then [E : F ] = 1. There exists β ∈ E such that E = F (β), so [F (β) : F ] = 1, which implies that
β ∈ F . It now follows that f splits in F . 2
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2 Radical extensions
Suppose that E/F is a field extension such that E = F (α) for some α ∈ E. If there exists
n ∈ N∗ such that αn ∈ F , then we say that E is a pure extension of type n. In this case α is a
root of a polynomial of the form f(X) = −c+Xn ∈ F [X]. A chain of extensions

F = F0 ⊂ F1 ⊂ · · · ⊂ Fr = E,

where each extension Fi+1/Fi is a pure extension is called a radical chain and we say that E/F
is a radical extension. Using Result

corFEalgext1a
2 and Result

propFEalgext3
3, we see that a radical extension is a finite

algebraic extension.

EXTSOLVradprop1 Proposition 1 • a. If E/F is a radical extension and Z an intermediate field, then E/Z
is a radical extension.

• b. If E/F is a field extension and Z1, Z2 intermediate fields such that Z1/F , Z2/F are
radical extensions, then Z1Z2/F is a radical extension.

proof a. We have the radical chain

F ⊂ F (α1) ⊂ F (α1, α2) ⊂ · · · ⊂ F (α1, · · · , αr) = E,

with αni
i ∈ F (α1, · · · , αi−1), for some ni ∈ N∗. Then

Z ⊂ Z(α1) ⊂ Z(α1, α2) ⊂ · · · ⊂ Z(α1, . . . , αr) = E

and
αni
i ∈ F (α1, · · · , αi−1) ⊂ Z(α1, · · · , αi−1).

It follows that E/Z is a radical extension.

b. We have the radical extensions

F ⊂ F (α1) ⊂ F (α1, α2) ⊂ · · · ⊂ F (α1, · · · , αr) = Z1

and
F ⊂ F (β1) ⊂ F (β1, β2) ⊂ · · · ⊂ F (β1, · · · , βs) = Z2.

Then

F ⊂ F (α1) ⊂ · · · ⊂ F (α1, · · · , αr) ⊂ F (α1, · · · , αr, β1) ⊂ F (α1, · · · , αr, β1, . . . , βs) = Z1Z2.

The only possible difficulty in seeing that we have a radical chain is in finding a power of β1 in
F (α1, · · · , αr). However, there exists m1 ∈ N∗ such that βm1

1 ∈ F ⊂ F (α1, . . . , αr), so we indeed
have a radical chain. 2

Remark We may easily extend b. to any finite number of intermediate fields.

We now consider the normal closure of a radical extension.

EXTSOLVradprop2 Proposition 2 If E/F is a radical extension and N the normal closure of E over F , then N/F
is a radical extension.
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proof From Result
GALGRPnormclosth1
12 the normal closure of E over F can be written as a compositum of fields

Z1, . . . , Zr isomorphic to E contained in a field extension of F . As E is a radical extension of F ,
so are the Zi. From the remark after Proposition

EXTSOLVradprop1
1 the normal closure of E over F is a radical

extension of F . 2

We may insert fields into a radical chain so that each extension Fi+1/Fi is pure of type pi, for
some prime number pi. Let us see why this is the case. Suppose that L/K is a pure extension
of type n and L = K(α), where α ∈ L and αn ∈ K. If n = p1 · · · ps is the prime factorization of
n, then

K ⊂ K(αp1···ps−1) ⊂ · · · ⊂ K(αp1p2) ⊂ K(αp1) ⊂ K(α) = L.

Then we have αp1 ∈ K(αp1), (αp1)p2 ∈ K(αp1p2), and so on. This proves our claim. In this case
we say that the radical extension is of prime type.

3 Solvability by radicals
Let F be a field and f a polynomial over F . We say that f is solvable by radicals if its splitting
field L is contained in a radical extension E of F . In this section we aim first to show that
under certain conditions solvability by radicals implies the solvability of the Galois group. (In
an appendix we revise the notion of a solvable group.) Later we will prove the converse.

For certain results we need the presence of a primitive root of unity. We might be tempted
to think that, for a given n ∈ N∗, if a field does not contain a primitive nth root of unity,
then we can simply add this root. However, this is not the case. Suppose that the field F has
characteristic p 6= 0 and p|n, say n = pm. Let ζ be a primitive nth root of unity, then

0 = ζn − 1 = (ζm − 1)p,

so ζm − 1 = 0. This implies that the order of ζ is strictly less than n, a contradiction. So there
is no primitive nth root of unity.

On the other hand, if the characteristic of F does not divide n, this problem does not occur.
If f(X) = −1 +Xn, then

f ′(X) = nXn−1 6= 0 =⇒ gcd(f, f ′) = 1,

so f has no multiple roots (f is strongly separable). Therefore there are n distinct nth roots of
unity. As the group of nth roots of unity is cyclic, it has a generator, namely a primitive nth
root of unity. To be certain that we can find primitive nth roots of unity, we may suppoe that
the characteristic of a field is 0. This also ensures that all extensions are separable.

Our next step is to establish a preliminary result, which will play an important role in the
following. To do this we need a lemma.

EXTSOLVsolvlem1 Lemma 1 Let F ⊂ K ⊂ E be a chain of fields, with K the splitting field of a polynomial
f ∈ F [X]. If σ ∈ Gal(E/F ), then σ|K ∈ Gal(K/F ).

proof It is sufficient to show that σ(K) = K. If α1, . . . , αn are the distinct roots of f , then
K = F (α1, . . . , αn). For each αi, the element σ(αi) is a root of f , so

σ(K) = σ(F (α1, . . . , αn)) = F (σ(α1), . . . , σ(αn)) = K,

as required. 2
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EXTSOLVsolvth1 Theorem 5 Let F ⊂ K ⊂ E be a chain of fields, with K the splitting field of a polynomial
f ∈ F [X] and E the splitting field of a polynomial g ∈ F [X]. Then Gal(E/K) is a normal
subgroup of Gal(E/F ) and

Gal(E/F )/Gal(E/K) ' Gal(K/F ).

proof We define a mapping φ : Gal(E/F ) −→ Gal(K/F ) by φ(σ) = σ|K . (From Lemma
EXTSOLVsolvlem1
1 we

know that σ|K ∈ Gal(K/F ).) Clearly φ is a homomorphism. As φ(σ) = idK if and only if σ fixes
all the elements of K, the kernel of φ is the Galois group Gal(E/K). Therefore Gal(E/K) is a
normal subgroup of Gal(E/F ).

We claim that φ is surjective. Let τ ∈ Gal(K/F ). As F ⊂ K, the polynomial f belongs to
K[X]. Using Result

thSPLIT2
7, with K ′ = K and f∗ = f , we obtain an automorphism τ̃ of E extending

τ . Thus φ(τ̃) = τ . It follows that φ is surjective and

Gal(E/F )/Gal(E/K) ' Gal(K/F ),

by the first isomorphism theorem. 2

We now consider polynomials which are solvable by radicals. Let F be a field and f ∈ F [X]
solvable by radicals. We will suppose that the characteristic of F is 0. The reason for doing so is
twofold: 1. Extensions of F are separable; 2. Roots of unity of any order may be found in some
extension. By hypothesis there is a radical chain

F = F0 ⊂ F1 ⊂ · · · ⊂ Fr = E

such that the splitting field L of f is included in E. From Proposition
EXTSOLVradprop2
2 we may suppose that

E is a Galois extension of F , hence the splitting field of a polynomial g ∈ F [X]. We have also
seen at the end of the previous section that we may suppose that each extension Fi+1/Fi may be
taken to be pure of prime type, for some prime pi. In the next proposition we will suppose that
the field F contains a primitive pith root of unity, for all the primes pi. This is not in general
the case. However, we will show further on that we may replace the radical chain by another for
which this is the case.

EXTSOLVprop1 Proposition 3 If F contains a primitive pith root of unity for all i, then the Galois group of f
is solvable.

proof We set
Gi = Gal(Fr/Fi),

for i = 0, . . . , r. We consider [Fi : Fi−1]. As αi is a root of the polynomial fi(X) = −αpii +Xpi ∈
Fi−1[X], the degree of the minimal polynomial m(αi, Fi−1) must be 1 or pi. We can exclude the
first case, because this would imply that Fi = Fi−1. Now

[Fi−1(αi) : Fi−1] = degm(αi, Fi−1) =⇒ [Fi−1(αi) : Fi−1] = pi.

As Fi is a Galois extension of Fi−1, we have |Gal(Fi/Fi−1)| = pi and so the extension Fi/Fi−1
is cyclic of degree pi. We may apply Theorem

EXTSOLVcycth3
3: As F ⊂ Fi−1, Fi−1 contains a pith primitive

root of unity and it follows that Fi is the splitting field of a polynomial fi over Fi−1. (Thus Fi
is a Galois extension of Fi−1.)

We now consider the sequence

G0 ⊃ G1 ⊃ · · · ⊃ Gr = {id}.
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We claim this sequence is normal, i.e., Gi−1 �Gi, for all i. We have Fi−1 ⊂ Fi ⊂ Fr. Since Fr is
a normal extension of F , Fr is the splitting field of a polynomial g ∈ F [X]. Given that F ⊂ Fr,
we have g ∈ Fi−1[X] and we may apply Theorem

EXTSOLVsolvth1
5, which ensures us that Gi−1 � Gi. Hence

the sequence is normal. From Theorem
EXTSOLVsolvth1
5 again, the quotient group Gi−1/Gi is isomorphic to

Gal(Fi/Fi−1), which is cyclic. We have shown that the Galois group Gal(Fr/F0) is a solvable.
To conclude we consider the chain of fields

F ⊂ L ⊂ Fr,

where L is the splitting field of f . Using Theorem
EXTSOLVsolvth1
5 again, we obtain the isomomorphism

Gal(L/F ) ' Gal(Fr/F )/Gal(Fr/L).

As Gal(L/F ) is isomorphic to a quotient of a solvable group, Gal(L/F ) is itself solvable. 2

We now eliminate the hypothesis concerning the existence of pith primitive roots of unity in
the field F . Our aim is to replace the initial radical chain by another satisfying the conditions
of Proposition

EXTSOLVprop1
3.

EXTSOLVsolvth1a Theorem 6 Let F be a field of characteristic 0 and f ∈ F [X] solvable by radicals. If L is a
splitting field of f , then Gal(L/F ) is a solvable group.

proof By hypothesis there is a radical chain

F = F0 ⊂ F1 ⊂ · · · ⊂ Fr = E,

with L ⊂ Fr. We may assume that Fr is the splitting field of some polynomial g ∈ F [X] and
that Fi/Fi−1 is a pure extension of prime type pi. In addition, each extension Fi/Fi−1 is a Galois
extension of degree pi, because F ⊂ Fi−1 implies that g ∈ Fi−1[X].

Let m be the lcm of the pi and ζ an mth primitive root of unity. We construct a new chain
by adding ζ to each element of our first chain:

F = F0 ⊂ F0(ζ) ⊂ F1(ζ) ⊂ · · · ⊂ Fr(ζ).

We notice that F0(ζ) contains all the pith primitive roots of unity. For example, if m = p1 · · · ps,
then ζp2···ps is a primitive p1th root of unity. To simplify the notation, let us write F ′i for Fi(ζ),
for i = 0, . . . , r.

We consider the extensions F ′i/F ′i−1. From Result
GALGRPcompex1
10, we have [FiF

′
i−1 : F ′i−1]|[Fi : Fi−1].

However,
Fi = Fi−1(αi) =⇒ FiFi−1(ζ) = Fi−1(αi, ζ) = Fi(ζ) = F ′i ,

so [F ′i : F ′i−1]|[Fi : Fi1 ], which implies that [F ′i : F ′i−1] has the value 1 or pi. In the first case,
we can eliminate F ′i (or F ′i−1), so we can assume that [F ′i : F ′i−1] = pi. Since Fi and F ′i−1
are extensions of Fi−1 and Fi is a finite Galois extension of Fi−1, by Result

thGALGRPcomp1
9, the compositum

FiF
′
i−1 is a Galois extension of F ′i−1, i.e., F ′i is a Galois extension of F ′i−1. We now may apply

Theorem
EXTSOLVcycth3
3: There exists an irreducible polynomial fi−1(X) = −ci−1 +Xpi ∈ F ′i−1[X] such that

F ′i is a splitting field of fi−1. Let α′i be a root of fi−1. Then fi−1 splits in F ′i−1(α
′
i), because

F ′i−1 contains a primitive pith root of unity. This implies that F ′i ⊂ F ′i−1(α
′
i). As the reverse

inclusion is clear, we have F ′i = F ′i−1(α
′
i). We have shown that there exists α′i ∈ F ′i such that

F ′i = F ′i−1(α
′
i), with α

′pi
i ∈ F ′i−1. Hence the extension F ′r/F ′0 is radical of prime type.

Our next step is to show that Gal(F ′r/F ′0) is solvable. Since F ′r is the splitting field of the
polynomial h(X) = (−1 +Xm)g(X) ∈ F ′0[X], F ′r is a Galois extension of F ′0 and Gal(F ′r/F ′0) is
the Galois group of h. From Proposition

EXTSOLVprop1
3 we deduce that Gal(F ′r/F ′0) is solvable.
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We now show that Gal(F ′r/F ) is solvable. We consider the chain of fields

F0 ⊂ F ′0 ⊂ F ′r.

Since F ′0 and F ′r are each the splitting field of a polynomial in F0[X], from Theorem
EXTSOLVsolvth1
5, Gal(F ′r/F ′0)

is a normal subgroup of Gal(F ′r/F0) and

Gal(F ′r/F0)/Gal(F
′
r/F

′
0) ' Gal(F ′0/F0).

From Result
GALPOLYctomcor1a
6, Gal(F ′0/F0) is abelian, hence solvable. Therefore the quotient group

Gal(F ′r/F0)/Gal(F
′
r/F

′
0) is solvable. However, we have also seen that the subroup Gal(F ′r/F ′0)

is solvable. It follows that Gal(F ′r/F0) is solvable, i.e., Gal(F ′r/F ) is solvable.
Let L be a splitting field in F ′r. (All the roots of f lie in F ′r, so a splitting field of f is

contained in f ′r.) We are now in a position to show that Gal(L/F ) is solvable. Once again we
use Theorem

EXTSOLVsolvth1
5. We consider the chain of fields

F ⊂ L ⊂ F ′r.

L and F ′r are both splitting fields of polynomials over F , hence Gal(F ′r/L) is a normal subgroup
of Gal(F ′r/F ) and

Gal(F ′r/F )/Gal(F
′
r/L) ' Gal(L/F ).

The left hand side of the expression is a quotient of a solvable group, hence solvable. Therefore
the Galois group Gal(L/F ) is solvable, as required. 2

Example The Galois group of the polynomial f(X) = −1− 4X +X5 ∈ Q[X] is the symmetric
group S5, which is not solvable, hence f is not solvable by radicals.

We now prove the converse of Theorem
EXTSOLVsolvth1
5. We need a preliminary result.

EXTSOLVsolvlem2 Lemma 2 Let F be a field, f ∈ F [X] and E a splitting field of f . If F ∗ is an extension of F ,
then f ∈ F ∗[X]. If E∗ is an extension of F ∗ and E∗ is a splitting field of f containing E and
σ ∈ Gal(E∗/F ∗), then σ|E ∈ Gal(E/F ) and the mapping

φ : Gal(E∗/F ∗) −→ Gal(E/F ), σ 7−→ σ|E

is a monomorphism.

proof By hypothesis we have

E = F (α1, . . . , αn) and E∗ = F ∗(α1, . . . , αn),

where the αi are the roots of f . If σ ∈ Gal(E∗/F ∗), then σ permutes the roots of f and fixes
F ∗, hence F ; therefore σ|E ∈ Gal(E/F ). Clearly φ is a homomorphism. If σ|E = idE , then
σ|E (αi) = αi, for all i. Thus σ(αi) = αi, for all i, which implies that σ = idE∗ . It follows that φ
is injective. 2

Now for the theorem.

Theorem 7 Let F be a field of characteristic 0 and E a finite Galois extension of F . If the
Galois group Gal(E/F ) is solvable, then E can be embedded in a radical extension.

8



proof From Corollary
APPSOLVcor1
3 there is a normal subgroup H of prime index, say p, in G. Let ζ be a

primitive pth root of unity, which exists in some extension of F , because F has characteristic 0.
We will first suppose that ζ ∈ F and prove the theorem by induction on n = [E : F ]. If

n = 1, then E = F and there is nothing to prove. (It is sufficient to take any radical extension
of F , for example F (α), where α is a root of the polynomial f(X) = −c+Xp ∈ F [X].)

Now let us suppose that the result is true up to n − 1. From Result
NORMprop2
8 we know that the

extension E/EH is normal, (EH is the subfield of E fixed by the elements of H), hence Galois,
because the extension is also separable. Now Gal(E/EH) is a solvable group, being a subgroup
of the Galois group Gal(E/F ), which we note G, and [E : EH ] < n. By the induction hypothesis
there is a radical chain

EH ⊂ F1 ⊂ · · · ⊂ Fs, (1) EXTSOLVsolveq1

where E ⊂ Fs.
Next we observe that EH/F is a Galois extension, because H is a normal subgroup of G,

and [EH : F ] = [G : H] = p (Result
thGALGRPfund3b
11). From the proof of Theorem

EXTSOLVcycth3
3 there exists β ∈ EH such

that EH = F (β) and βp ∈ F , i.e., EH is a pure extension of E and we may lengthen the chain
(
EXTSOLVsolveq1
1) by adding the prefix F ⊂ EH . We thus obtain the radical extension Fs/F (and E ⊂ Fs).

We now consider the general case. We set F ∗ = F (ζ) and E∗ = E(ζ). As E is a normal
extension of F , E is the splitting field of a polynomial f ∈ F [X]. It is not difficult to see that
E∗ is the splitting field of the polynomial g(X) = (−1 + Xp)f(X) ∈ F [X]. The polynomial g
belongs to F ∗[X] and E∗ is its splitting field. Thus E∗ is a normal extension of F ∗, hence a
Galois extension. We set G∗ = Gal(E∗/F ∗). From Lemma

EXTSOLVsolvlem2
2 there is a monomorphism from G∗

into G, so we may consider that G∗ is a subgroup of the solvable group G, hence is solvable. We
may now apply the first part of the proof: there is a radical extension F ∗t of F ∗ containing E∗:
we have the radical chain

F ∗ ⊂ F ∗1 ⊂ · · · ⊂ F ∗t ,

with E∗ ⊂ F ∗t . As E ⊂ E∗, we have E ⊂ F ∗t . Since F ∗ = F (ζ), F ∗ is a pure extension of F and
we may lengthen the radical chain by adding the prefix F ⊂ F ∗, providing us with the radical
extension F ∗t /F (and E ⊂ F ∗t ). 2

Corollary 2 If F is a field of characteristic 0 and f ∈ F [X] whose Galois group is solvable,
then f is solvable by radicals.

Example The Galois group of f(X) = −1 +X +X3 ∈ Q[X] is the symmtric group S3, hence
f is solvable by radicals.

Basic results from Galois theory

REDUCdedcor1 Result 1 A set of distinct automorphisms {σ1, . . . , σn} on a field F is independant, i.e., if
λ1, . . . , λn ∈ F and

λ1σ1(x) + · · ·+ λnσn(x) = 0,

for all x ∈ F ∗, then λ1 = · · · = λn = 0.

corFEalgext1a Result 2 If K is a finite extension of F and E a finite extension of K, then E is a finite
extension of F and

[E : F ] = [E : K][K : F ],

where [A : B] is the degree of A over B.
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propFEalgext3 Result 3 If K is an algebraic extension of F , E an extension of K and α ∈ E is algebraic over
K, then α is algebraic over F .

thGALPOLYirred2 Result 4 Let f be a separable polynomial in F [X] of degree n with Galois group G = Gal(E/F ).
If f is irreducible, then

• a. n divides the order of G;

• b. the action of G on A, the set of roots of f , is transitive.

propGALPOLYirred1 Result 5 Let f ∈ F [X], with deg f ≥ 2, and G be its Galois group. If f has two distinct
irreducible factors, then the action of G on A, the set of roots of f , is not transitive.

GALPOLYctomcor1a Result 6 If E is a cyclotomic extension of F , then the Galois group G(E/F ) is abelian.

thSPLIT2 Result 7 Let F and F ′ be fields, σ : F −→ F ′ an isomorphism, f ∈ F [X] and f ′ ∈ F ′[X] the
polynomial corresponding to f . If E is a splitting field of F and E′ a splitting field of f ′, then
there is an isomorphism σ̃ : E −→ E′ extending σ.

NORMprop2 Result 8 Suppose that K is an extension of F and E an extension of K, with E normal over
F . Then E is normal over K.

thGALGRPcomp1 Result 9 Let K and L be extensions of F in E, where K is a finite Galois extension of F . Then

• a. KL is a finite Galois extension of L;

• b. If σ ∈ Gal(KL/L), then the restriction of σ to K belongs to Gal(K/F ) and the mapping

φ : Gal(KL/L) −→ Gal(K/F ), σ 7−→ σ|K

is a monomorphism;

GALGRPcompex1 Result 10 If K and L are extensions of F , then [KL : L] divides [K : F ].

thGALGRPfund3b Result 11 Suppose that E is a finite Galois extension of F and G the associated Galois group.
Then K is a normal extension of F if and only if H = Gal(E/K) is a normal subgroup of G.
In this case the Galois group Gal(K/F ) is isomorphic to the quotient group G/H.

In addition, for any subgroup H (not necessarily normal),

[K : F ] = [G : H] and [E : K] = |H|.

GALGRPnormclosth1 Result 12 Let E be a finite extension of F and N the normal closure of E over F in an algebraic
closure C of F . Then

N =
∏

σ∈Gal(N/F )

σ(E).

4 Appendix: Solvable groups
In this appendix we revise the basic properties of solvable groups, which may or may not be
known to the reader.

A normal series or normal sequence of a group G is a sequence of subgroups of the form

G = G0 �G1 �G2 � · · ·�Gn = {e},

10



where e is the identity of G and Gi+1 is a proper normal subgroup of Gi. We do not require the
subgroups to be normal subgroups of G. The quotient groups Gi/Gi+1 are called the factors of
the normal series. A group is said to be solvable if it has a normal series with abelian factors.
In this case we say that the normal series is solvable. An abelian group G is clearly solvable: we
only need to take the sequence G = G0 � {e}.

Let G be a group. The commutator of two elements x, y ∈ G, which we note [x, y], is the
product xyx−1y−1. The commutator subgroup of G, written G′, is the subgroup generated by
the commutators. From the observation that

g[x, y]g−1 = [gxg−1, gyg−1]

for all g ∈ G, we deduce that G′ is a normal subgroup of G. There is no difficulty in seeing that
the quotient group G/G′ is abelian.

APPSOLVprop1 Proposition 4 If H is a normal subgroup of G, then G/H is abelian if and only if G′ ⊂ H.

proof If G/H is abelian, then

xyH = xHyH = yHxH = yxH =⇒ [x, y] ∈ H.

As all the commutators lie in H, we have G′ ⊂ H.
On the other hand, if G′ ⊂ H, then by the third isomorphism theorem

(G/G′)/(H/G′) ' G/H,

so G/H is isomorphic to the quotient group of an abelian group and is thus abelian. 2

The higher commutator subgroups are defined by induction:

G(0) = G and G(i+1) = G(i)′ ,

i.e., G(i+1) is the commutator subgroup of G(i) and so is a normal subgroup of G(i).

APPSOLVprop2 Proposition 5 A group G is solvable if and only if there is a nonnegative integer n such that
G(n) = {e}.

proof If G(n) = {e}, then the series

G = G(0) �G(1) �G(2) � · · ·�G(n) = {e}

is solvable, so G is a solvable group.
If G is solvable, then there exists a solvable series

G = G0 �G1 �G2 � · · ·�Gn = {e}

We prove, by induction on i, that Gi ⊃ G(i), for i = 0, . . . , n. First, for i = 0, we have
G0 = G = G(0). Suppose now, that Gi ⊃ G(i). Then G′i ⊃ G(i)′ = G(i+1). However, Gi/Gi+1 is
abelian, hence, from Proposition

APPSOLVprop1
4, we have Gi+1 ⊃ G′i and so Gi+1 ⊃ G(i+1). This finishes the

induction step. It follows that G(n) = {e}. 2

Now we come to two fundamental results.

Theorem 8 If G is a solvable group, then every subgroup and quotient group is solvable.
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proof Let H be a subgroup of the solvable group G. By induction it is easy to prove that
H(i) ⊂ G(i), for all i. There exists a nonnegative integer n such that G(n) = {e}. It follows that
H(n) = {e} and so, by Proposition

APPSOLVprop2
5, H is solvable.

We now consider the case of a quotient group. We will prove a more general result: if G is a
solvable group and φ : G −→ C is a surjective homomorphism, then C is solvable. To do so, we
will show that φ(G(i)) = C(i), for all i. We will use an induction argument. For i = 0, the result
is evident. As the image of a commutator is a commutator, φ(G′) ⊂ C ′. On the other hand, if
u, v ∈ C, then there exist x, y ∈ G such that φ(x) = u, φ(y) = v and we have φ[x, y] = [u, v];
it follows that φ(G′) = C ′. Thus the result is true for i = 1. Suppose now that φ(G(i)) = C(i).
Then φ restricted to G(i) provides us with a surjective homomorphism of G(i) onto C(i). From
the previous argument, we have φ(G(i)′) = C(i)′ , i.e., φ(G(i+1)) = C(i+1). This completes the
induction step. To finish we notice that there is an n such that G(n) = {eG}. This implies that
C(n) = {eC} and so C is solvable. 2

This theorem has a converse.

Theorem 9 Let G be a group with a normal subgroup H. If H and G/H are solvable, then so
is G.

proof As G/H is solvable, there is a solvable series composed of subgroups of G/H:

G/H = G∗0 �G∗1 � · · ·�G∗s = {H/H},

where Gi/H = G∗i . By the correspondance theorem, there is a normal series

G = G0 �G1 � · · ·�Gs = H.

By the third isomorphism theorem, we have Gi/Gi+1 ' (Gi/H)/(Gi+1/H), so the factors
Gi/Gi+1 are abelian. As H is solvable, we have a solvable series composed of subgroups of
H:

H = H0 �H1 � · · ·�Ht = {eH} = {eG}.

Putting the two series together gives us a solvable series of G. 2

We may refine the solvable series so as to obtain factor groups of prime order. To prove this
we need a preliminary result. We recall that a group G is simple if G 6= {e} and its only normal
subgroups are {e} and G itself.

APPSOLVlem1 Lemma 3 If G is a finite abelian simple group, then G is cyclic of prime order.

proof If x ∈ G and x 6= e, then 〈x〉 is a normal subgroup, because G is abelian. As x 6= e, we
have 〈x〉 = G, so G is cyclic.

If G is not of prime order and |G| = n, then G has a (unique) subgroup of order n
d , for every

positive divisor d of n. As G is abelian, these subgroups are normal, so we have a contradiction
to the simplicity of G. Thus G is of prime order. 2

APPSOLVth3 Theorem 10 If G is a solvable group, then G has a solvable series whose factor groups are
cyclic of prime order.

proof As G is solvable, G has a solvable series

G = G0 � · · ·�Gi �Gi+1 � · · ·�Gn = {e}.
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If Gi+1 is not a maximal normal subgroup of Gi, then we can insert a normal subgroup H
between Gi+1 and Gi. As the quotient group H/Gi+1 is a subgroup of Gi/Gi+1, it is abelian.
Continuing the process we obtain a solvable series such that Gi+1 is always a maximal normal
subgroup of Gi.

Now Gi/Gi+1 is finite and abelian. If this factor group is not simple, then it has a proper
nontrivial normal subgroup. By the correspondance theorem there exists a nontrivial subgroup,
which is normal in Gi and lies strictly between Gi+1 and Gi; thus Gi is not maximal, a con-
tradiction. Therefore Gi/Gi+1 is finite, abelian and simple. By Lemma

APPSOLVlem1
3, Gi/Gi+1 is cyclic of

prime order. 2

APPSOLVcor1 Corollary 3 A solvable group G has a normal subgroup of prime index.

proof From Theorem
APPSOLVth3
10 we may suppose that in the solvable series of G the index of G1 in G0

is a prime number p. As G0 = G, we have the result. 2

Solvability of the symmetric groups

The symmetric groups Sn are solvable if and only if n ≤ 4. If n = 1 or n = 2, then Sn is
abelian, hence solvable. For S3 it is sufficient to consider the series

〈e〉 ⊂ A3 ⊂ S3.

For S4 we may take the chain
〈e〉 ⊂ V ⊂ A4 ⊂ S4,

where
V = {e, (12)(34), (13)(24), (14)(23)}.

(The only possible difficulty here is in seeing that V �A4; however, it is sufficient to notice that
conjugation preserves the cycle structure.)

For the next result we will suppose that it is known that, for n ≥ 5, An is simple, i.e., has no
normal subgroups other than {e} or An itself.

Theorem 11 For n ≥ 5, Sn is not solvable.

proof For n ≥ 5, An is simple, therefore A′n = An or A′n = {e}. However, the second case is
not possible, because An is not abelian for n ≥ 4. Thus A′n = An, which implies that A(k)

n = An,
for all k. It follows that An is not solvable. As a subgroup of a solvable group is solvable, Sn
cannot be solvable. 2
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