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Abstract Classical Conditioning is a fundamental learning mechanism where the Ventral
Striatum is generally thought to be the source of inhibition to Ventral Tegmental Area (VTA)

Dopamine neurons when a reward is expected. However, recent evidences point to a new

candidate in VTA GABA encoding expectation for computing the reward prediction error in the VTA.

In this system-level computational model, the VTA GABA signal is hypothesised to be a combination

of magnitude and timing computed in the Peduncolopontine and Ventral Striatum respectively.

This dissociation enables the model to explain recent results wherein Ventral Striatum lesions

affected the temporal expectation of the reward but the magnitude of the reward was intact. This

model also exhibits other features in classical conditioning namely, progressively decreasing firing

for early rewards closer to the actual reward, twin peaks of VTA dopamine during training and

cancellation of US dopamine after training.

Introduction

The phasic firing activity ofmidbrain dopamine neurons is believed to encode a reward prediction

error, which can guide learning and serve as an incentive signal. In his famous experiment, Pavlov

observed that if food follows the ring of a bell, a dog comes to salivate after the bell is rung.

This process is called classical (or pavlovian) conditioning: an unconditioned response (salivation)

originally associated with an Unconditioned Stimulus (US, the food) becomes conditionally elicited
by a Conditioned Stimulus (CS, the bell ring). Schultz and collaborators examined the activity of
midbrain dopamine neurons in primates, during a classical conditioning task similar to Pavlov’s.

They observed that originally, midbrain dopamine neurons responded with a burst of spikes to

unexpected primary rewards (juice/water dripped in the mouth of thirsty primates), i.e. an US.

After the primates learned the association between a tone CS and the reward US, dopamine cells

responded to the reward-predicting CS. Moreover, these neurons stopped responding to US whose
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arrival was expected, being predicted by the CS. When cued rewards failed to be delivered, a large

percentage of dopamine neurons revealed a brief pause with respect to their background firing at

the moment of expected reward.

This predictive behavior of VTA Dopamine neurons was linked to the Temporal Difference Learning
algorithm in Reinforcement Learning (Sutton and Barto, 1998). The TD algorithm predicts a future
reward that occurs at a specific state ahead of time after a given number of trials. This prediction is

arrived through the computation of a reward prediction error (RPE) that enables learning the value

of each state. It is represented by the equation:

�t = rt + 
V̄t+1 − V̄t (1)

where rt is the reward (return) on time step t. Let V̄t be the correct prediction that is equal to the
discounted sum of all future rewards. The discounting is done by powers of factor of 
 such that
reward at distant time step is less important as compared to recent rewards.

The TD algorithm is powerful in its heuristic value, as it links the activation of dopamine cells

with classical conditioning. However, some properties of TD models are inconsistent with the

electrophysiological data, and it lacks the biological realism needed to explain the mechanisms

through which RPE-like activity emerges in dopamine cells. Most inconsistencies are concerned with

the way time is represented in the TD model. Whereas the TD error signal travels back in time from

US to CS when learning progresses, it has been reported in (Schultz et al., 1997) that US-related
activation of VTA slowly decreases while the CS-related one increases. Ramping dopamine activity

during the CS-US interval has been proposed to reflect back-propagating error signals averaged

over trials (Niv et al., 2005) but this ramping can be observed in individual trials and is actually
related to reward uncertainty (Fiorillo et al., 2003)(Fiorillo et al., 2005). More importantly, when
US is delivered earlier than predicted, VTA dopaminergic neurons are activated at the actual time

of the US but not at the usual time of reward (Hollerman and Schultz, 1998), contrarily to what is
predicted by TD. Critically, when striatum is lesioned, experiments (Takahashi et al., 2016) show
that VTA dopaminergic neurons signal a RPE when reward magnitude changes, but not when time

of the reward is modified. This suggests that learning about reward timing is computationally

and anatomically separated from learning about reward magnitude, i.e. a completely different

implementation of reinforcement learning than is usually considered (Joel et al., 2002).
Here we sought a system-level account of how the CS-US interval duration and the value of

the reward are separately learned, and how these two features are combined to give rise to

dopaminergic phasic activity. In particular, we considered two components of the meso-limbic

loops that have been overlooked in previous models: VTA GABA cells and neurons from the

Pedunculopontine Nucleus (PPN). We propose that VTA GABA neurons provide inhibitory drive onto

VTA DA neurons (Eshel et al., 2015) , display persistent firing during the CS-US interval (Cohen et al.,
2012) and are necessary to compute the RPE in DA cells (Eshel et al., 2015). However, here we only
include positive reward predictions and exclude omissions as VTA GABA neurons have been found to

be too weak for reducing baseline dopamine firing (Eshel et al., 2015) and we hypothesize that they
are being handled by the Ventral Pallidum and the Rostromedial Tegmental Nucleus (RMTg) pathway.

Neurons from the PPN project to both VTA DA and GABA neurons and have been found necessary

for appetitive conditioning (Yau et al., 2016). PPN neurons are classically believed to signal the
delivery of actual reward (Vitay and Hamker, 2014). However, during conditioning, two types of
response are recorded from neurons from the PPN : neurons responding to the actual reward

magnitude, and a persistent neuronal firing during the CS-US interval, reflecting the prediction or

expected reward magnitude (Okada and Kobayashi, 2009)(Okada and Kobayashi, 2013). Here we
show that a system-level computational model can account for these yet-unexplained physiological

and lesion data. We propose that the Ventral Striatum learns the reward timing and the Amygdala

the reward magnitude, which is then transferred to the PPN. Expected reward timing andmagnitude

are subsequently combined at the level of VTA GABA cells to compute the expectation term needed
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by VTA DA neurons to generate a prediction error. We furthermore provide testable predictions for

future experiments, on the role of PPN and VTA GABA in classical conditioning.

Results
We built a system-level network in which reward prediction error (RPE) emerges during learning,

from the interaction of the neruronal ensembles repersenting RPE computation. To illustrate how

RPE is computed in the network, we subjected it to in silico experimental scenarios similar to a

conditioning task. This analogue of classical conditioning consists in the repeated pairing of a CS

with the US, separated by a fixed interval duration. The in silico experiments below examine how the

value (magnitude) of the US reward and the duration of the CS-US interval are learned separately,

and combined by VTA GABA cells. In turn, VTA GABA neurons provide the expectation term used to

cancel the excitation of dopamine cells by the US, at the time of the expected reward (Cohen et al.,
2012)(Eshel et al., 2015). Finally, we show how this new model provides a better description of
experimental data that have been left unexplained yet, i.e. how dopamine cells respond to rewards

delivered earlier than expected (Fiorillo et al., 2008), and how value and timing are dissociated by
VS lesions (Takahashi et al., 2016).
Model Architecture
The system-level computational model attempts to explain how the dopamine reward prediction

error is computed in appetitive conditioning in the VTA through understanding the roles of VTA GABA

and Peduncolopontine (PPN) neurons. The model is shown in Figure 1. The model focuses on the

computation inside the VTA carried out by two populations viz., the VTA DA and VTA GABA neurons.

Lateral Hypothalamus (LH) projects to PPN RD and VS and these in turn project to VTA DA and

VTA GABA respectively. When reward is delivered, it is reported to fire the Lateral Hypothalamus

(LH) and activates the LH → PPN RD (Reward delivery) → VTA Dopamine pathway resulting in

US dopamine firing prior to any sort of learning (Semba and Fibiger, 1992; Lokwan et al., 1999).
Basolateral Amygdala (BLA) learns the magnitude of the US through the projections from VTA

DA to BLA, which signal a reward prediction error that modulates synaptic plasticity. A pathway

from LH to BLA learns that BLA firing for CS has the same amplitude as the US-induced firing

(Sah et al., 2003). The immediate firing in response to the CS occurs through the BLA recognizing
the cue encoded by the Infero-temporal cortex (IT), with BLA activating the VTA DA through the

BLA→ CE→ PPN RD→ VTA DA pathway. The CS has been assumed to be encoded through the IT

in this model though there could be other candidates and this connectivity is not central to the

functioning of the model. The Central Nucleus of the Amygala (CE) has excitatory projections on

PPN FT(Fixation Target) (Okada and Kobayashi, 2013) (Kobayashi and Okada, 2007) which displays
persistent activity unless strongly inhibited. The projections from PPN to VTA are functional in

nature in the model with empirical evidences lacking so far. The LH also projects to the VS, which

is also modulated by VTA DA neurons. Finally, excitatory projections from PPN FT and inhibitory

projections from VS neurons to VTA GABA enable the final reward cancellation of VTA DA observed

in electro-physiological experiments.

Control Scenario
In the following, we show how a reward prediction error emerges in VTA Dopamine cells with

learning, as a consequence of network dynamics and plasticity.

• Initial Trial

The arrival of an unexpected reward induces a firing in the LH neurons. This LH firing

subsequently activates VTA Dopamine neurons, through the PPN RD neurons (Figure 2 B top

panel Trial1, Figure 2 C top panel Trial 1). Hence, the model reproduces that VTA Dopamine

neurons fire upon the delivery of an unexpected reward. No activity in BLA and Ventral
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Figure 1. Model diagram illustrating the neuronal structures and their connections involved in Reward
Prediction Error (RPE) computation. Pointed arrows represent excitatory connections, while rounded arrows

represent inhibitory projections. Dashed lines represent learnable connections, while solid lines represent fixed

connections in the model. The red color indicates the VTA population and the yellow color indicates the PPN

population.The blue and green color indicates the source of magnitude and temporal expectation respectively.

Ventral Tegmental Area has Dopamine (DA) and GABA populations which play a central role in computing RPE.

This RPE is transmitted to Basolateral Amydala (BLA) and the Ventral Striatum (VS) where the modulatory

connections undergo change depending on this signal. Both the VTA structures receive inputs from distinct

Peduncolopontine (PPN) neural populations. The PPN Reward Delivery (RD) neurons deliver reward to VTA DA

neurons from the Lateral Hypothalamus (LH) which receives the unconditioned stimulus (US). The PPN Fixation

target (FT) neurons receive their projections from the Central Nucleus (CE) of the Amygdala and these PPN

neurons along with Ventral Striatum (VS) project to VTA GABA forming the inhibitory signal that cancels the VTA

DA upon reward delivery. The BLA is regarded to learn the association between unconditioned stimulus (US)

and the conditioned stimulus (CS) and produces the anticipatory firing in VTA DA through the BLA->CE->PPN

RD->VTA DA pathway. The VS is posited to learn the timing of the interval and it has inhibitory projections on

VTA GABA.

Striatum (VS) and VTA GABA (Figure 2 B bottom panel Trial1) is observed at this stage of

learning. Indeed, Basolateral Amygdala (BLA) has not yet learned to associate the magnitude

of the CS with the US, and the Ventral Striatum (VS) the timing of the CS-US interval duration.

Hence, there is no expectation at the arrival of the CS.

• Partial Conditioning

The synaptic weights between IT and BLA are updated after each rewarding trial. Consequently,

after a few trials (7 in our simulations), the BLA starts responding to the CS stimulus. This

progressive learning in the BLA generates firing in VTA DA (Figure 2 B top panel) through

PPN RD (Figure 2 C top panel) in response to the arrival of the CS, corresponding to a partial

prediction of reward. BLA activity also generates a partial expectation through tonic firing

in PPN FT (Figure 2 C bottom panel Trial 7). Hence, a partial cancellation of VTA dopamine

neurons happens at this stage. At this stage, the time interval has been completely learned,

contrary to the learning of the US magnitude.

This corresponds to the activity of the Ventral Striatum reaching its minimum at the exact

moment of reward. Hence, the VS does not exert any inhibition at the end of the interval,

which results in the inhibition of VTA DA neurons at the expected time of the US. However,

as the US magnitude is not fully learned yet, the activity of PPN FT to VTA GABA pathway

only results in partial cancellation of VTA DA activity upon US delivery. This is consistent

with experimental results on Partial conditioning (Pan et al., 2005), and designed as a partial
expectation in the TD framework. (Figure 2 B bottom panel Trial 7). This partial expectation

consists in a twin peak of VTA firing, at the respective times of the CS and the US.

• Complete Reward Cancellation

The final state of the circuit, after 16 CS-US pairings, is given in Figure 2 A. The magnitude of

expectation originates from the CS firing in the Central Amygdala (CE) and is maintained in the

PPN FT through a self-sustaining mechanism (Okada and Kobayashi, 2013) (Kobayashi and
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Okada, 2007). At the end of learning, the BLA neurons have reached an asymptote in their
firing, which encodes for reward magnitude. Hence, PPN FT neurons display maximum tonic

activity after the presentation of the CS. In parallel, as in partial conditioning, the presentation

of the CS, which fires the IT and thereby the Orbitofrontal Cortex (OFC) (Carmichael and Price,
1995), activates the VS that encodes the interval timing. It acts similar to a negative integrator
and progressively lowers the inhibition that VS exerts on PPN FT, to reach zero inhibition at

the expected time of the reward. Both signals are combined by VTA GABA,the activity of which

peaks at the time of the reward (Figure 2 B bottom panel Trial 16), cancelling VTA dopamine,

which no longer shows firing at the time of the US when reward arrives through the LH (Figure

2 B top panel Trial 16).

The magnitude of expectation originates from the CS firing in the Central Amygdala (CE)

and maintained in the PPN FT through a self sustaining mechanism (Okada and Kobayashi,
2013) (Kobayashi and Okada, 2007). The GABA firing in the VTA is reflective of this (Yau et al.,
2016) and the PPN FT integrates the magnitude from the Central Amygdala (CE) and timing
information from the VS to achieve the ramping signal that encodes both time and magnitude

of the reward delivery.

Variability in Magnitude and Time
1. Variability in Timing

When a reward is delivered earlier than expected (i.e. with a shorter delay than the CS-US

interval that has been learned), US firing is observed in VTA dopamine neurons. More precisely,

in this case of earlier-than-expected US reward, VTA dopamine neurons fire less than the

initial (before learning) firing observed at US delivery. This is consistent with the US being

expected, albeit not at this precise timing. An interpretation would be that partial expectations

are generated during the CS-US interval, hence the reward prediction decreases with time

until the expected timing of US delivery. In our model, we observed that the earlier the

reward was delivered, the higher was the VTA DA firing (Figure 3 B). VTA DA firing in Figure 3

A (middle left panel) shows a reward delivered before the half-way-point (at the 100tℎ time

step) evoking a dopamine firing, but less than the firing initially induced by an unpredicted

reward. By contrast, Figure 3 B (middle left panel) shows an early reward delivered after the

half-way-mark (at the 300tℎ time step), which induces lesser firing in VTA DA cells. The model

is consistent with physiological data in primates, where earlier-than-expected rewards evokes

progressively less firing as the reward delivery time increases (Fiorillo et al., 2008). Our model
provides a mechanistic explanation for this data.

2. Variability in Magnitude

VTA Dopamine firing reflects the difference between the actual reward and the expected

reward. For instance, VTA Dopamine neurons fire on US arrival if a reward is larger than

expected (Figure 4 C middle panel). This corresponds to a positive reward prediction error,

in accordance with physiological data. The subtractive nature of inhibition (Eshel et al.,
2015) encodes the difference of magnitude between the actual magnitude of reward and the
expected magnitude of reward ( Figure 4C middle panel).

Dissociation of time and magnitude prediction errors following VS Lesions
1. VS lesion affects time prediction error

When an experimental lesion is made in the VS from rats (Takahashi et al., 2016) , earlier-than-
expected US does not trigger firing in VTA Dopamine cells. Accordingly, our model reproduces

this lack of timing prediction error, as the virtual lesion of the VS in the model abolishes the

VTA Dopamine response to earlier-than-expected US. Moreover, VTA GABA cells, instead of

displaying a ramping signal, provide a constant tonic inhibition, similar to PPN FT, throughout

the duration of the trial (Figure 4 A middle right panel). Indeed, the model posits that lack

of dopamine firing for the VS-lesioned scenario compared to the control scenario is due
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to the higher inhibition from the VTA GABA neurons (Figure 4 A middle right panel). The

VS inhibitory signal acts as a "when" signal providing VTA GABA neurons with information

enabling computation of reward expectation at a given point in time. Due to this information

being lost because of lesion, VTA GABA neurons do not have a ramping signal that peaks at

the right moment. Instead, they have a constant inhibition throughout the interval.

2. VS lesion does not alter magnitude prediction error

The rewards with higher magnitude induce firing in VTA DA cells even if the VS is lesioned. A

reward that is double the magnitude triggers the same effect on US VTA Dopamine as in the

control scenario (Figure 4 B middle left panel).

Since the VS encodes only temporal information, its lesion does not affect the magnitude

encoding of the stimuli. This results in VTA DA firing showing the same subtractive effect as in

the control scenario(Figure 4 B middle left panel). This is due to the VTA GABA encoding the

magnitude from the BLA through the PPN FT neurons. A lack of VTA GABA ramping does not

prevent the VTA DA from having the magnitude encoded within its population, and provides

the same RPE at usual reward time. This behavior of VTA DA neurons in the case of a VS lesion

with larger magnitude is also in accordance with experimental results (Takahashi et al., 2016).
A B

C

D

Figure 2. (A) The figure represents the firing of the neuronal populations after training following the same color conventions
as the model architecture diagram. IT and LH indicate the stimulus and the reward respectively. PPN RD represent the phasic

signals received from BLA and the LH at stimulus onset and reward delivery. VTA DA neurons show firing only at the arrival of

the CS and VTA GABA neurons have a ramping expectation signal that fully cancels the VTA DA signal at reward delivery. BLA

and VS have encoded magnitude and timing of the reward respectively. (B) This figure portrays the evolution of the VTA and

PPN sub-populations throughout the duration of trials. VTA DA shows firing only at the reward delivery during initial trials while

VTA GABA shows no firing due to absence of any expectation at this stage. At Trial 7, VTA DA shows twin peaks reflecting both a

partial encoding at stimulus arrival and partial cancellation of reward signal. VTA GABA on the other hand has a ramping nature

at the precise time of the arrival of the reward indicating encoding of timing and partial encoding of expectation. The final trial

diagram shows the complete cancellation of the VTA DA signal at reward delivery and a complete encoding of stimulus at the CS

arrival. Correspondingly, VTA GABA has a larger expectation signal that ramps that has completely encoded the magnitude of

the reward signal. (C) shows the evolution of the PPN sub-populations during the sequence of trials with PPN RD signalling

reward delivery from LH to VTA DA during the initial trials and PPN FT not showing any sign of expectation at the same time. In

the middle of training, PPN RD reflects a partial firing for stimulus onset and the same reward signal firing as during the initial

trials. PPN FT also reflects this partial firing with a tonic nature of firing that passes onto VTA GABA. During the final trial stages,

PPN RD firing peaks for its stimulus arrival firing while a bigger tonic firing signal is observed for PPN FT. (D) portrays the

evolution of VTA DA CS and US signals and that of VTA GABA. Both VTA GABA and VTA DA CS show increased firing across the

trials while VTA DA US progressively reduces ultimately to the background firing rate of VTA DA. All the figures are averaged for

10 runs.

Discussion
Calculation of RPE in the model
The model aims to provide an alternative view of how RPE is calculated in the brain. Looking at the

model with a functional lens, the VTA GABA signal of the model looks very much like the expectation

signal in Temporal Difference (TD) Learning but differs from TD in how this final expectation is
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A B C

Figure 3. These figures indicate the early firing scenarios on VTA and PPN sub-populations. LH indicates the reward delivered
earlier than usual and IT the stimulus. (A) denotes the arrival of the reward at 100tℎ time step after training where VTA DA shows

some firing compared to no firing after training when reward is delivered at the usual time. (B) This firing for an earlier reward is

still larger than a later arrival of early reward at 300 time steps where VTA DA barely shows any firing. (C) indicates the

progressively later "early" rewards fire less as early reward delivery times get closer to usual reward arrival times in accordance

with data on (Fiorillo et al., 2008)
A B C

Figure 4. These figures indicate how timing information is lost but magnitude information of the reward is maintained on VTA
sub-populations. LH indicates the reward delivered earlier than usual and IT the stimulus. During the VS lesion scenario, VTA

GABA is no longer able to integrate the timing information coming from VS and just reflects the projection from PPN FT neurons.

Hence, early rewards are treated as any other reward that comes at the usual time, reflecting no firing (left panel). But when the

reward is of a higher magnitude (middle panel), it is able to indicate the prediction error just as in the control scenario (right

panel) where VS is not lesioned and VTA GABA integrates both magnitude and timing.

calculated. Unlike TD, the expectation signal is a resultant computation derived from calculation of

time and calculation of magnitude. The calculation of time involves learning a single parameter,

the slope, that learns an interval between two points (here the CS and the US) and calculation

of magnitude involves learning the amplitude of the US (encoded as persistent firing). The final

expectation calculated in VTA GABA of the model is the interaction between a slope like signal of

time and the persistent amplitude of magnitude giving rise to a TD like expectation signal.

Role of Timing in conditioning
The importance of CS-US interval timing is one of the key postulates of the proposed theory

underlying the model. In this model, the interval timing mechanism uses the dopamine signal

since the onset of the CS to learn the underlying temporal distribution to predict the arrival of the

reward, however it needn’t be the case. Learning the interval time separating the CS and the reward

could happen without dopamine with a phenomenon called sensory-preconditioning (Sadacca
et al., 2016). Our model predicts that since time and magnitude are separate signals in the brain,
the learning of time precedes the learning of magnitude for reward prediction error to take place.

Interval timing learning in animals has been observed to happen in very few trials and sometimes

even one. The model posits that interval timing learning is an integral part of reward prediction

error computation in appetitive learning and the learning of timing happens before the magnitude

of the stimulus so as to construct an inhibitory signal that has a ramping nature before it ramps to

its minimum amplitude.

The timing mechanism used in the model is very simplistic, reflecting the learning of a single

parameter to get the final slope of inhibition. Here, the ability of the model to learn the timing

arises from learning the slope of the interval timing function using a geometric learning rule (refer
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to Ventral Striatum and OFC section in Methods for more details) and this learning rule is robust

for different intervals (Rivest and Bengio, 2011). The slope is modelled as a negative ramp in
the striatum acting as disinhibition on the VTA GABA neurons. Emmons et al. (2017) report such
ramping activities in the striatum for the control of temporal processing. It is possible that more

complex timing mechanisms are incorporated in the striatum to accommodate stochasticity in the

temporal interval.

This is consistent with the original Temporal Difference Reinforcement Learning (TDRL) represen-

tation of dopamine where the cue is tracked since the onset of its presentation, state by state until

reward is delivered as in the complete serial compound (CSC) stimulus representation (Schultz et al.,
1997). Here too, the state is tracked at each time point using the timing signal. However, unlike the
TD model , which is model-free and tracks value across states, this model learns a separate value

signal for state and reward and state representation are computed separately unlike TD-Learning.

This dissociation enables the model to learn changes in magnitude independent of the state and

learn the state independent of the magnitude.

Dual pathway model
The dual pathway models of classical conditioning posit that the mechanism with which the CS firing

occurs at the onset of a trained cue is dissociated from the expectation that inhibits the reward

signal at the time of the reward. Our model too, largely follows the same pattern but with some

deviations (O’reilly et al., 2007). This model replicates the observation in Fiorillo et al. (2008) about
early rewards delivered at different time points exhibiting different firing. The interpretation of

this model is that, this dopamine error is indicating a mismatch in state rather than a mismatch in

magnitude. Since magnitude is a separate signal and does not require updating, the early reward

firing is indicative of a violation of a belief of the state the animal is in. This prediction error is

predicted to happen between the striatal inhibition and VTA GABA. This inhibition is also predicted

to play a role in the lesion experiments done by Takahashi et al. (2016) where VS lesions hamper
the ability of the animal in tracking state. This lesion inturn has an effect on VTA GABA which is no

longer inhibited and only serves the magnitude component of the reward prediction error. Hence,

early reward prediction errors no longer happen, because the animal does not recognize state

prediction errors and expects the reward to happen all the time. It was also found in the study that

VTA non dopamine neurons have a higher firing after the VS lesions consistent with our model and

our model predicts, VTA GABA to have higher firing when VS is lesioned. This model hypothesis a

continuous ramping signal that is active throughout the duration of the CS and the US, peaking at

the time of the US and speculates that this inhibition signal and the CS firing could have the same

source.

Redundancy in RPE signals
Though the model architecture shows a circuit-wise strict delineation between expected magnitude

and expected timing, there could be a degree of mixing between these signals. Indeed, on a

general note, we relied on the assumption that each structure constitutes a module that computes

a variable (though not necessarily a term of the classical RPE equation). However, the way RPE

is computed in dopamine cells seems more mixed (Tian et al., 2016). The multiple areas that
send inputs to dopamine neurons do not encode “pure” variables (reward, expectation etc. . . )

needed to compute to the RPE, but rather a mixture of these variables (and/or mixed with a RPE

signal) suggesting some redundancy in RPE computation (Hunt and Hayden, 2017). At face value,
this would suggest that instead of VS purely encoding expected timing and PPN purely encoding

expected magnitude, these circuits would encode heterogeneous signals of both reward and timing

expectations. However, more neurons in the LH seem to encode reward and not expectations (as in

our model), while striatal cells encode more expectations and less reward (as in our model) (Tian
et al., 2016). Hence, the functional separation between timing and magnitude might not be as
stringent as in our model, but there would still exist a strong bias in VS and PPN signals towards
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encoding timing and magnitude, respectively.

Heterogeneity of PPN
Though much of PPN’s anatomical and chemical characteristics are unknown, studies have shown

functional differences between populations inside PPN. Specific populations within PPN exist which

fire phasically for rewards and others which have sustained firing from reward prediction to delivery

of reward, and the activation sustaining till the delivery of the reward even if the arrival of the

reward is delayed (Okada and Kobayashi, 2009). Moreover these neurons seem to encode amount
of reward firing higher for rewards with larger magnitude (Okada and Kobayashi, 2009) (Hong
and Hikosaka, 2014) portraying a graded firing signal capable of differentiating reward amounts
consistent with this models characteristics. Studies have also pointed out a growing role for PPN

projections to VTA non-dopamine neurons as necessary for appetitive pavlovian conditioning (Yau
et al., 2016) and activation of PPN glutamate neurons to be reinforcing (Yoo et al., 2017). The
hypothesis of this model is that a subset of PPN neurons (PPN FT) convey reward magnitude

information to the VTA GABA neurons and any optogenetic silencing of these neurons can interfere

with the computation of reward prediction error, though isolating these neurons could prove

difficult owing the structures heterogeneity.

VTA GABA theory of computing RPE in classical conditioning
Previous studies have implicated the striatum (Usuda et al., 1998) as the source of the inhibitory
signal cancelling the dopamine. But, recent projection-specific activation by optogenetic studies

among others have shown that the inhibition from striatum has weak to no inhibitory effects on

DA neurons when stimulating direct striatal inputs on DA neurons in the VTA (Keiflin and Janak,
2015) (Bocklisch et al., 2013) (Chuhma et al., 2011)(Xia et al., 2011)(Klein-Flügge et al., 2011). There
have been a number of recent results, suggesting an alternate pathway within VTA which might

be responsible for this inhibitory signal. Moreover, optogenetic studies done on VTA (Cohen et al.,
2012)(Eshel et al., 2016) have pointed out not only does the VTA GABA neurons exert enough
inhibition to cancel VTA DA neurons but the inhibition is also subtractive in nature and hence

suitable for computation of reward prediction error (Eshel et al., 2015). This model hypothesises
that the ramping nature of expectation which encodes both magnitude of the stimulus and time of

arrival is encoded in the VTA GABA which acts as the site of integration between these two different

dimensions of the reward. One possible explanation of this distributed nature of reward prediction

error could be that this is what allows for rapid recomputation of values (either of time ormagnitude)

and allows the animal to exhibit and sometimes fast, adaptive behavior. Parallels could be drawn

with the literature of reinforcement learning that the animals are not purely engaged in model-free

reinforcement learning and that the dopamine signal itself could be not just performing reward

prediction errors and differences in timing could elicit an error from the dopamine system for state

prediction errors. For example, dopamine firing for early reward delivery could be interpreted as

a state prediction error where the animals has to reevaluate the time of the reward rather than

the magnitude of the reward. The precise interpretation of the dopamine prediction error could

be handled by the upstream areas to determine what computations are to be done to reflect a

changed scenario. Here we did not consider a role for VTA GABA in reward omission nor in the

extinction of conditioning. Indeed, VTA GABA firing does not seem to code for the absence of reward

(Cohen et al., 2012). Instead, there may be an asymmetrical computation for omissions compared
to reward, with the former likely driven by the Lateral Habenula, thus forming a separate circuit

(Baker et al., 2016).
This model examines the role of VTA GABA in computing the reward prediction error along with

a few other substrates based on some of the results provided by Takahashi et al. (2016). This paper
adopts a semi-markov approach to explain the findings while the model given here attempts to

provide a system level model of how the underlying neuronal substrates might act. There are a few

other behaviors that is observed in the model. The authors note that removing VS does not remove
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expectation and the animal in effect expects reward all the time, this could be the VTA GABA signal

we observe in the model when VS is lesioned. VTA GABA loses its ramping functionality and has a

flat tonic firing pattern carrying on its earlier peak expectation thoughout the duration of the trial,

The authors also note that "non-dopaminergic" neurons show significantly higher baseline firing

rate when VS is lesion. Our model hypothesises that it is indeed the VTA GABA neurons that are

now exhibiting a higher flat expectation due to the VS being lesioned. Thus, the model proposes

that it is the VS input to VTA GABA that gives its expectation signal the temporal specificity that the

authors mention in their paper.

Methods and Materials
Evaluation of the model
The paradigm used to evaluate the model is a simple CS-US associative learning task and also

considers how the expectation cancels out the dopamine peak at the time of the reward. The trial

duration is 500 time steps with each time step corresponding to 1ms. The stimulus is presented

at the 10tℎ time step and is kept switched on till the arrival of the reward at the 400tℎ time step

(400ms). The reward and the stimulus have by default a magnitude of 1. The number of trials for

the entire conditioning to happen was set at 14 trials (i.e. trials required for the learning algorithm

to converge).

Model Description
Computational principles

The system-level model is composed of mean-field description of neuronal populations representing

distinct, interconnected brain structures. Population dynamics is described by its average firing

frequency across time U (t), which is taken as the positive part of a membrane potential V (t),
represented by the following equations:

�.
dV (t)
dt

= (−V (t) + gexc(t) − ginℎ(t) + B + �(t)) (2)

U (t) = (V (t))+ (3)

Here � is the time constant of the cell, B is the baseline firing rate and �(t) is the additive noise
term chosen randomly at each time step from a uniform distribution between −0.01 and 0.01.
The incoming afferent synaptic currents gexc and ginℎ represent the weighted sum of excitatory
and inhibitory firing rates, respectively, the weight representing the synaptic weights between the

populations.

Some of the neuronal populations extract a short-term phasic activity from their incoming

inputs, by removing out the tonic component of the input. This is done by the following equations:

�.
dx(t)
dt

= (−x(t) + x(t)) (4)

��,k(x(t)) = (x(t) − k.x(t))+ (5)

Here x(t) integrates the incoming input x(t) with a time constant � and thus represents the tonic
component of the input, while ��,k(x(t)) represents the positive part of the difference between
x(t) and x(t). Hence, The constant k controls how much of the original input is kept, a k value
of 0 indicates the entire synaptic input is to be preserved and a k value of 1 outputs the phasic
component only, i.e. the entire tonic component has been entirely removed.
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A Bound function is used when the firing of a population is described with an upper and a lower

limit in certain populations.

 (x) =

⎧

⎪

⎨

⎪

⎩

0 if x < 0
x if 0 < x < 1
1 if x > 1

(6)

A threshold function is also used in some populations and it outputs 1 when the input exceeds

a threshold Γ, 0 otherwise:

ΔΓ(x) =

{

0 if x < Γ
1 otherwise

(7)

The learning rules defined in the model are based on the Hebbian learning rule and a DA

modulated learning rule in the case of BLA like the multiplicative three factor learning rule. The

evolution over time of the weightw(t) of a synapse between the neuronal population pre (presynaptic
neurons) and the neuronal population post (postsynaptic neurons) is governed by:

dw(t)
dt

= (�.Upre(t).Upost(t)) (8)

where w is the weight term, � the learning rate, Upre(t) and Upre(t) are indicating the firing rates of
the presynaptic and postsynaptic neuronal populations, respectively.

Population definitions
Representations of inputs

The sensory inputs of the CS and the reward input of the US are encoded by the inferotemporal

cortex (IT) and the lateral hypothalamus (LH), respectively, simply as square wave signals:

U (t) = I(t)+ (9)

where I(t) is an external input resulting either from a stimulus or from a reward.

Basolateral Amygdala

The BLA receives inputs about the CS from the IT, the US from the LH, as well as VTA DA output. This

allows the BLA to learn to associate the CS with the US, thus providing a magnitude expectation.

The equation below is the same equation as in Equation 2 without the inhibitory component and

with the presence of a tonic to phasic conversion.

�.
dV (t)
dt

= (−V (t) + ��exc,k(gexc(t)) + �(t)) (10)

U (t) = (V (t))+

with � = 10ms, �exc = 10ms, k= 1.
The CS is learned by updating the synaptic weights between IT and BLA and the learning rule is

given by:

dw(t)
dt

= D.�.Upre(t).(Umag − Upost(t))+ (11)

Here D indicates the presence of the US corresponding to the dopaminergic neuronal modulation
from the VTA, � is the learning rate equal to 0.003, Umag is the magnitude of LH firing, Upre and Upost
are the firing rates of presynaptic and postsynpatic neurons, respectively.
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Central Amygdala

The CE is the output nuclei of the amygdala and it projects to both the PPN nuclei, relaying

information from the BLA. The CE projects to the PPN RD neurons that convey US and CS firing to

the VTA dopamine neurons and PPN FT neurons that convey reward expectation.

The equations for the membrane potential and the firing rate are the same as Equation 10 and

Equation 3, respectively, with � = 20ms, �exc = 5ms, k = 1.

Peduncolopontine nucleus

The PPN has two distinct populations in this model for reward and expectation. The PPN is a

heterogeneous structure both in terms of neuronal populations and of responses during classical

conditioning (Okada and Kobayashi, 2009). Hence, we modeled two distinct subpopulations reflect-
ing the two major classes of responses found experimentally: FT (Fixation Target) population, which

activates briefly upon CS or US presentation, and RD (Reward Delivery) population, which display

sustained activity during the CS-US interval.

PPN RD

The PPN Reward Delivery neurons signal the occurrence of the CS and the US from the CE and the

LH, respectively. It also contains a sub-population of inhibitory neurons that inhibits the PPN FT

neurons.

The equations for the membrane potential and the firing rate are the same as Equation 10 and

Equation 3 respectively, with � = 5ms, �exc = 5ms, k = 1.

PPN FT

The PPN FT neurons encode the magnitude expectation delivered to the VTA GABA neurons. The

PPN FT neurons receive information from the CE and are inhibited by the PPN RD neurons. They

serve to maintain a constant magnitude that is conveyed to the VTA GABA neurons for final reward

prediction error computation. The equations for the membrane potential and the firing rate are

the same as Equation 2 without baseline firing and Equation 3 respectively with � = 5ms.

Ventral Striatum and OFC

It has long been thought that the Ventral Striatum (VS) is responsible for the reward prediction term

in RPE calculation. In our model, the VS encodes the duration of the CS-US interval only. The VS is

composed of inhibitory cells, and signals the timing of expected reward to VTA GABA cells through

a decrease in activity. The OFC (Orbitofrontal Cortex) relays the presence of the US from the IT

to the VS. Then, a simplified timing model comprising a negative integrator similar to the timing

algorithm in Rivest and Bengio (2011) signals the interval duration through a slowly decreasing
activity until the expected timing of the US. To do so, the integrator here has an amplitude of 1 at

the beginning of the trial and after weight updating, decreases its firing to 0 at the precise time of

reward delivery. In this framework, learning the CS-US interval consists in adjusting the slope of the

slowly-decreasing activity.

Mechanism of timing

The timing mechanism in the VS transforms a tonic excitatory input from the OFC (which is the

same as the signal from IT, cf fig 2.A) and transforms it into a decreasing sustained activity, whose

slope depends upon the weights between OFC and VS.

�.
dV (t)
dt

= (gexc(t)) − V (t).��mod(gmod(t))) + �(t)) (12)
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U (t) = (ΔΓ(gexc(t) − ��mod(gmod(t))) −  (V (t))+ (13)

with � = 1ms, �mod = 5ms and gmod(t) signals reward delivery from VTA dopamine to VS or LH to
VS with Γ threshold function reaching 1 for any value greater than 0.  () is a bounded function.

Figure 5. The slope is decreased at every iteration until it exceeds the duration (the red line) enabling exact correction of the
weight encoding the duration to be found (the black line). The colors indicate the progressive iterations

As described in figure 5, weight is updated after each iteration according to the following rule:

dw(t)
dt

= D.(−�.w + ΔΓ(U (t)).w.(U (t)∕(1 − U (t))) (14)

where D indicates the presence of dopamine � is the learning rate equal to 0.4. The first term
decreases the weight based on � and the weight keeps decreasing until the bound is reached when
ΔΓ(U (t)) becomes greater than 0 at the time of the reward. The correcting update is the second
term of the weight updating and the slope is increased with a weight increase encoding the duration

of the interval. As a result of this learning process, the weight between OFC and VS will result in VS

predicting the occurrence of US and disinhibiting VTA GABA accordingly.

It should be noted that the model postulates that the learning of time happens before the

learning of value of the stimulus, i.e., its magnitude.

VTA

The VTA comprises two major neuronal populations, dopaminergic (DA) and gabaergic (GABA),

glutamatergic cells representing less than 3 percent of VTA cells. VTA GABA neurons locally inhibit

VTA DA neurons and participate in the computation of reward prediction error in VTA DA cells (Cohen
et al., 2012). More precisely, VTA GABA neurons display a sustained, slowly-increasing ramping
activity during the CS-US interval (Eshel et al., 2015) but only significantly affect phasic DA activity
(i.e. the RPE) rather tonic DA activity during the interval. We thus modeled the two populations

from the VTA as follows.

VTA Dopamine

The VTA dopaminergic (DA) neurons receive excitatory inputs from the PPN RD population, which

conveys actual reward and reward prediction from the amygdala; and inhibitory inputs from the

VTA GABA cells, which signal reward expectation. The difference between these excitatory and

inhibitory inputs constitutes the reward prediction error (RPE) (Sutton and Barto, 1998) (Glimcher,
2011). VTA DA neurons broadcast this RPE to the system. During learning, VTA DA neurons initially
fire upon US reward delivery. This US activity progressively gets canceled by VTA GABA signaling the

reward expectation, and at the same time, phasic firing upon CS arrival develops with learning.

�.
dV (t)
dt

= (−V (t) + ��exc,k(gexc(t)) − ��inℎ,k(ginℎ(t)) + �(t))
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U (t) = (V (t) + B)+ (15)

With � = 5ms, �exc = 5ms, k = 1 and B is the baseline firing rate of the VTA Dopamine equal to 0.2

VTA GABA

VTA GABA neurons combine inputs from the VS, which encodes the expected time of reward, and

from the PPN, which signals expected reward magnitude. VTA GABA neurons thus encode reward

expectation and inhibit VTA DA neurons. The equation for membrane potential is the same as in

Equation 2 without baseline firing and population dynamics follows Equation 3 with � = 20ms.
This model is implemented in Python, and uses the DANA library for neuronal computation

(Rougier and Fix, 2012). Description of all the other model parameters is detailed in Table 1. The
model can be accessed in the following link : https://github.com/palladiun/Pavlovian-Conditioning-

VTA-GABA

Architectural parameters

Parameter Meaning Value

US input_size size of input vectors from LH 1

CS input_size size of input vectors from IT 4

VTA Dopamine_size number of neurons in VTA Dopamine 10

VTA GABA_size number of neurons in VTA GABA 5

BLA_size number of neurons in BLA 1

CE_size number of neurons in CE 1

OFC_size number of neurons in OFC 1

PPN RD_size number of neurons in PPN RD 4

PPN FT_size number of neurons in PPN FT 4

PPN Magnitude_size number of neurons in PPN Magnitude 4

Equation parameters

BLA_CE constant weights from BLA to CE 0.15

LH_PPN_RD constant weights from LH to PPN_RD 1.2

LH_BLA constant weights from LH to BLA 1

IT_OFC constant weights from IT to OFC .25

CE_PPN_RD constant weights from CE to PPN_RD 2

CE_PPN_Mag constant weights from CE to PPN_Mag .3

PPN_RD_PPN_Mag constant weights from PPN_RD to PPN_Mag 0.8

PPN_RD_VTA_Dop constant weights from PPN_RD to VTA_Dop 1

PPN_Mag_PPN_Rel constant weights from PPN_Mag to PPN_Rel 0.2

VS_PPN_Rel constant weights from VS to PPN_Rel 1

PPN_Rel_VTA_GABA constant weights from PPN_Rel to VTA_GABA 0.25

VTA_Dopamine_BLA constant weights from VTA_Dopamine to BLA 1

VTA_Dopamine_BLA constant weights from VTA_Dopamine to VS 1

VTA_GABA_VTA_Dopamine constant weights between VTA_GABA and VTA_Dopamine 0.2

OFC_VS initial weights between OFC and VS 0.006

IT_BLA initial weights between OFC and VS 0.01

Table 1. Table describing network architecture and parameters used in activation and learning rules.
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