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Résumé

A theory of the muon and the tau which is based on the properties of the electromagnetic potential is
developed. The properties of the tensors formed by the partial derivatives of this potential in Minkowski
spacetime are obtained from fundamental principles. In the proper frame of reference, the scalar potential
obeys a Helmoltz equation whose solutions describe electromagnetic particles. These are characterized by
a mass part and a field part. The mass part gives the potential energy. The muon and the tau particles
result from an association of the first spherically symmetric solutions. We compute their energy and
normalize it with respect to that of the electron. An agreement of 3 10−3 is obtained with experimental
results.

15 décembre 2020

1 Introduction.

Like the electron, the muon[1] and the tau[2] are known to be point-like particles with the same ele-
mentary electric charge. These characteristics and the absence of quarks in their structure lead to classify
them as elementary particles in the Standard Model. Masses of the muon and the tau are respectively 207
and 3477 times that of the electron and they are sometimes called heavy electrons. Up to now, there is
no explanation for these numbers. This is only one example among the unexplained facts of the world of
elementary particles. One aim of this article is to offer a new way to solve some of these mysteries.
The standard model, as well as modern theoretical physics, is known to be a vulnerable theory([3, 4, 5, 6, 7])
and new ways to decipher fundamental phenomena at the femtometer scale are highly desirable([8, 9]). We
have recently begun to develop the ”Potential Theory”[10] which is nothing but the study of the properties
of the electromagnetic 4-potential Ai in the 4-dimensional Minkowski spacetime. The partial derivatives of
Ai form tensors whose antisymmetric parts are related to the electromagnetic field. We have discovered that
a symmetric part, when submitted to the constraints of symmetry invariance leads to a Helmholtz equation.
Its solutions describe a concentration of potential around the origin of coordinates and represent electro-
magnetic (e.m.) particles. Each of them is characterized by 3 quantum numbers (n, ` and m) and a parity
(even or odd). Far from the origin, the tensors reduce to waves in 1/r which extend to infinity. We have
associated a Lagrangian to them which allows the calculation of the distribution of potential energy in space
and the total energy of each particle. We were able to relate the electric charge to the tensor of derivatives.
Now the question is to know if these e.m. particles have something to do with observed elementary particles.
We have started this research with the idea that they are the elementary bricks forming them. Assembling
these components together would ultimately give the structure, energy and properties of the atomic nuclei.
One of the aims of this article is essentially to give arguments which sustain this idea. The first of these
arguments is that the theory is very simple : the basic ingredient is the well-known electromagnetic potential
to which two fundamental laws of nature are applied : these are the principle of least action (expressed by
Euler-Lagrange equations) and the principle of symmetry (expressed by Noether’s theorems). The second
argument which is illustrated in this article is the comparison between the theoretical and experimental
energies of the muon and the tau particles where we recover the numbers above.
The first section describes the potential theory and how it leads to the Helmholtz equation for the scalar
potential. The potential vector and the tensor of derivatives at each event M in spacetime are obtained for
each solution. These vectors and tensors are extensive quantities and a compound particle can tentatively be
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described by adding the potential of each component. In the second section we add several of these solutions
to build the µ and the τ . In each case the puzzle was to find their composition in terms of e.m. particles
by comparing experimental and calculated energies. These energies are referred to that of the electron. An
excellent agreement is obtained when the frequencies of the fundamental solutions are properly chosen.
These results bring the hope to understand the chemistry of matter at the scale of the atomic nucleus.

2 Potential theory.

2.1 Overview.

The main lines of potential theory are described in this section.
Potential theory is classical, very simple, without any new concept : it rests on the existence at each
point (event) M in spacetime of an electromagnetic 4-potential Ai. M is defined by its temporal and spatial

coordinates. The potential Ai is defined by its temporal component φ/c and the vector
−→
A . These components

are functions of coordinates.
The gradient D(Ai) of Ai is the basic object of the theory. The partial derivatives which appear in D(Ai)
should be split into two independant parts, one of which is related to the external and the other to the
internal degrees of freedom by analogy to the classical theory of a moving body. The first part gives birth
to Maxwell equations (the particle moves with respect to the observer), the second part gives the internal
description of the particles we are interested in (the center of gravity of the particle is at rest with respect
to the observer).
There are 16 partial derivatives A i

,k = ∂Ai/∂xk which are the local slopes of components Ai in directions

xk. These are the components of the second rank gradient tensor D(Ai) = [A i
,k] in the direct space. The

properties of D(Ai) are developed, using its invariants and symmetries in operations of the Poincaré group.
One finds that a proper time exists, in which the observer is at rest with respect to the tensor and where
a time slope compensates for a space slope. When this property is associated to the invariance of the
trace of the tensor in a time translation, one finds a Helmholtz equation for the scalar potential in the
permanent oscillatory regime. Solutions of this equation describe the ”Electromagnetic Particles”([10]). These
are characterized by 3 quantum numbers : n, ` and m . Each triplet n, `,m correspond to an odd and an even
solution. A vector field Ai and a tensor field D(Ai) describe each particle n, `,m in spacetime. Around the
origin, there is a concentration of potential but, far from it, the particle reduces to incoming and outgoing
spherical waves in 1/x extending to infinity. It is the balance between the energies of these waves which
ensures the stability of the particle. This result exactly fits the Wheeler-Feynman’s absorber theory([13])
The closely related tensor D(Ai) = [∂Ai/∂x

k] needs the existence of the reciprocal space and is related to
the external degrees of freedom. This tensor has properties which are different from those of D(Ai) and is
the basic object of classical electromagnetism([12]). It is necessary to describe the properties of a moving
particle as seen by an external observer. It is not used here.
The local Lagrangian density of the particle is found to be proportional to the determinant of the tensor
D(Ai). This Lagrangian leads to the expressions for the field and mass energies which are respectively
associated to the antisymmetric and symmetric parts of D(Ai). The duality field-matter naturally appears
to be a consequence of this splitting. The electric charge can also be obtained from D(Ai) : one finds that all
solutions are globally neutral but solutions (1, 0, 0) which represent the electron and the positron following
the parity. A complete description of their structure, including the spin, has been given([11]).
The next step that we are developing in this article concerns the association of electromagnetic particles
around the same center in order to see if the potential theory is still able to describe the elementary particles
which have been discovered essentially in the second half of the XXth century. We have concentrated the
present study on the case of the muon and the tau particles which have a spherical symmetry.

2.2 The field and the mass tensors.

In Minkowski spacetime, a contravariant 4-potential is written Ai = (φ/c,
−→
A ) as indicated above. An

event M has coordinates cT,X, Y, Z with respect to an origin 0o. Now we introduce another system of
coordinates whose origin O is at the center of gravity of the particle. In this system, the sets t, x, y, z are
the coordinates of M with respect to origin 0 (internal degrees of freedom) and the sets t̃, x̃, ỹ, z̃ are the
coordinates of O with respect to Oo (external degrees of freedom). The simplest relations between these
sets are :

T = t+ t̃ , X = x+ x̃ , Y = y + ỹ , Z = z + z̃ (1)

2



Derivatives are split into two parts, each of them is related to a coordinate with or without tilde. For
example ∂Ai/∂X = ∂Ai/∂x̃ + ∂Ai/∂x. The gradient tensor of the potential Ai can thus be split into two
independent parts which describe its properties with respect to the observers at Oo and O. In the following
we focus our attention on the description of the properties of the second part .
The tensor of derivatives [a i

k ], can be written in the cartesian frame as :

[a i
k ] =

[
∂Ai/∂xk

]
(2)

where xk = ct, x, y, z. [a i
k ] is defined in the direct (or real) space. A derivative ∂Ai/∂xk will be noted as

Ai,k and we can write [a i
k ] in the extended form as :

[a i
k ] =

1

2


(φ/c),t Ax,t Ay,t Az,t
(φ/c),x Ax,x Ay,x Az,x
(φ/c),y Ax,y Ay,y Az,y
(φ/c),z Ax,z Ay,z Az,z

 (3)

A fundamental operation in tensor theory is the splitting into a symmetric and an antisymmetric part.
There are two ways to obtain such tensors from [a i

k ] :
1- The first way uses the reciprocal space[14] together with the direct space to define the covariant tensor :
[aki] = [a j

k ][gji] where [gji] = (1,−1,−1,−1) is the metric tensor. One obtains :

[aki] =
1

2


(φ/c),t −Ax,t −Ay,t −Az,t
(φ/c),x −Ax,x −Ay,x −Az,x
(φ/c),y −Ax,y −Ay,y −Az,y
(φ/c),z −Ax,z −Ay,z −Az,z

 (4)

The transpose [aki]
T

= [aik] is used to split [aki] into its symmetric and antisymmetric parts :

[aki] = [fki] + [ski] (5)

with [ski] = 1/2 (aki + aik) and [fki = 1/2 (aki − aik). The electromagnetic field tensor is the antisymmetric
part :

[Fki] =
1

2


0 −Ax,t − (φ/c),x −Ay,t − (φ/c),y −Az,t − (φ/c),z

(φ/c),x +Ax,t 0 −Ay,x +Ax,y −Az,x +Ax,z
(φ/c),y +Ay,t −Ax,y +Ay,x 0 −Az,y +Ay,z
(φ/c),z +Az,t −Ax,z +Az,x −Ay,z +Az,y 0



=
1

2


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0

 (6)

We have used[15] the standard notations and definitions of the components of the electric and magnetic

fields
−→
E and

−→
B :

−→
E = −

−−→
gradφ− ∂

−→
A

∂t
and

−→
B =

−−→
curl
−→
A (7)

This tensor, is the cornerstone of classical electromagnetism. It remains antisymmetric whatever the coor-
dinate system. Maxwell equations and the Lorentz force can be deduced([12]) from [aki] using the principle
of least action (Euler-Lagrange equations) and the principle of symmetry (Noether’s theorems). The field
propagates transversally and its source originates from the motion of electric charges. This way of obtai-
ning the symmetric and antisymmetric parts of the tensor of derivatives D(Ai) is well adapted to the first
part of D(Ai), the part which contains the derivatives with respect to the coordinates of O in the reference
frame attached to the external observer Oo.

2- The second way is the splitting of [a i
k ] into its symmetric and antisymmetric parts in the direct space

(without any appeal to the reciprocal space). The symmetric part writes :

[s ik ] =
1

2


2(φ/c),t Ax,t + (φ/c),x Ay,t + (φ/c),y Az,t + (φ/c),z

(φ/c),x +Ax,t 2Ax,x Ay,x +Ax,y Az,x +Ax,z
(φ/c),y +Ay,t Ax,y +Ay,x 2Ay,y Az,y +Ay,z
(φ/c),z +Az,t Ax,z +Az,x Ay,z +Az,y 2Az,z

 (8)
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The antisymmetric part [f
i

k ] has zeros on the diagonal and differences instead of sums in each non-diagonal
element.
[s ik ] is named the mass tensor and [f

i

k ] the field tensor in this system of coordinates. Their properties lead
to a completely new aspect of electromagnetism as shown below.

2.3 The Helmholtz equation.

Being symmetric, [s ik ] can be diagonalized provided its determinant does not vanish. This means that a

time coordinate t exists such that terms s
(2,3,4)
1 = s 1

(2,3,4) = 0. We name t the proper time of the tensor.

In this coordinate frame, we use the bared symbols ct̄, x̄, ȳ, z̄ and : A
i

= (φ/c,Ax, Ay, Az). The ordinary
derivatives are replaced by absolute derivatives. In the proper time system, one has the relations :

Ax,t + (φ/c),x = Ay,t + (φ/c),y = Az,t + (φ/c),z = 0 or grad(φ/c) +
∂
−→
A

c∂t̄
= 0. (9)

Here a symbol like (φ/c),x generally stands for the absolute derivative (including Christoffel’s coefficient)

of (φ/c) with respect to x̄. The second formulation is tensorial. Eq.(9) means that in the proper time, the

temporal derivative Ai,t is compensated by the spatial derivative of (φ/c) in the direction i. Note that the
(transverse) field defined by eq.(7) vanishes in the proper frame where there is no motion of the particle.
Now we will use the invariants of [s ik ] in a coordinate transformation. There are four scalar invariants which
are the coefficients of the characteristic polynomial. The most well-known are the trace and the determinant.
We use the property of the trace of [s ik ] to be invariant in a time translation to obtain :

∂

c∂t̄

(
∂(φ/c)

c∂t̄
+
∂Ax

∂x̄
+
∂Ay

∂ȳ
+
∂Az

∂z̄

)
= 0 or

∂2(φ/c)

c2∂t̄2
+ div

∂
−→
A

c∂t̄
= 0. (10)

Equations (9) and (10) are combined to give :

∂2(φ/c)

c2∂t̄2
−∆(φ/c) = 0 , (11)

where the symbol ∆ stands for the Laplacian.
In the following, we will be interested in permanent oscillatory potentials which are proportional to cosωt
or sinωt. These potentials obey a Helmholtz-type equation :

ω2

c2
(φ/c)spatial + ∆(φ/c)spatial = 0, (12)

where (φ/c)spatial represents the spatial part of (φ/c). This equation is a tensor equation which remains the
same in any geometrical system of coordinates.

2.4 Solutions of the Helmholtz equation : Electromagnetic particles.

Helmholtz equation can be written in the spherical reference frame attached to M with the proper time
t̄ and the geometrical coordinates (r, θ, ϕ) such that :

x̄ = r sin θ cosϕ , ȳ = r sin θ sinϕ , z̄ = r cos θ , (13)

The advantage of the (r, θ, ϕ) system is that it makes use of the spherical or cylindrical symmetry of the
solutions that we are going to use.
We introduce the normalized distance to the origin O of coordinates : x= ωr/c. (Note the typography which
is different from that of the coordinate x). This distance will thus be measured in units of the reference
length c/ω.
Eq.(12) has extensively been studied in the context of the hydrogen atom where some of its solutions des-
cribe the electronic orbitals[16].
Solutions of eq.(12) can be split into normal and coupled modes :
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1- Coupled angular-radial modes describe simultaneous vibrations on the three coordinates. They are
obtained from the ansatz : (φ/c)spatial = R(r) Θ(θ) Φ(ϕ) where R(r), Θ(θ), and Φ(ϕ) are functions of r, θ,
and ϕ respectively. One thus obtains the coupled angular-radial modes in terms of spherical Bessel functions
of order ` J`(x) and spherical harmonics Y m` (θ, ϕ) :

φ`,m(x, θ, φ) = A`,m J`(x) Y m` (θ, ϕ)

{
cosω`,m t
sinω`,m t

. (14)

Here J`(x) is a solution of the radial equation :

x2 +
1

R

∂

∂x

(
x2 ∂R

∂x

)
= `(`+ 1), (15)

Y m` (θ, ϕ) describe the solutions of the angular part of eq.(12). The term `(`+ 1) originates from the radial
angular coupling and can be considered as a source term which fixes the properties of the radial solution.
Quantities A`,m and ω`,m are unknown for the moment. They will be noted as An and ωn for brevity.
Amplitude An has the dimension [An] = ML2T−2Q−1 in the standard nomenclature.

2- Normal modes describe vibrations on one of the three coordinates. They are obtained from the ansatz :
(φ/c)spatial = R(r) + Θ(θ) + Φ(ϕ). As the particle is embedded in noise, it is necessary to take it into
account. At this stage, we consider it to be isotropic (independent of θ and φ), in such a way that it can
excite the radial part R(r) only. The potential N which represents the noise can be expanded on the basis
of spherical Bessel functions and each component Nn(x) obeys a spherical Bessel equation :

x2 ∂
2Nn
∂x2

+ 2x
∂Nn
∂x

+ x2 Nn = Cn , (16)

This equation becomes ”well-behaved” with the solution Jn if CN = n(n + 1). Functions Nn are the local
building elements of the noise. They correspond to any integer value of n and are the source for the excitation
of the spherical normal modes n.
Grouping coupled and normal modes together shows that the potential which describes a particle finally
depends on three quantum number n, `,m : φ/c = φ/c(n, `,m). The general expression for a solution of
Helmholtz equation is :

φn,`,m(x, θ, φ) = An,`,m Jn(x) Y m` (θ, ϕ)

{
cosωn,`,m t (even solutions)
sinωn,`,m t (odd solutions)

. (17)

We will need the explicit values of the first spherical harmonics :

Y 0
0 =

√
1

4π
Y 0
1 =

√
3

4π
cos θ

Y 1
1 = −

√
3

2π
sin θ cosϕ Y −11 =

√
3

2π
sin θ sinϕ

and the first spherical Bessel functions :

J0 = J0(x0) =
sin x0

x0

J1 = J1(x1) =
sin x1

x2
1

− cos x1

x1
(18a)

Expression (9) allows the computation of the components of the vector potential in the proper time
frame from the scalar potential.
These solutions obey the physical boundary conditions : they become asymptotically null far from the origin
and they are either finite or null at the origin.
Let us now write explicitly the two tensors that we will need to describe the µ and the τ particles. The
general expression of the gradient tensor in the spherical system of coordinates associated to point M is :

[a i
k ] =


φ,t Ar,t Aθ,t Aϕ,t
φ,r Ar,r Aθ,r Aϕ,r

φ,θ/r
1
r

(
Ar,θ −Aθ

)
1
r

(
Aθ,θ +Ar

)
1
r A

ϕ
,θ

φ,ϕ

r sin θ

Ar
,ϕ

r sin θ −
Aϕ

r
1

r sin θ

(
Aθ,ϕ − cos θAϕ

)
1

r sin θ A
ϕ
,ϕ + 1

r A
r + 1

r
cos θ
sin θ A

θ


(19)
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Its symmetric part (the mass part) is :

[s ik ] =
1

2


2φ,t Ar,t + φ,r Aθ,t + φ,θ/r Aϕ,t +

φ,ϕ

r sin θ

φ,r +Ar,t 2Ar,r Aθ,r + 1
r

(
Ar,θ −A

θ
)

Aϕ,r +
Ar

,ϕ

r sin θ
− Aϕ

r

φ,θ/r +Aθ,t
1
r

(
Ar,θ −A

θ
)

+Aθ,r 2 1
r

(
Aθ,θ +Ar

)
1
r
Aϕ,θ + 1

r sin θ

(
Aθ,ϕ − cos θAϕ

)
φ,ϕ

r sin θ
+Aϕ,t

Ar
,ϕ

r sin θ
− Aϕ

r
+Aϕ,r

1
r sin θ

(
Aθ,ϕ − cos θAϕ

)
+ 1
r
Aϕ,θ 2

(
1

r sin θ
Aϕ,ϕ + 1

r
Ar + 1

r
cos θ
sin θ

Aθ
)


(20)

The antisymmetric part (the field part) is :

[s ik ] =
1

2


0 Ar,t − φ,r Aθ,t − φ,θ/r Aϕ,t −

φ,ϕ

r sin θ

φ,r −Ar,t 0 Aθ,r − 1
r

(
Ar,θ −A

θ
)

Aϕ,r −
Ar

,ϕ

r sin θ
+ Aϕ

r

φ,θ/r −Aθ,t
1
r

(
Ar,θ −A

θ
)
−Aθ,r 0 1

r
Aϕ,θ −

1
r sin θ

(
Aθ,ϕ − cos θAϕ

)
φ,ϕ

r sin θ
−Aϕ,t

Ar
,ϕ

r sin θ
− Aϕ

r
−Aϕ,r 1

r sin θ

(
Aθ,ϕ − cos θAϕ

)
− 1
r
Aϕ,θ 0


(21)

Expressions of these tensors are obtained with the proper time :

[s ik ] =
1

2


2φ,t 0 0 0

0 2Ar,r Aθ,r + 1
r

(
Ar,θ −Aθ

)
Aϕ,r +

Ar
,ϕ

r sin θ −
Aϕ

r

0 1
r

(
Ar,θ −Aθ

)
+Aθ,r 2 1

r

(
Aθ,θ +Ar

)
1
r A

ϕ
,θ + 1

r sin θ

(
Aθ,ϕ − cos θAϕ

)
0

Ar
,ϕ

r sin θ −
Aϕ

r +Aϕ,r
1

r sin θ

(
Aθ,ϕ − cos θAϕ

)
+ 1

r A
ϕ
,θ 2

(
1

r sin θ A
ϕ
,ϕ + 1

r A
r + 1

r
cos θ
sin θ A

θ
)


(22)

The antisymmetric part (the field part) is :

[s ik ] =
1

2


0 2Er 2Eθ 2Eϕ

−2Er 0 Aθ,r − 1
r

(
Ar,θ −Aθ

)
Aϕ,r −

Ar
,ϕ

r sin θ + Aϕ

r

−2Eθ 1
r

(
Ar,θ −Aθ

)
−Aθ,r 0 1

r A
ϕ
,θ −

1
r sin θ

(
Aθ,ϕ − cos θAϕ

)
−2Eϕ

Ar
,ϕ

r sin θ −
Aϕ

r −A
ϕ
,r

1
r sin θ

(
Aθ,ϕ − cos θAϕ

)
− 1

r A
ϕ
,θ 0


(23)

where the components of the electric field are :

Er =
1

2
(Ar,t − φ,r) = −φ,r = Ar,t , Eθ = −φ,θ/r , Eϕ = − φ,ϕ

r sin θ
(24)

It is remarkable that in the long range, when r becomes large as compared to the size of the particle, the
leading term in Er varies like 1/r while it varies like 1/r2 in Eθ and Eϕ. Far from the particle, the field
is longitudinal and spherically symmetric ; it is proportional to the inverse of the distance to the particle.
These are the characteristics of the usual electrostatic field where the observer is at rest with respect to the
particle.
Explicit formulas for the potential components and their derivatives are given in Appendix A. The tensors
needed to describe the µ and the τ particles correspond to n = ` = m = 0 (solutions g and g∗) and
n = 1, ` = m = 0 (solutions e or e∗). They can be written as :
- Solution g :

[
a i
k

]
g

=
1√
4π

Agωg
c2


− sinωgt J0 − cosωgt J

′
0 0 0

cosωgt J
′
0 − sinωgt J”0 0 0

0 0 − sinωgt
J′0
x 0

0 0 0 − sinωgt
J′0
x


(25)

- Solution g∗ :

[
a i
k

]
g∗

=
1√
4π

Agωg
c2


cosωgt J0 − sinωgt J

′
0 0 0

sinωgt J
′
0 cosωgt J”0 0 0

0 0 cosωgt
J′0
x 0

0 0 0 cosωgt
J′0
x


(26)
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Here x = ωgr/c, J0 = J0(x) and the derivatives J ′0 and J”0 are taken with respect to x. The normalized
length x will be taken as the reference for the other solutions.
- Solution e :

[
a i
k

]
e

=
1√
4π

Aeωe
c2


− sinωet J1 − cosωet J

′
1 0 0

cosωet J
′
1 − sinωet J”1 0 0

0 0 − sinωet
J′1
x1

0

0 0 0 − sinωet
J′1
x1


(27)

Here J1 = J1(xe) with xe = ωer/c and the derivatives J ′1 and J”1 are taken with respect to xe.
Tensors for even solutions q0(n = 1, ` = 1,m = 0), q1(n = 1, ` = 1,m = 1), q−1(n = 1, ` = 1,m = −1) are
given in Annex B. They are not used in this article.

2.5 Energy.

Our objective is to compute the potential energy associated with a superposition such as g+ g∗+ e and
to compare it to that of particle e (the electron) which is taken as the reference, both for the computed
and the experimentally measured figures. The energy is described by the Hamiltonian and is related to the
Lagrangian through a Legendre transform.
We have two hints to find the Lagrangian associated with an electromagnetic particle :
- The first is that a Lagrangian must be invariant in a coordinate change. Among the four invariants of
[a i
k ], one is proportional to the Lagrangian density L.

- The second is that the global Lagrangian of a particle should be finite. In other words, the Hamiltonian
density H, when integrated over the whole volume, should converge, giving the total energy of the particle.

This integral is :
∫∞
0

r2 dr
∫ π
0

sin θ dθ
∫ 2π

0
dϕ H in the spherical system of coordinates.

These conditions are met by the determinant of [a i
k ] and we are led to the equation :

L = C ‖a i
k ‖ (28)

where the double bar is the symbol for the determinant. The proportionality constant C is a physical quantity
which has the dimensions [C] = M−3L−2T 2Q4.
The Legendre transform writes :

H =
∑
ik

a i
k

∂L
∂a i

k

− L (29)

This equation introduces the canonical momentum L′ki = ∂L/∂a i
k associated with a i

k .

L being the determinant of [a i
k ], one sees that L′ki is the minor relative to the element a i

k and that∑
k ∂L/∂a i

k a i
k = L (development of the determinant with respect to the elements of the line k). The

simple relation follows :
H = 3L . (30)

The tensor a i
k is divided into its symmetric (mass) and its antisymmetric (field) parts : The total energy

density dWt is found from the determinant of a i
k . The mass energy is the potential energy dWm, it is found

from the determinant of s ik . The field energy dWf is found from the difference dWt− dWm or, equivalently,
from the part of (29) which contains the field. A fundamental result which is illustrated below in the case
of solution g is Wm + Wf = 0. the total mass energy and the total field energy associated with an e.m.
particle are equal and opposite in sign. This result holds for each e.m. particle n, `,m.

2.6 Electric charge.

This section briefly describes the way to find the electric charge Q associated with an e.m. particle. The
main steps are the following :

1- Maxwell’s equation of classical electrostatics relates the electric displacement
−→
D and the electric charge

density ρ :

div
−→
D = ρ (31)

−→
D is proportional to the electric induction which is the derivative of the Lagrangian with respect to the
field[12]. Eq.(31) can thus be used as the relation of definition of ρ.
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2- Lagrange’s equations are applied to the potential components Aj which are considered to be the genera-
lized coordinates. For each component Ai :

∑
k

 ∂L
∂Ai

− ∂

∂xk

 ∂L

∂
(
∂Ai

∂xk

)
 = 0 . (32)

The derivative ∂L/∂
(
∂Ai

∂xk

)
is the canonical momentum corresponding to ∂Ai/∂xk. Let us apply this equa-

tion to the component φ/c. It can be written in the extended form as :

∂L
∂(φ/c)

− ∂

c∂t

 ∂L

∂
(
∂(φ/c)
c∂t

)
− ∂

∂r

 ∂L

∂
(
∂(φ/c)
∂r

)
− ∂

r∂θ

 ∂L

∂
(
∂(φ/c)
r∂θ

)
− ∂

r sin θ ∂θ

 ∂L

∂
(

∂(φ/c)
r sin θ ∂θ

)
 = 0 .

(33)
The first term nullifies because L does not depend on φ/c explicitly. The three last terms represent the
divergence of the electric induction. This induction is the derivative of the Lagrangian with respect to the
field or the canonical momentum of the field. If we use expression(24) we see that the induction reduces to
a radial component :

Dr =
∂L
∂Er

= − ∂L

∂
(
∂(φ/c)
∂r

) . (34)

In the general case where Eθ and Eϕ do not vanish, one obtains the relation :

∂

c∂t

 ∂L

∂
(
∂(φ/c)
c∂t

)
 = −div

−→
D (35)

0ne sees that the term ∂L/∂
(
∂(φ/c)
c∂t

)
is simply the minor relative to ∂(φ/c)

c∂t in a i
k . This minor is the

determinant of the block 3X3 which groups the spatial derivatives in a i
k . One gets :

div
−→
D = − ∂

c∂t

∥∥∥∥∥∥∥
Ar,r Aθ,r Aϕ,r

1
r

(
Ar,θ −Aθ

)
1
r

(
Aθ,θ +Ar

)
1
r A

ϕ
,θ

Ar
,ϕ

r sin θ −
Aϕ

r
1

r sin θ

(
Aθ,ϕ − cos θAϕ

)
1

r sin θ A
ϕ
,ϕ + 1

r A
r + 1

r
cos θ
sin θ A

θ

∥∥∥∥∥∥∥ (36)

3- An integration over spacetime gives the total charge of the particle.
We have found that this integration gives a null result except for the solution e(1, 0, 0) which leads to name
it ”the electron” and that charges have an opposite sign for even and odd solutions.
This result led us to consider that a compound particle is electrically charged if and only if it contains either
one of the solutions e(1, 0, 0) or e∗(1, 0, 0) . Another consequence is the null charge of the e+ e∗ system.

2.7 Energies of g and e particles.

We will see below that the muon and the tau structures are superpositions of g and e particles. We give
now their potential energies Hg and He with the scaling of He with respect to Hg.

2.7.1 Energy of solution g.

The Lagrangian density corresponding to solution g is proportional to the determinant of (25) :

Lg = C
(

1√
4π

Ag ωg
c2

)4
(

sin4 ωgt J0 J”0
J
′2
0

x2
+ sin2 ωgt cos2 ωgt

J
′4
0

x2

)
(37)

The energy density in 4-space is given by the Hamiltonian :dHg = 3Lg. It includes two parts, the first of
which being the determinant of the symmetric part [s̄ ik ] :

dHmg = 3 C
(

1√
4π

Ag ωg
c2

)4

sin4 ωgt J0 J”0
J
′2
0

x2
(38)
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This is the mass part of solution g and is the potential energy density. The second part is the field part :

dHfg = 3 C
(

1√
4π

Ag ωg
c2

)4

sin2 ωgt cos2 ωgt
J
′4
0

x2
(39)

The total mass energy mg is obtained by taking the mean value over a period T = 2π/ωg, or a ”time
length” cT̄ = 2πc/ωg followed by an integration over the whole geometrical volume :

Hmg = 3 C
(

1√
4π

Ag ωg
c2

)4
1

2π

∫ 2π

0

sin4 ωgt d(ωgt)

∫ 2π

0

dϕ

∫ π

0

sin θ dθ

∫ ∞
0

(
J0 J”0

J
′2
0

x2

)
x2 dx

(40)

Integration over time gives 3/8, that on angles gives 4π. Integration over x gives :∫ ∞
0

J0 J”0 J
′2
0 dx =

∫ ∞
0

(
2 sin4 x

x8
− 6 sin3 x cos x

x7
− sin4 x

x6
+

6 sin2 x cos2 x

x6

−2 sin x cos3 x

x5
+

2 sin3 x cos x

x5
− sin2 x cos2 x

x4

)
dx = − 2π

315
= −0.0199466 (41)

Finally :

Hmg = − 1

560
C
(
Ag ωg
c2

)4

(42)

Let us compute the total energy corresponding to the total Lagrangian(37). This total energy is propor-
tional to the radial integral :

Htotal ∼
∫ ∞
0

(
3 J0 J”0

J
′2
0

x2
+
J
′4
0

x2

)
x2 dx =

∫ ∞
0

(
3 J0 J”0 J

′2
0 + J

′4
0

)
dx =

=

∫ ∞
0

d(J0 J
′3
0 )

dx
dx =

(
J0 J

′3
0

)∞
0

= 0 (43)

The integral nullifies because J ′0 vanishes at the origin and both J0 nd J ′0 nullify at infinity. The conclusion
is that the mass energy and the field energy are equal in absolute value and opposite in sign. This property
holds equally well for the e solution where J0 is replaced by J1. More generally, it holds for all other e.m.
particles and, as seen below, for the µ and the τ .

2.7.2 Energy of solution e.

The procedure to obtain the density of energy of solution e is the same as before with J1 instead of J0.
xe is the normalized length : xe = ωe r/c. J

′
1(xe) and J”1(xe) are the derivatives with respect to xe. We

take x as the reference and write : xe = nex. The radial integral which describes the radial potential energy
density is :

∫ ∞
0

J1 J”1
J
′2
1

x2
e

x2 dx =
1

n2e

∫ ∞
0

(
24 sin4(nex)

(nex)12
− 96 sin3(nex) cos(nex)

(nex)11
+

144 sin2(nex) cos2(nex)

(nex)10

−96 sin(nex) cos3(nex)

(nex)9
+

112 sin3(nex) cos(nex)

(nex)9
+

18 sin4(nex)

(nex)8
+

24 cos4(nex)

(nex)8
− 120 sin2(nex) cos2(nex)

(nex)8

+
48 sin(nex) cos3(nex)

(nex)7
− 40 sin3(nex) cos xe

(nex)7
− 3 sin4(nex)

(nex)6
− 4 cos4(nex)

(nex)6
+

26 sin2((nex) cos2(nex)

(nex)6

−4 sin xe cos3(nex)

(nex)5
+

4 sin3(nex) cos(nex)

(nex)5
− sin2(nex) cos2(nex)

(nex)4
− 36 sin4(nex)

(nex)10

)
dx (44)

This integral is also exactly computed and gives :

1

n2e

∫ ∞
0

J1 J”1 J
′2
1 dx = − 17π

10395

1

n3e
(45)

and the total potential energy is :

He = − 17

36960

1

n3e
C
(
Ae ωe
c2

)4

(46)
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2.7.3 scaling solutions e and g.

1- The normalized length which appears in the spherical Bessel functions is x=ωgr/c for solution g and
xe = ωer/c for solution e. One has to use the same unit of length when these particles are added together.
ωg is taken to be the reference of frequency and we have written ωe = ne ωg to compute the radial integral
of solution e.
2- The amplitudes Ae and Ag are also different for both solutions and one has to find how they can be
related. For this purpose, we remember that a particle reduces in the far field to spherical incoming and
outgoing waves. The former originates from the noise and the latter from the particle. Both waves should
have the same energy to realize the stability condition ”gain=loss” in the stationary regime. We make the
hypothesis that the noise which feeds the particles is an 1/f (”flicker”) noise. It is such that its intensity
is inversely proportional to its frequency which gives the relation :

A2
e ωe = A2

g ωg . (47)

or :
Ae ωe =

√
ne Ag ωg . (48)

The energy in eq.(46) becomes :

He = − 17

36960

1

ne
C
(
Ag ωg
c2

)4

(49)

In the following, all energies will be normalized by the factor C
(
Ag ωg

c2

)4
and we will use the formula :

We = − 17

36960

1

ne
(50)

for the scaled energy of the free electron. This formula will be used to compare We with the muon and the
tau energies.
Fig.(1) represents the normalized energy of the electron as a function of ne = ωe/ωg.

N
 

Normalized

Energy

Normalized

Frequency

Electron

5 10 15 20

-0.0004

-0.0003

-0.0002

-0.0001

Figure 1 – Normalized energy − 17
36960

1
ne

of the electron vs its normalized frequency ne = ωe/ωg .

In passing, we note that the ratio of the potential energies Hmg (eq.42) and We for the same frequency
ωg is :

Hmg
He

=
1

560

36960

17
= 3.88... (51)

The g is about 4 times heavier than the electron.

3 Potential energy of compound particles.

3.0.1 Generalities.

The aim of this section is to compare experimental and theoretical potential energies observed for the
muon and the tau particles.
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The formers are edited by the ”Particle data group” ([17]). Results are 105.658 Mev/c2 for the µ, 1776.86
Mev/c2 for the τ and 0.511 Mev/c2 for the electron which will be used as the reference, or the normalization
factor. The normalized energies of the µ and the τ are respectively 206.77 and 3477.
The latters are obtained by combining electromagnetic particles and especially solutions g, g∗, e and e∗.
We have used the property of potentials to be extensive quantities : The vector field and the tensor field
of a compound particle are both linear combinations of vectors and tensors representing each constitutive
solution (n, `,m). We have taken the simplest case of electromagnetic particles centered around the same
origin O.
Solutions g, g∗ and e, e∗ have a spherical symmetry. Solutions 1, 1, (−1, 0, 1) have a cylindrical symmetry[10].
We have guessed that these last solutions are associated to quarks. As there is no quark in the muon nor
in the tau, we have supposed that their structure is spherically symmetric and includes solutions g, g∗ and
e, e∗ only. We computed the energy associated with different structures as a function of the frequency nµ or
nτ of the trapped electron(s) in the µ or the τ . There is no reason to have the same values for nµ, nτ and
ne : the frequency of the electron can vary following its environment. The computed energy was divided by
207 for the µ and 3477 for the τ to find the energy of the free electron which will be used as the reference
for all other studied particles. As described below, the composition g+g∗+ e (or g+g∗+ e∗) for the muon±

gives very satisfactory results. Then we studied the combination 2(g+ g∗) + e for the tau. While their order
of magnitude was correct, the results were not satisfactory. We have considered the particles emitted when
a tau disintegrates. There are many disintegration processes[17] but all of them show that many electrons
and positrons are emitted. Again we computed the energy corresponding to several structures and finally
arrived at the composition : 2(g + g∗) + 2(e + e∗) + e (or 2(g + g∗) + 2(e + e∗) + e∗). These combinations
are justified a posteriori, when the corresponding energies and charges are compared to the experimental
results. The disintegration process changes the frequencies nτ and nµ of the trapped electrons into ne, that
of the free electron. This process is probably related to the emission of neutrinos.
The computation of the energy associated with a linear combination of solutions g, g∗, e, e∗ is done with a
computer and a symbolic and numeric computation software (MathematicaTM ). The entries are the number
of each solution and the matrices representing them. The total matrix of a compound particle is the linear
combination of these matrices. The determinant of this matrix allows the calculation of the total energy
(field + mass) of the system while the determinant of the symmetric part leads to the potential energy. A
frequency neωg is associated with the trapped electron(s) and the frequency ωg of solution g is taken as
the reference as described above. Then the determinant (the Lagrangian) is computed. The Hamiltonian
density is 3 times this Lagrangian. The mean value over a period T = 2π/ωg is first obtained. The second
integration is over the angles and gives 4 π for spherically symmetric systems. The third integration is over
the radial variable and gives the total energy, the potential energy and the ratio we are looking for when
it is divided by the energy of the electron taken as the reference. We have found that the radial integral
converges exactly only for integer values of nτ or nµ and gives exact values as in the case of the g and the
e particles. Formulas for the total energy and the potential energy can be divided into three parts :
- The first contains the terms relative to solutions g and g∗,
- The second contains the terms relative to solutions e and e∗,
- The third is a mix of terms relative to all solutions and is the interaction term.
One can integrate each term separately : the magnitude of the interaction term gives an hint on the solidity
or the fragility of the structure but we have not investigated this property further.
The same frequency and amplitude are given to even and odd solutions. The remaining white noise or
other sources of noise are neglected, and, for the moment, we have abandoned the idea of introducing a
phenomenological adjustable parameter εn to introduce corrections to the 1/f noise law.

3.1 Results.

A first characteristic of the experimentally observed elementary particles is the wide variety of masses as
illustrated here by the muon and the tau. The second characteristic is the huge difference between lifetimes :
the muon lives 2.2 10−6s and the tau 2.9 10−13 s. The first characteristic is explained from the non-linearities
appearing in the expressions for the energies. The second characteristic would need the calculation of the
Lyapunov coefficient (the coefficient of stability) under perturbations brought by noise or collisions.
We give below the ratios of the computed potential energies of the µ and the τ particles referred to that of the
lone electron. We have computed the energies corresponding to the structures g+g∗+e and g+g∗+2(e+e∗)+e
as functions of the frequency nµ or nτ of the electron(s) trapped in these structures. We first compute
the determinant of the corresponding sum of matrices then take the mean value over the period 2π/ωg.
Expression for the radial distribution of energy is obtained after integration over angles (which is simply a
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multiplication by 4 π). It contains two parts, the first of which is a slowly-varying function of nµ or nτ and
the other contains trigonometrical functions like cos(2nµπ) or sin(2nµπ). We found that the first part is
about 1000 times greater than the second. The last integration is over x, the distance to the center. Formulas
simplify enormously when nµ or nτ are integers and in this case the radial integrals are exactly computed.
Results presented below are limited to this case.

3.1.1 Muon.

The muon has a mass mµ= 105.6584 MeV/c2 and the electron :me = 0.511 MeV/c2. The experimental
mass ratio is m±µ /me = 206.768. The muon has a lifetime of 2.97 10−6 s and can be considered as a quasi-
stable particle. It decays by emitting an electron (±) and neutrinos. Our basic hypothesis was that particles
g and g∗ are invisible particles (they are not electrically charged) which can escape in opposite directions
in a collision or in a disintegration process. We have computed the energies corresponding to the structure
g + g∗ + e. The total (mass+field) energy density dWµ of the muon is given by the formula written for
integer values of nµ :

dWµ =
3x2

128π2

(
8(J ′1/xµ) (J ′0/x) J”1 J0 + J

′2
1 ((J ′1/xµ)2 + 4(J ′0/x)2) + 4(J ′1/xµ)2 (J

′2
0 + J0 J”0)

+4(J ′0/x)2 (J
′2
0 + 3J0 J”0) + J1(3(J ′1/xµ)2 J”1 + 4J”1 (J ′0/x)2 + 8(J ′1/xµ) (J ′0/x) J”0)

)
(52)

This formula can be divided into three parts which describe (1) the electron (dWel), (2) the g + g∗

components (dWg+g∗) and (3), the interaction (dWint) :

dWel =
3x2

128π2

(
J1 J”1 (J ′1/xµ)2 + J

′4
1 /x

2
µ

)
(53)

dWg+g∗ =
3x2

128π2

(
3J0 J”0 + 4J

′4
0 /x

2
)

(54)

dWint =
3x2

128π2

(
8(J ′1/xµ) (J ′0/x) J”1 J0 + 4J

′2
1 (J ′0/x)2) + J1 (4J”1 (J ′0/x)2 + 8J”0 J

′
1/xµ) J ′0/x))

)
(55)

In these formulas, J1 and its derivatives are functions of nµ :

J1 =
√
nµ

(
sin xµ

x2
1

− cos xµ
xµ

)
J1 =

∂J1
∂xµ

, J”1 =
∂J ′1
∂xµ

xµ = nµx

Integer values between 4 and 20 of the normalized electron frequency nµ = ωµ/ωg were used. Then,
these energies were divided by that of an electron, taken from the formula used to draw Fig.(2). The goal
was also to find the frequency ne of the free electron, or the reference of energy which will be used as the
normalization factor not only for the muon, but also for the τ and later, for all other particles. Fig.2 shows
the ratios of the potential energy of the muon (which vary with nµ) and that of a reference electron obtained
with ne = 11, 12, 13, 14. The ratio should be 207. One sees that the fit happens for nµ = 15 and ne = 12 .
This finding needs a further confirmation.
In this way, we obtained a ratio 207.3 close to the experimental value 206.768 when the electron inside the
muon (the µ electron) had the normalized frequency nµ = 15.

Equations (53), (54), and (55) are exactly integrated when nµ is an integer. For nµ = 15, one finds :∫ ∞
0

dWel dx = −17/554400 ∼ −0.0000306638 ,

∫ ∞
0

dWg dx = −1/140 ∼ −0.00714286 ,∫ ∞
0

dWint dx = −200222779/258339375000 ∼ −0.00794856 (56)

which gives the total potential energy : W (µ15) = −0.00794856. This energy, when divided by the experi-
mental ratio 206.768 should give the energy, or the normalized frequency ne of the reference electron which
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Figure 2 – W/Wn is the ratio of the potential energy of the muon and that of a free electron Wn vs the frequency nµ. nµ
is the ratio of the frequency of the trapped electron and the frequency reference ωg and varies from 1 to 20. 4 values have been
tried for the normalized frequency ne = ωe/ωg of the free electron. Values nµ = 15 and ne = 12 give W (nµ)/W (ne = 12) =
207.3 close to the experimental figure 206.768.

is given by formula (50) . One finds ne = 11.965, a value very close to the fit obtained from fig.(2).
The set of four figures (3,4,5,6 ) describe the evolution of the functions (52), (53), (54), (55) along the radial
distance. The spatial extension of the electron is smaller than that of the g + g∗ component as can be seen
in Figs.(3) and (4). One can consider that the electron is trapped inside these components.
The oscillating behavior of the interaction term in Fig.(10) originates from the leading term in eq.(55) when
it is developped as a function of x :

1

3645000000 π x10

(
(−8172− 698834 x2 + 405000 x4 + 202500 x6) cos 2x

+(−16280x− 1415700 x3 − 405000 x5) sin 2x
)

Radial oscillations are described by these terms in sin 2x and cos 2x. There are many other oscillating terms
containing sin 28x, sin 30x, sin 22x and cos 28x, cos 30x, cos 22x which are too small to be visible on the
graph (10). The integral of functions (52, 53, 54, 55) nullifies which shows that the property ”potential energy
= - field energy” which was described for solution g holds also for a compound particle.
The next set of figures (7,8,9,10) describe the evolution of the potential energy (or the mass distribution)
along the radial distance to the center. It is interesting to note that this potential energy is essentially hollow
and negative around the center but it is surrounded by a spherical positive part. The curves for the (g+ g∗)
components and the electron display also the same behavior.

Figure 3 – Total energy density of the muon vs the radial
distance to the center. The general shape is given by the (g+g∗)
components and the modulation by the interaction illustrated
in Fig.(6). The integral of this curve vanishes. The negative
(positive) part is essentially the mass (field) part.

Figure 4 – Total energy density of the electron trapped in the
muon vs the radial distance to the center. Note the differences
in the energy scale and in the spatial extension of the muon in
the preceding figure.The integral of this curve vanishes.
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Figure 5 – Total energy density of the g+g∗ particles of the
muon vs the radial distance to the center. The integral of this
curve vanishes.

Figure 6 – Interaction part of the energy density between
the g + g∗ particles and the electron vs the radial distance to
the center. The integral of this curve vanishes.

Figure 7 – Potential energy density of the muon vs the radial
distance to the center. The general shape is given by the (g+g∗)
components and the modulation by the interaction illustrated
in Fig.(7)

Figure 8 – Potential energy density of the electron trapped
in the muon vs the radial distance to the center. Note the dif-
ferences in the energy scale and in the spatial extension of the
muon in the preceding figure.

3.2 tau.

After the muon, the τ particle is the next ”heavy electron” (normalized energy 3477). Its products of
desintegration[17] essentially include modes with one charged particle like kaons or pions and also modes
with 3 charged particles like a system 2π− + π+ accompanied by the emission of a neutrino τ . We were led
to study the structure 2(g + g∗) + 2e + e∗ (or, equivalently 2(g + g∗) + 2e∗ + e). Particles 2(g + g∗) give
the essential part of the mass and particles 2e + e∗ (or 2e∗ + e) give the charge + or -. The disintegration
process should give either 3 charges or one charge with a γ ray originating from the e, e∗ annihilation.
The captured charged particles have a frequency ωτ = nτωg. We computed the energy of this structure for
integer values of nτ varying between 4 and 20. Then we divided these results by the energy of reference
electrons with ne = 11, 12, 13, 14. This is illustrated in Fig.11 which shows that a ratio 3466 is obtained
with nτ = 13, ne = 12. The reference remains the electron 12 as in the case of the muon.
This result confirms the use of electron 12 as the reference. It brings also the conclusion that the g particles
are responsible for the huge difference in energy between the electron, the muon and the tau particles.

The following sets of figures are similar to those describing the muon. Calculations have been done with
nτ = 13. The first four figures describe the total energy density (Fig.(12)), the part coming from the charged
particles 2e+ e∗ (Fig.(13)), the part coming from the particles 2(g+ g∗) (Fig.(14)), and the interaction part
(Fig.(15)).
The second set of four figures describe the potential energy density (Fig.(??)), with the part coming from
the charged particles 2e + e∗ (Fig.(??)), the part coming from the particles 2(g + g∗) (Fig.(18)), and the
interaction part (Fig.(19)).
Formulas for obtaining these figures are similar to those written for the muon (52),( 53), (54),(55), with
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Figure 9 – Potential energy density of the g + g∗ particles
of the nmuon vs the radial distance to the center.

Figure 10 – Interaction part of the potential energy den-
sity between the g + g∗ particles and the electron vs the radial
distance to the center.

Figure 11 – Potential energy W of the tau normalized with respect to that of a free electron Wn vs the frequency ω of the
captured electron normalized with respect to that of solution g, ωg , which is taken as the reference. ω is an integer multiple of
ωg and varies from 1 to 20. 4 values have been tried for the frequency ωe of the free electron. Values ω = 13 and ωe = 12 give
W/W12 = 3466 close to the experimental figure W/Wn = 3477.

different coefficients. They are also exactly integrated and the obtained energies are :∫ ∞
0

dWτ,el dx = −(85/96096) ∼ −0.000884532∫ ∞
0

dWτ,g dx = −(4/35) ∼ −0.114286∫ ∞
0

dWτ,int dx = −(419619415/23718939426) ∼ −0.0176913

Adding these energies together gives the total potential energy of the τ : Wτ = −0.132862. Dividing this
result by 3477.228, gives the energy of the reference electron Wref =-0.000038209. This energy should
obey the equation Wref = −17/(36960ne). Equating both terms gives ne = 12.04. This result is close to
ne = 11.965 obtained with the muon. The relative difference (3 10−3) with the energy of the electron 12
gives an idea of the precision of the results.

15



Figure 12 – Total energy density of the τ vs the radial
distance to the center. The general shape is given by the 2(g +
g∗) components Fig.(14) and the modulation by the interaction
illustrated in Fig.(15). The integral of this curve vanishes.

Figure 13 – Toial energy density of the charged particles
2e + e∗) trapped in the muon vs the radial distance to the
center. Note the differences in the energy scale and in the spatial
extension with respect to the total density in the preceding
figure.The integral of this curve vanishes.

Figure 14 – Total energy density of the 2(g + g∗) particles
in the tau vs the radial distance to the center. The integral of
this curve vanishes.

Figure 15 – Interaction part of the energy density between
the 2(g + g∗) and the 2e + e∗) particles vs the radial distance
to the center. The integral of this curve vanishes.

3.3 Hypothetical particles.

The following table gives the energies computed for several structures and normalized with respect to
that of the electron 12. The frequency of the trapped electron can vary following the structure but is chosen
to be n = 13ωg for all results (this is why the energy W((g + g∗) + e) does not exactly coincide with that
of the muon). Energies are non-linear functions of the particles number : for instance W(2(g + g∗)) = 16
W(g + g∗) and more generally, W(k(g + g∗)) = k4 W(g + g∗) which explains their wide variations.

Table 1 – Energy calculated for several structures based on combinations of electromagnetic particles
g, g∗, e, e∗.

W(g + g∗) = 186.353 W(2(g + g∗)) = 2982 W(3(g + g∗)) = 15095
W((g + g∗) + e) = 209.7 W(2(g + g∗) + e) = 3075 W(3(g + g∗) + e) = 15303

W((g + g∗) + (e+ e∗) + e) = 325 W(2(g + g∗) + (e+ e∗) + e)= 3466 W(3(g + g∗) + (e+ e∗) + e) = 16156
W((g + g∗) + 2(e+ e∗) + e) = 642 W(2(g + g∗) + 2(e+ e∗) + e) = 4336 W(3(g + g∗) + 2(e+ e∗) + e) = 17950
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Figure 16 – Potential energy density of the tau vs the radial
distance to the center. The general shape is given by the (g+g∗)
components and the modulation by the interaction illustrated
in Fig.(??)

Figure 17 – Potential energy density of the 2e+ e∗ particles
trapped in the tau vs the radial distance to the center. Note
the differences in the energy scale and in the spatial extension
of the tau in the preceding figure.

Figure 18 – Potential energy density of the g + g∗ particles
of the tau vs the radial distance to the center.

Figure 19 – Interaction part of the potential energy density
between the 2(g + g∗) and the 2e + e∗ particles vs the radial
distance to the center.

4 Conclusion.

This article has presented first the general potential theory which is the study of the tensors formed by the
derivatives of the 4-potential in the 4-dimensional spacetime. The first result is that the scalar potential obeys
a Helmholtz equation in his proper frame of coordinates. Solutions of this equation describe electromagnetic
particles. The vector potential and the tensor of derivatives a i

k are obtained at each event M for the five first
solutions with their even ( g, e, q0, q1, q−1) and odd ( g∗, e∗, q∗0 , q

∗
1 , q
∗
−1) aspects. One then obtains the energy

and the electric charge associated with each solution from these tensors. The energy density is obtained
from the Lagrangian density which is proportional to the determinant of a i

k while the electric charge is
related to the determinant of its geometrical part. In a second part, we have used these results to see if
these e.m. particles are the fundamental elements of the µ and the τ which constitute the lepton family with
the electron. A numerical application compared the theoretical and experimental potential energies when
they are normalized by the electron energy. The µ and the τ structures are g+g∗+e and 2(g+g∗)+2e+e∗,
respectively. They are compatible with the disintegration processes.The g+ g∗ or the 2(g+ g∗) components
are responsible for the huge mass difference between the members of the lepton family. The general theory
does not give the amplitude and frequency of each solution. We used the stability condition for the existence
of a particle : this condition expresses the balance between the radiated and absorbed energy. The latter
originates from the noise which we supposed to be an 1/f (flicker) noise. However, the frequency was still
unknown and should be determined through a fit with experimental values. The fit with the µ led to a value
11.96 for the normalized frequency of the reference electron and the fit with the τ led to the value 12.03.
We consider this result to be satisfactory enough to encourage the effort to improve and develop the general
potential theory and its applications to the study of other elementary particles. An improvement would
be a study of the contribution of the noise : the particle is coupled to the noise which is its surrounding
medium. This picture has been developed by Wheeler and Feynman([13]) in their absorber theory : using
causality, they showed that an electron should radiate an outgoing and absorb an incoming wave from the
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noise. We have used the same concept to fix the stability of an e.m. particle : however adding the noise
to the potential would give modified (”dressed”) tensors and slightly different results than those described
here. There are also many developments of the theory. For instance the study of the electron trapped inside
the potential well of the g + g∗ particles is particularly interesting. Applying this classical theory based on
firm fundamental concepts opens new ways to understand yoctoscopic behaviour of fields and matter.
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5 Appendix A.

This appendix gives explicit formulas for the potentials and their derivatives which are used to describe
elementary particles.
Contravariant components of the potential vector are noted as : Ai = (φ/c,Ar, Aθ, Aϕ) in the spherical
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frame of coordinates.
Even solutions of the Helmholtz equation are :

φ/c =
An
c

Jn Y
m
` cosωt Ar = −An

c
J ′n Y

m
` sinωt ,

Aθ = −An
c

Jn
x
Y m`,θ sinωt Aϕ = −An

c

Jn
x sin θ

Y m`,ϕ sinωt .

Derivatives are :

∂(φ/c)

c∂t
= −A ω

c2
J1 Y

m
` sinωt ,

∂(φ/c)

∂r
=
A ω

c2
J ′1 Y

m
` cosωt

∂(φ/c)

r∂θ
=
A ω

c2
J1
x
Y m`,θ cosωt ,

∂(φ/c)

r sin θ∂ϕ
=
A ω

c2
J1
x

Y m`,ϕ
sin θ

cosωt

∂Ar

c∂t
= −A ω

c2
J ′1 Y

m
` cosωt ,

∂Ar

∂r
= −A ω

c2
J”1 Y

m
` sinωt

∂Ar

r∂θ
= −A ω

c2
J ′1
x
Y m`,θ sinωt ,

∂Ar

r sin θ∂ϕ
= −A ω

c2
J ′1
x

Y m`,ϕ
sin θ

sinωt

∂Aθ

c∂t
= −A ω

c2
J1
x
Y m`,θ cosωt ,

∂Aθ

∂r
= −A ω

c2

(
J ′1
x
− J1

x2

)
Y m`,θ sinωt

∂Aθ

r∂θ
= −A ω

c2
J1
x2

Y m`,θ,θ sinωt ,
∂Aθ

r sin θ∂ϕ
= −A ω

c2
J1
x2

Y m`,θ,ϕ
sin θ

sinωt

∂Aϕ

c∂t
= −A ω

c2
J1
x

Y m`,ϕ
sin θ

cosωt ,
∂Aϕ

∂r
= −A ω

c2

(
J ′1
x
− J1

x2

)
Y m`,ϕ
sin θ

sinωt

∂Aϕ

r∂θ
= (will be 0) ,

∂Aϕ

r sin θ∂ϕ
= −A ω

c2
J1
x2

Y m`,ϕ,ϕ
sin θ

sinωt .

Formulas for corresponding odd solutions , g∗(1,0,0), e∗(1,0,0), q∗0(1,1,0), q∗1(1,1,1) and q∗−1(1,1,-1) are ob-
tained by changing ωt into ωt− π/2.

6 Annex B : Tensors of the first Electromagnetic particles.

The tensor of derivatives is given below for the five first even solutions.
- Even solution ”g” (n = ` = m = 0) :

[
a i
k

]
g

=
Ag ωg
c2


− sinωgt J0 − cosωgt J

′
0 0 0

cosωgt J
′
0 − sinωgt J”0 0 0

0 0 − sinωgt
J′0
x 0

0 0 0 − sinωgt
J′0
x


(57)

- Odd solution ”g∗” (n = ` = m = 0) :

[
a i
k

]
g

=
Ag ωg
c2


cosωgt J0 − sinωgt J

′
0 0 0

sinωgt J
′
0 cosωgt J”0 0 0

0 0 cosωgt
J′0
x 0

0 0 0 cosωgt
J′0
x


(58)

- Solution ”e” (n = 1, ` = m = 0) : Formulas for solution e are the same when Ag and ωg are replaced by
Ae and ωe and J0(x) by J1(xe).
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- Solution ”q0” (n = 1, ` = 1,m = 0) :

[
a ik
]

=

√
3

4π

A1ω1

c2
− sinω1t J1 cos θ − cosω1t J ′1 cos θ cosω1t

J1
x

sin θ 0

cosω1t J ′1 cos θ − sinω1t J”1 cos θ sinω1t sin θ
(
J′1
x
− J1

x2

)
0

− cosω1t
J1
x

sin θ sinω1t
(
J′1
x
− J1

x2

)
sin θ − sinω1t cos θ

(
J′1
x
− J1

x2

)
0

0 0 0 − sinω1t cos θ
(
J′1
x
− J1

x2

)


(59)

- Solution ”q1” (n = 1, ` = 1,m = 1) :

[
a ik
]

=
A1ω1

c2

√
3

2π


− sinω1t J1 sin θ cosϕ − cosω1t J ′1 sin θ cosϕ
cosω1t J ′1 sin θ cosϕ − sinω1t J”1 sin θ cosϕ

cosω1t
J1
x

cos θ cosϕ − sinω1t
(
J′1
x
− J1

x2

)
cos θ cosϕ

− cosω1t
J1
x

sinϕ sinω1t
(
J′1
x
− J1

x2

)
sinϕ

− cosω1t
J1
x

cos θ cosϕ cosω1t
J1
x

sinϕ

− sinω1t cos θ cosϕ
(
J′1
x
− J1

x2

)
sinω1t sinϕ

(
J′1
x
− J1

x2

)
− sinω1t sin θ cosϕ

(
J′1
x
− J1

x2

)
0

0 − sinω1t sin θ cosϕ
(
J′1
x
− J1

x2

)


(60)

- Solution ”q−1” (n = 1, ` = 1,m = −1) :

[
a ik
]

=
A1ω1

c2

√
3

2π


sinω1t J1 sin θ sinϕ cosω1t J ′1 sin θ sinϕ
− cosω1t J ′1 sin θ sinϕ sinω1t J”1 sin θ sinϕ

− cosω1t
J1
x

cos θ sinϕ sinω1t
(
J′1
x
− J1

x2

)
cos θ sinϕ

− cosω1t
J1
x

cosϕ sinω1t
(
J′1
x
− J1

x2

)
cosϕ

cosω1t
J1
x

cos θ sinϕ cosω1t
J1
x

cosϕ

sinω1t cos θ sinϕ
(
J′1
x
− J1

x2

)
sinω1t cosϕ

(
J′1
x
− J1

x2

)
sinω1t sin θ sinϕ

(
J′1
x
− J1

x2

)
0

0 sinω1t sin θ sinϕ
(
J′1
x
− J1

x2

)


(61)
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