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Abstract: We present numerical and theoretical investigations of the spontaneous emergence of 

noise-driven modulation instability patterns in a metamaterial waveguide, which involves the 

generation of optical breather waves such as the Peregrine soliton, Akhmediev breathers and 

Kuznetsov-Ma breathers. We show that the intrinsic properties of the metamaterial waveguide, 

e.g. self-steepening and the magnetooptics effects, offer the potential to control the formation 

and subsequent spectral and temporal dynamics of these localized nonlinear waves. Such internal 

or external perturbations break the symmetry of the spectrum of nonlinear waves, thus leading to 

the existence of a controllable characteristic group velocity in their space-time evolution.     
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1. Introduction  

The field of metamaterials has attracted considerable attention during the last two decades due to 

the exciting potential applications ranging from superlenses, antennas and cloaking devices to 

sub-wavelength optical waveguides. Optical metamaterials offer the potential to engineer 

electromagnetic properties in ways that cannot be achieved with materials found in nature, such 

as the well-known example of negative refractive index, by means of artificially structured 

materials which exert influence over electromagnetic waves at the sub-wavelength level [1-5]. 

Nonlinear optics has been also widely impacted by the emergence of the field of electromagnetic 

metamaterials [6-7]. Nonlinear metamaterials can exhibit some exotic advantages for light 

manipulation and a rich variety of exciting nonlinear phenomena. In particular, exceptionally 

strong nonlinearities can be constructed as well as the possibility of efficient dispersion 

engineering. Among nonlinear phenomena, the formation and propagation of nonlinear guided 

waves such as temporal and spatial solitons have already been investigated in detail, particularly 

by considering integrated waveguide configurations based on a negative-index metamaterial (i.e., 

with both negative dielectric permittivity and negative magnetic permeability) with a Kerr-type 

nonlinearity [7-11]. In a similar manner, the standard linear stability analysis of the 

homogeneous steady state has been performed in various propagation schemes to predict the new 

regimes of modulation instability [12-15]. In general, investigating modulation instability (MI) 

and short pulse propagation in a nonlinear double negative metamaterial gives rise to an 

extended nonlinear Schrödinger equation (NLSE) modeling, where higher-order dispersion and 

nonlinearity strongly impact the space-time trajectories of localized nonlinear waves, including 

optical solitons and optical rogue waves [16].  

In this paper, we extend previous studies to the spontaneous emergence of strongly localized 

nonlinear waves through modulation instability in a negative-index metamaterial waveguide. In 

particular, we numerically investigate noise-induced modulation instability patterns formed by 

breather waves (i.e., unstable pulsating solutions of the NLSE [17]). We evidence that such 

breather waves are influenced, but not suppressed, in a nonlinear metamaterial system. More 

specifically, we focus our discussion on the impact of self-steepening effect on both the spectral 

and temporal dynamics of the modulation instability patterns. We demonstrate that, in the 

temporal domain, the MI patterns propagate with a characteristic group velocity, which 
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corresponds to typical asymmetric spectra. Finally, by taking advantage of possible introduction 

of the magnetooptic property in the metamaterial waveguide, we provide important control 

capabilities over temporal behaviors by carefully adjusting the external magnetic field.   

 

2. Breather waves and modulation instability 

A typical waveguide structure used here is a planar structure with a metamaterial core that has 

boundaries in x and y directions and propagation is along the z-axis (see also section 6 of Ref. 

[16]). A part of the structure, in the form of the substrate, is replaced with a magnetooptic 

material. Here the magnetic field is applied in what is known as a Voigt configuration. This has 

an externally applied magnetic field in the plane of the guide perpendicular to the direction of 

optical propagation, which here can be applied along either the positive or negative x-direction. 

We also assume that the core material is isotropic and it has a negative permittivity and negative 

permeability thus the form of the metamaterials considered here is transparently double-negative 

[11]. The use of double negative media is the way forward where appropriate extensions to the 

NLSE have already been developed [6,14]. Here it is assumed that the nonlinear behaviour 

discussed originates from an isotropic Kerr dielectric, such that an appropriate extension to the 

focusing NLSE is utilised that takes into account the metamaterial properties with self-

steepening and magnetooptic effects (see section 6 of Ref. [16] for more details). The form of the 

extended NLSE is given below in Eq. (1). Note that there is also the capability of adding higher 

order and Raman scattering effects, however, in the simulations discussed below, these 

parameters are not involved, but later discussed in the last section. 

                                           𝑖
𝜕𝜓

𝜕𝜉
+

1

2

𝜕2𝜓

𝜕𝜏2
+ (𝜓 + 𝑖𝑆

𝜕𝜓

𝜕𝜏
) |𝜓|2 + 𝜐𝜓 = 0.                                     (1) 

Here𝜓 is an electromagnetic wave envelope which is a function of 𝜉  (a scaled propagation 

distance) and 𝜏 (a co-moving time with the wave-group velocity). 𝑆  is the self-steepening 

coefficient or shock term, and 𝜐 stands for the magnetooptic effect.  

First, we recall some of the features of modulation instability whose essential space-time 

dynamics can be well described by breather solutions in the standard NLSE framework [17-19], 
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when 𝑆 = 𝜐 = 0 in Eq. (1).  First-order breather solutions, also known as solitons on finite 

background, can be simply written in the following form [20]:  

                                        𝜓(𝜉, 𝜏) = 𝑒𝑖𝜉 [1 +
2(1−2𝑎) cosh(𝑏𝜉)+𝑖𝑏𝑠𝑖𝑛(𝑏𝜉)

√2𝑎 cos(𝜔𝑡)−cosh(𝑏𝜉)
].                                       (2) 

 

The physical behavior of this solution is governed by a single parameter 𝑎 through function 

arguments 𝑏 = √8𝑎(1 − 2𝑎)  and 𝜔 = 2√1 − 2𝑎 . 𝜔  and  𝑏  have physical significance as the 

modulation frequency and exponential growth and decay rate. The space-time evolution of 

resulting localized wave structures strongly depends on the parameter 𝑎. For 0 < 𝑎 < 0.5, Eq. 

(2) describes the Akhmediev breather (AB) corresponding to a single growth and decay cycle of 

the initial weak time-periodic modulation of the plane. For 𝑎 = 0.5, the solution then describes 

the Peregrine breather (PB) corresponding to the low frequency limit of the AB and 

characterized by the localization in both temporal and longitudinal dimensions. While for 𝑎 >

0.5 , the solution describes the Kuznetsov-Ma breather (KMB), hyperbolic trigonometric 

functions in Eq. (2) become ordinary circular functions and vice-versa, thus the breather solution 

is now periodic in space and localized in time. Note that from Eq. (2) the Peregrine breather 

solution, or rogue-wave solution, can also be simplified into the following particular fractional 

form: 

                                                         𝜓(𝜉, 𝜏) = [1 −
4(1+2𝑖𝜉)

1+4𝜏2+4𝜉2]𝑒𝑖𝜉.                                              (3) 

 

We performed NLSE simulations with a noise-perturbed plane wave initial condition (see 

similar analysis in Ref. [19]) to show the noise-driven emergence of breather waves (i.e., 

nonlinear MI dynamics) in space and time. Figure 1 depicts the resulting temporal and spectral 

evolutions of the MI patterns spontaneously generated. In the time domain, see Fig. 1(a), we can 

firstly identify the breaking of the initial plane wave into a quasi-periodic pulse train around 

𝜉~13  that subsequently disappear. Further propagation indicates several growth and decay 

cycles of localized wave structures with more chaotic evolution, which involves their mutual 

interactions. Overall, these MI patterns originating from noise exhibit clear signatures of the 

breather solutions described above. For example, the first temporal peaks emerging at 𝜉~12.4 

are found for 70 < 𝜏 < 90  (see white dashed rectangle in the right panel), they exhibit a 

temporal period Δ𝜏~4.4, which corresponds to the MI frequency of maximum gain (i.e., 𝜔 =

2𝜋

Δ𝜏
~√2), the exponential growth of this frequency is clearly observed in the spectral domain at 
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𝜉~10 (see Fig. 1(b)). A cascade of MI gain bands is observed with further propagation; this 

spectral broadening is related to the emerging localized temporal structures. Their quasi-time-

periodic intensity profile can be well-fitted by using AB solution with governing parameter 

calculated from MI frequency of maximum gain (i.e., 𝑎 = 0.25), as shown in Fig. 2(b) without 

any adjusting parameter. Note that another series of AB appear, e.g., at 𝜉~12.9, as indicated in 

the left panel of Fig. 1(a) and in Fig.2 (a), whose corresponding governing parameter is 𝑎 = 0.2.   

 

    

Figure 1: (a) Density map showing the space-time evolution of noise-driven modulation 

instability of the plane wave in the NLSE framework. Left and right panels presents the 

detailed dynamics obtained in two regions of the full temporal window simulated, namely 

for (left) −90 < 𝜏 < −40 and (right) 50 < 𝜏 < 100. White dashed rectangles emphasize 

typical MI patterns related to AB, KMB and PB solutions of the NLSE. (b) Density map of 

the corresponding evolution of the power spectrum.  

 

By analyzing the full evolution map from Fig. 1(a), we can clearly identify other typical MI 

patterns fitted by ideal breather solutions, namely KMB and PB. In Fig.2 (c), we report the 

space-periodic profile of the KMB-like structure found near 𝜏~ − 75 in Fig.1(a). Its evolution 

along ξ-axis agrees with the analytical KMB solution based on 𝑎 = 0.7 . Finally, a doubly 

localized wave structure, located at 𝜏~ − 48  and 𝜉~18  in Fig.1 (a), is found to be nearly 

identified as a PB (see comparison in Fig. 2(d)).  Note that higher-order breather structures can 

also be generated through collision processes in these noise-induced MI patterns. It is also worth 

mentioning that after the first spectral broadening related to initial AB emergence, the power 

spectrum is characterized by a universal triangular shape in logarithmic scale (typical feature of 
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breather waves, see Ref. [18-22]) whose bandwidth oscillates in a chaotic fashion related to 

space-time interactions between localized wave structures. 

 

In the following, we will make use of the same selected random noise superimposed to the 

initial plane wave for all the numerical simulations. We will introduce both higher-order 

nonlinearity and magnetooptic effect to investigate their respective influence on the temporal and 

spectral dynamics of MI patterns.  

      

 

Figure 2: The dashed-blue line in (a-d) show the intensity profiles extracted from the region 

of chaotic MI field indicated in Fig. 1(a) for AB (two different series, one at −80 < 𝜏 <

−30, 𝜉 = 12.9 and another one at 70 < 𝜏 < 90, 𝜉 = 12.4), KMB (20 < 𝜉 < 35,  𝜏 = 79) 

and PB (localized at𝜉 = 19, 𝜏 = −49.7) respectively. These profiles are compared with 

corresponding breather solutions of the NLSE (red solid line).  

 

3. Impact of self-steepening term 

In the last section, we presented the temporal and spectral evolutions of the noise-induced MI 

patterns, whose nonlinear dynamics can be described by the standard NLSE and its breather 

solutions. However, when the time duration of these localized patterns are short enough (i.e., 

their spectrum large enough), the dependence of the group velocity upon the intensity of the 

pulse will cause a pulse to change shape. In a normal positive phase medium, the trailing edge of 

the pulse will steepen, whereas in a metamaterial this can result in the steepening of the leading 
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edge of the pulse [11]. In this case, the description of the dynamics requires an extended version 

of NLSE (see Eq. 1) including the self-steepening term (also known as the dispersion of the 

nonlinearity) that can be negative or positive. Self-steepening leads to an asymmetry in the 

spectral broadening processes of ultrashort pulses [23]. More particularly, the self-steepening 

coefficient involves very specific properties of the metamaterial and it is characterized by a 

strong frequency dependence which significantly impacts soliton dynamics. In this section, we 

will discuss the impact of self-steepening term which introduces some interesting features of the 

temporal-spectral dynamics of the MI patterns. We selected a self-steepening coefficient 𝑆 in line 

with that of previous studies [11, 16, 24-27]. As already known, a slight deviation from the ideal 

NLSE model will induce a deviation from the expected theoretical solutions and their space-time 

dynamics [16]. 

 

       
 

Figure 3: (a) Density map showing the temporal (a) and spectral (b) evolution of noise-

driven modulation instability of the plane wave in the extended NLSE framework including 

the self-steepening term ( 𝑆 = −0.24).  

 

      Taking the same initial condition of the noise-perturbed plane wave as in the Fig. 1, we 

performed the numerical simulation involving the self-steepening term with 𝑆 = −0.24. Figure 

3 (a-b) illustrates the temporal and spectral evolutions of the MI patterns and there are several 

key observations: 
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(i) In the temporal domain (see Fig. 3a), the MI patterns propagate with a characteristic 

group velocity 𝑣𝑔 which differs from the group velocity of the carrier wave. All the breathing 

structures then experience a “homogeneous shift” toward the negative direction with respect to 

the time axis. All the peaks of localized structures have similar peak powers to those in Fig. 1, 

but they are now aligned in a specific orientation and rotated counter clockwise. A direct piece of 

evidence is that the example of KMB-like trajectory remains linear in the space-time diagram 

(see white rectangle in Fig. 3a). Because of the non-integrability of the extended NLSE, rigorous 

analytical expression of 𝑣𝑔  for the KMB-like structure is a challenging task. However, one can 

easily estimate the change in group velocity from the deviation of KMB pattern: ∆𝑣𝑔 =

cot ϕ =
𝑑𝜏

𝑑𝜉
~ − 0.49. This kind of tilted breather structures was also observed in the case of the 

integrable Sasa-Satsuma or Hirota equation [24-25]. The resulting nonlinear wave then makes an 

angle with the propagation axis, which corresponds here to an effective group velocity 

proportional to the self-steepening coefficient. Simply by changing the sign of 𝑆, we can observe 

the opposite time-shift of the overall MI pattern. To understand the relation ∆𝑣𝑔 and S, we can 

recall that the Kerr effect leads to a change in the phase velocity of a pulse, whereas the self-

steepening alters the group-velocity of the pulse twice as strongly as the nonlinear phase shift 

alters the phase velocity (simply due to the time-derivative term in the extended NLSE) [23]. As 

we are here considering quasi-continuous waves, the impact of self-steepening on the group 

velocity can be then approximated by a constant value over time, which is twice the self-

steepening coefficient. This explains why the MI patterns experience this “homogeneous shift” 

with respect to the time axis, which can be seen as a cross-phase modulation effect induced by 

the continuous background. 

(ii) In the frequency domain (see Fig. 3b), the self-steepening terms induces a strong 

asymmetry of the power spectrum with respect to the carrier wave frequency as soon as the 

localized ultrashort structures are generated (𝜉 > 12). A long-tailed spectrum can be noticed in 

the positive frequency region. Such strong spectral asymmetries were already revealed in the 

framework of the integrable Sasa-Satsuma equation [26]. By using the dispersion relation, we 

can calculate the weight-average frequency of the power spectrum, thus giving another 

estimation of the evolution of group velocity [27-28]:                                                                                               

                                                           𝑣𝑔(𝜉) ≈ 𝛽2[𝜔(𝜉)̅̅ ̅̅ ̅̅ ̅ − 𝜔0]                                                     (5) 
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In this expression, ω0 is the angular frequency of the carrier wave, while 

                                                             𝜔(𝜉)̅̅ ̅̅ ̅̅ ̅ =
∫|𝜓̃(𝜔,𝜉)|

2
𝜔𝑑𝜔

∫|𝜓̃(𝜔,𝜉)|
2

𝑑𝜔
                                                        (6) 

is the weight-average angular frequency and |𝜓̃|
2
is the power spectrum (note that 𝜓̃(𝜔, 𝜉) =

∫ 𝜓(𝜉, 𝜏)𝑒−𝑖𝜔𝜏 𝑑𝜏). For a symmetric MI spectrum, the value of Δ𝑣𝑔 in the co-moving frame is 

null, which is confirmed by the numerical simulation without the presence of the self-steepening 

term (see Fig. 1).  When calculating Eqs. (5-6) with fully developed MI spectra reported in Fig. 

3(b), we find the evolution of Δ𝑣𝑔 shown in Fig. 4.  There are three regimes: (1) for 0 < 𝜉 < 6, 

the optical wave almost remains a plane wave for which the impact of the self-steepening term 

can be neglected. That is why in this stage, the initial spectrum is still symmetric; (2) for 6 <

𝜉 < 13, significant spectral broadening occurs related to the exponential growth of localized 

breather structures so that the self-steepening term plays an important role, thus resulting in the 

asymmetry of the spectrum and the strong variation of group velocity; (3) for 𝜉 > 13 , the 

spectral broadening saturates as well as the change of group velocity. In Fig. 4, we also compare 

the evolution of group velocity with the estimated value Δ𝑣𝑔 from the KMB pattern in Fig. 3a. 

We obtained a good agreement and the discrepancies result from the fact that the first approach 

only considers one breathing structure whereas the latter include the overall temporal profile. 

This also explains the noticeable oscillations of Δ𝑣𝑔 sensitive to transient space-time interactions. 

        (iii) Besides the overall asymmetry of MI spectra, we also reveal that a zero-intensity 

frequency is present in fully-developed MI spectra (similarly to Ref. [26]). This phenomenon can 

be simply related here to the fact that our extended NLSE (Eq. 1) still conserves the “number of 

photons” [29]:                                             

                                                       𝑁 = ∫
|𝜓̃(𝜔,𝜉)|

2

1−𝑆𝜔
𝑑𝜔 = 𝑐𝑠𝑡                                                        (7) 

Indeed we can predict the existence of a forbidden angular frequency 𝜔𝑏 = 1 𝑆⁄  since the 

denominator of eq. (7) should not be null. The calculated frequency 𝜔𝑏 = −4.167 fits well the 

positon of the spectral dip (dark blue) observed in our simulations (indicated by the dashed green 

line in Fig. 3b). 
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Figure 4: Evolution of calculated 𝑣𝑔 as a function of 𝜉. Dashed-red line corresponds to the 

characteristic group velocity from space-time KMB pattern. Three distinct regimes are 

denoted and described in the text.  

 

The above simulations show that localized structures in the form of NLSE breathers still 

persist in MI pattern when the self-steepening term is present. In Fig. 5, we underline that the 

impact of self-steepening on MI pattern and breathers mainly consists in a change of their group 

velocity. By performing the following change of variables: 𝜏′ = 𝜏0 + 𝜉𝑣𝑔0 , 𝜉′ = 𝜉  for the 

analytical expression (2) of KMB and AB, we are able to fully describe the intensity profiles of 

characteristic patterns selected in Fig. 3(a). Note that the application of Galilean transformation 

on Akhmediev breathers was also demonstrated in Ref. [30]. 

 

 

 

Figure 5: Recovery of the intensity profile of AB (a), KM (b) and PS (c) with the Galilean 

transformation 𝜏′ = 𝜏0 + 𝜉𝑣𝑔0, 𝜉′ = 𝜉. Solid red lines are the analytical solutions; Dashed 

blue lines are the numerical simulations.  
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4. Impact of magnetooptic effect 

In this section, we now focus on the impact of the magnetooptic effect on the evolution of the MI 

patterns. The contribution of magnetooptic effect is included in the extended NLSE (Eq. 1), 

where the expression of 𝜐 is written as [16]:   

                                             𝜐 (𝜏 +
𝜉

𝜐𝑚
) =

𝜐𝑚𝑎𝑥

2
[1-𝑡𝑎𝑛ℎ (

𝜏+(
𝜉

𝜐𝑚
)−𝑇𝜐

Δ𝑇𝜐
)]                                          (8) 

 

where 𝑇𝜐 is the delay of the magnetization after excitation by the electromagnetic input, and Δ𝑇𝜐 

is the normalized time over which the magnetization takes place, while 𝜐𝑚 is the group velocity 

and 𝜐𝑚𝑎𝑥 is the maximum value of the magnetization. Taking the same initial condition of the 

noise-perturbed plane wave as in the Fig. 1, we first perform the numerical simulation including 

the magnetooptic effect in Eq. (1) without the self-steepening term (i.e., with 𝑆 = 0 ). 

Noteworthy, according to Eq. (8), the presence of the magnetooptic influence is 𝜉-dependent 

because of the appearance of longitudinal parameter 𝜉 in the function of 𝜐. It means that for the 

current problem of precise wave manipulation in the metamaterial, it is possible to switch-on and 

switch-off the contribution of the magnetooptic effect, so that it can be accurately synchronized 

with the emergence of AB, KMB and PB from the initial noise. For example, with parameter 

chosen here (𝜐𝑚𝑎𝑥 = −17, 𝑇𝜐 = 200, 𝜐𝑚 = 0.03, Δ𝑇𝜐 = 10), the magnetooptic effect begins to 

play a role at 𝜉~(−𝜏0+𝑇𝜐)𝜐𝑚 = 6, where 𝜏0 is the ending point of the time window (to simplify, 

here we have 𝜏0 = 0). As shown in Fig. 6, at this location, in the temporal domain, AB, KMB 

and PB are to be excited, while in the spectral domain, at 𝜉~6, a slight discontinuity can be 

noticed. Here, the presence of the magnetooptic effect also leads to the generation of a small 

asymmetry in the spectrum and a characteristic change of group velocity of MI patterns in the 

time domain. In fact, this characteristic velocity depends on the direction and the amplitude of 

the external magnetic field. For the parameters used, the change in the average group velocity is 

opposite to the one induced by a negative self-steepening coefficient. There is an overall 

clockwise rotation of the MI pattern without cancelling the main features of breather structures. 

Now it becomes obvious to investigate the possibility to counteract the deformations of localized 

wave structures induced by the self-steepening term, by properly adding an external magnetic 

field over the metamaterial. 

 



 12 

 
 

Figure 6: Density map showing the temporal (left panel) and spectral (right panel) evolution 

of noise-driven modulation instability of the plane wave in the extended NLSE framework 

including the magnetooptic effect (𝜐𝑚𝑎𝑥 = −17). 

 

Next we perform the numerical simulation implementing both contributions of the self-

steepening term and the magnetooptic effects. As shown in Fig. 7, the impact of self-steepening 

effect and the magnetooptic effect can cancel each other, which means that the change of the 

characteristic group velocity turns to be nearly zero. However, it is worth mentioning that the 

fully-developed MI spectrum remains asymmetric with only some of the typical features 

previously described, mainly the tailed spectrum induced by self-steepening term in the positive 

frequency region. When looking at the intensity profiles of the characteristic breather-like waves, 

we can again fit them with the standard breather solutions without any transformation. 

Finally, we performed a series of simulations of the complete form of Eq. (1) in order to find 

the value of magnetic field required to minimize the effect of distinct values of self-steepening 

coefficient on MI patterns. Figure 8 provides the corresponding couples of values obtained for  

the magneticoptic coefficient 𝜐 and the self-steepening coefficient 𝑆.  In particular, we find a 

linear relation between these two parameters which can be approximately expressed as 𝜐 ≈

66.7 𝑆. 
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Figure 7: Density map showing the temporal (left panel) and spectral (right panel) evolution 

of noise-driven modulation instability of the plane wave in the extended NLSE framework 

including both the self-steepening (𝑆 = −0.24) and the magnetooptic (𝜐𝑚𝑎𝑥 = −17) effects. 

 

        
 

Figure 8: Dependence of the magnetooptic coefficient 𝜐 on the self-steepening coefficient S 

to cancel the impact of each other. Results obtained from numerical simulations of the 

complete form of Eq. (1) are blue circles with error bars (the red-solid line shows the 

corresponding linear fit). 

5. Discussion and conclusion 

To conclude, we investigated the spontaneous generation of MI patterns in a transparently 

double-negative metamaterial waveguide modeled by an appropriate extension of the NLSE. 

Typical breather dynamics are clearly observed and almost identical to AB, KMB, and PB 

solutions of the NLSE. The intrinsic properties of the metamaterial waveguide, e.g. self-

steepening and the magnetooptics effects, offer the potential to control the formation and 

subsequent spectral and temporal dynamics of these localized nonlinear waves. The presence of 
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the self-steepening effect induces a characteristic group velocity in the space-time evolution of 

MI patterns. Via the magnetooptic property, the impact of the self-steepening term can be 

cancelled by judiciously adding an external magnetic field. Our relevant numerical simulations 

reveal that there is a simple linear relation between the magnetooptic coefficient and the self-

steepening coefficient to compensate for the impact of each other. These results can be applied to 

the search for precise space-time trajectories of nonlinear waves in integrated waveguides. In 

general, all these extensions or perturbations of the NLSE then break the symmetry of the 

spectrum of breather waves, but without preventing their emergence or propagation, and we 

reveal particular signatures of the presence of self-steepening and magnetooptic perturbations. 

       To go beyond the present approach, in the framework of nonlinear dynamics governed by 

the generalized NLSE [23], higher order nonlinear effects, such as the spontaneous Raman 

scattering and higher order dispersion terms, may also break the spectrum symmetry, and induce 

more complex trajectories of the MI patterns in the time domain. These higher order effects will 

add a constant or even variable accelerations on the MI patterns, which means that their 

trajectories will be more or less “out of control” when simply applying the external magnetic 

field. In this case, in order to systematically manipulate their spectro-temporal dynamics, more 

advanced technics and investigations are a very challenging subject of future studies. To this end, 

it is worth mentioning recent theoretical efforts made to extend the existence of breather and 

rogue wave solutions towards more complex extensions of the NLSE [31-34]. 
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