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ON A CLASS OF CLOSED COCYCLES FOR ALGEBRAS OF

NON-FORMAL, POSSIBLY UNBOUNDED,

PSEUDODIFFERENTIAL OPERATORS

JEAN-PIERRE MAGNOT

Abstract. In this article, we consider algebras A of non-formal pseudodiffer-
ential operators over S1 which contain C∞(S1), understood as multiplication
operators. We apply a construction of Chern-Weil type forms in order to get
2k−closed cocycles. For k = 1, we obtain a cocycle on the algebra of (maybe
non classical) pseudodifferential operators with the same cohomology class as
the Schwinger cocycle on the algebra of Classical pseudodifferential operators,
previously extended and studied by the author on algebras of the same type.
We also prove non-triviality in Hochschild cohomology for k = 2.
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Introduction

We present here a construction of a family of cocycles on the Lie algebra of
maybe unbounded, maybe non classical, non formal pseudodifferential opeartors
PDO(S1, V ). Cocycles on algebras of pseudodifferential operators have been stud-
ied from the viewpoint of algebras of formal symbols, see e.g. [11, 14] for cocycles
related to our study, or algebras of non-formal but classical pseudo-differential op-
erators, see e.g. [30]. In the last study, the notion of renormalized trace plays an
important role, as well as in e.g. the works [4, 5, 25] where these cocycles are shown
to be linked with anomalies in physics via differential geometric considerations.

In our works [17, 19, 20], we made more precise the link between various aspects:

• the Kravchenko-Khesin cocycle [14] on formal pseudodifferential operators
over S1

• the index cocycle on the restricted linear group GLres defined in [29]
• the approach by Radul [30]
• the Schwinger cocycle [32], see e.g. [4, 25],

and we showed [20] that the Schwinger cocycle and the index cocycle could be
extended to the algebra PDO(S1, V ) of maybe unbounded, maybe on classical,
non formal pseudodifferential operators over S1.

We come back to this program in the present work by adding a new idea to our
investigations: integrate the classical formulas for Chern-Weil forms trΩk in order to
define (closed) 2k−cocycles on PDO(S1, V ). For this task, we choose a left-invariant
connection 1-form on the formal Lie group of invertible pseudodifferential operators
PDO∗(S1, V ) with a curvature 2-form with values on smoothing operators. This
enables us to consider tr as the classical trace of trace class operators, even if
technical steps of our investigations require zeta-renormalized traces along the lines
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of [28, 33]. In this framework, classical computations of Chern-Weil forms apply
and we show that trΩk is a 2k−cocycle on PDO(S1, V ) for k ∈ N∗.

For k = 1, we recover via trΩ a 2−cocycle related to the cohomology class of the
Schwinger cocycle. We have to remark that we are here able to prove that these
two cocycles have the same cohomology class (up to a factor) on the algebra of
classical pseudodifferential operators, but we have no information of this kind for
PDO(S1, V ) (except that trΩ is not a coboundary).

For k = 2, we show that tr(Ω2) is a cocycle, with non trivial cohomology class,
for a large family of Lie subalgebras of PDO(S1, V ), including PDO(S1, V ). To
our best knowledge, this cocycle is new.

1. Preliminaries

We shall start with a description of (non-formal!) pseudo-differential operator
groups and algebras which we consider in this work. We shall specialize below to
the trivial complex vector bundle S1 × V in which V is a d−dimensional complex
vector space. The following definition appears in [3, Section 2.1].

Definition 1.1. The graded algebra of differential operators acting on the space
of smooth sections C∞(S1, V ) is the algebra DO(S1, V ) generated by:

• Elements of C∞(S1,Md(C))
• Covariant derivation operators

∇X : g ∈ C∞(S1, E) 7→ ∇Xg

where ∇ is a smooth connection on E and X is a smooth vector field on S1.

We assign as usual the order 0 to smooth function multiplication operators.
The derivation operators and vector fields have the order 1. A differential op-
erator of order k has the form P (u)(x) =

∑

pi1···ir∇xi1
· · · ∇xir

u(x) , r ≤ k ,

In local coordinates (the coefficients pi1···ir can be matrix-valued). We denote by
DOk(S1),k ≥ 0, the differential operators of order less or equal than k. The alge-
bra DO(E) is filtered by the order. It is a subalgebra of the algebra of classical
pseudo-differential operators Cl(S1, V ) that we describe shortly hereafter, focusing
on its necessary aspects. This is an algebra that contains, for example, the square
root of the Laplacian

(1.1) |D| = ∆1/2 =

∫

Γ

λ1/2(∆− λId)−1dλ,

where ∆ = − d2

dx2 is the positive Laplacian and Γ is a contour around the spec-
trum of the Laplacian, see e.g. [31, 28] for an exposition on contour integrals of
pseudodifferential operators. Cl(S1, V ) contains also the inverse of Id + ∆, and
all smoothing operators on L2(S1, V ). Pseudodifferential operators (maybe non-
classical) are linear operators acting on C∞(S1, V ) which reads locally as

A(f) =

∫

eix.ξσ(x, ξ)f̂ (ξ)dξ

where σ ∈ C∞(T ∗S1,Mn(C)) satisfying additional estimates on its partial deriva-

tives and f̂ means the Fourier transform of f . Basic facts on pseudo-differential
operators defined on a vector bundle E → S1 can be found e.g. in [8]. We note by
PDO(S1, V ) the space of maybe non classical, maybe unbounded, pseudodifferen-
tial operators acting on C∞(S1, V ).A pseudo-differential operator of order o is called
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classical if and only if its symbols σ have an asymptotic expansion σ(x, ξ) ∼|ξ|→+∞
∑o

j=−∞ σj(x, ξ), where the maps σj : S1 × R
∗ → C, called partial symbols, are

j-positively homogeneous, i.e. ∀t > 0, (x, ξ) ∈ S1 × R
∗, (σ)j(x, tξ) = tj(σ)j(x, ξ).

Pseudodifferential operators can be also described by their kernel

K(x, y) =

∫

R

ei(x−y)ξσ(x, ξ)dξ

which is off-diagonal smooth. Pseudodifferential operators with infinitely smooth
kernel (or ”smoothing” operators), i.e. that are maps: L2 → C∞ form a two-
sided ideal that we note by Cl−∞(S1, V ). Their symbols are those which are in the
Schwartz space S(T ∗S1,Mn(C)). The quotient FCl(S1, V ) = Cl(S1, V )/Cl−∞(S1, V )
of the algebra of pseudo-differential operators by Cl−∞(S1, V ) forms the algebra
of formal pseudo-differential operators.

Remark 1.2. Through identification of FCl(S1, V ) with the corresponding space of
formal symbols, the space FCl(S1, V ) is equipped with the natural locally convex
topology inherited from the space of formal symbols. A formal symbol σk is a
smooth function in C∞(T ∗S1 \ S1,Mn(C)) which is k−homogeneous (for k > 0)),
and hence with an element of C∞(S1,Mn(C))

2 evaluating σk at ξ = 1 and ξ = −1.
Identifyting Cld(S1, V ) with

∏

k≤d

C∞(S1,Mn(C))
2,

the vector space Cld(S1, V ) is a Fréchet space, and hence

Cl(S1, V ) = ∪d∈ZCld(S1, V )

is a locally convex topological algebra.
We have to precise that the classical topology on non-formal classical pseudo-

differential operators Cl(S1, V ) is finer than the one obtained by pull-back from
FCl(S1, V ). A “useful” topology on Cl(S1, V ) needs to ensure that partial sym-
bols and off-diagonal smooth kernels converge. The topology on spaces of classi-
cal pseudo differential operators has been described by Kontsevich and Vishik in
[12]; see also [4, 28, 33] for descriptions. This is a Fréchet topology on each space
Cld(S1, E). However, passing to the quotients FCld(S1, E) = Cld(S1, E)/Cl−∞(S1, E),
the push-forward topology coincides with the topology of FCld(S1, V ) described
at the beginning of this remark.

Finally, we equip the space PDO(S1, V ) with a topology derived:

• from the pull-back of the evaluation maps PDO(S1, V ) × C∞(S1, V ) →
C∞(S1, V )

• from the pull-back of the topology on symbols via the symbol maps [33]

1.0.1. The splitting with induced by the connected components of T ∗S1\S1.. In this
section, we define two ideals of the algebra FCl(S1, V ), that we call FCl+(S

1, V )
and FCl−(S

1, V ), such that FCl(S1, V ) = FCl+(S
1, V ) ⊕ FCl−(S

1, V ). This
decomposition is explicit in [10, section 4.4., p. 216], and we give an explicit
description here following [17, 19].

Definition 1.3. Let σ be a partial symbol of order o on E. Then, we define, for
(x, ξ) ∈ T ∗S1 \ S1,

σ+(x, ξ) =

{

σ(x, ξ) if ξ > 0
0 if ξ < 0

and σ−(x, ξ) =

{

0 if ξ > 0
σ(x, ξ) if ξ < 0.
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We define p+(σ) = σ+ and p−(σ) = σ− .

The maps p+ : FCl(S1, V ) → FCl(S1, V ) and p− : FCl(S1, V ) → FCl(S1, V )
are clearly smooth algebra morphisms (yet non-unital morphisms) that leave the
order invariant and are also projections (since multiplication on formal symbols is
expressed in terms of pointwise multiplication of tensors).

Definition 1.4. We define FCl+(S
1, V ) = Im(p+) = Ker(p−) and FCl−(S

1, V ) =
Im(p−) = Ker(p+).

Since p+ is a projection, we have the splitting

FCl(S1, V ) = FCl+(S
1, V )⊕FCl−(S

1, V ).

Let us give another characterization of p+ and p−. The operator D = −i d
dx splits

C∞(S1,Cn) into three spaces :
- its kernel E0, built of constant maps
- E+, the vector space spanned by eigenvectors related to positive eigenvalues
- E−, the vector space spanned by eigenvectors related to negative eigenvalues.
The L2−orthogonal projection on E0 is a smoothing operator, which has null

formal symbol. By the way, concentrating our attention on thr formal symbol of
operators, we can ignore this projection and hence we work on E+ ⊕ E−. When
dealing with non-formal operators, we shall set p+ = pE+

. The following elementary
result will be useful for the sequel.

Lemma 1.5. [17, 19]
Let pE+

(resp. pE
−

) be the projection on E+ (resp. E−), then σ(pE+
) = 1

2 (Id+
ξ
|ξ|) and σ(pE

−

) = 1
2 (Id−

ξ
|ξ|).

From this, we have the following result.

Proposition 1.6. [17, 19] Let A ∈ FCl(S1, V ). p+(A) = σ(pE+
) ◦A = A ◦ σ(pE+

)
and p−(A) = σ(pE

−

) ◦A = A ◦ σ(pE
−

).

Notation. For shorter notations, we note by A± = p±(A) the formal operators
defined from another viewpoint by

σ(A+)(x, ξ) ( resp. σ(A−)(x, ξ)) =

{

σ(A)(x, ξ) if ξ > 0 ( resp. ξ < 0)
0 if ξ < 0 ( resp. ξ > 0)

1.1. Renormalized traces of classical pseudodifferential operator. S1 × V
is equiped this an Hermitian products < ., . >, which induces the following L2-inner
product on C∞(S1, V ) :

∀u, v ∈ C∞(S1, V ), (u, v)L2 =

∫

S1

< u(x), v(x) > dx,

where dx is the Riemannian volume.

Definition 1.7. Q is a weight of order s > 0 on E if and only if Q is a classical,
elliptic, self-adjoint, positive pseudo-differential operator acting on smooth sections
of E.

Recall that, under these assumptions, the weight Q has a real discrete spectrum,
and that all its eigenspaces are finite dimensional. For such a weight Q of order
q, one can define the complex powers of Q [31], see e.g. [4] for a fast overview of
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technicalities. The powers Q−s of the weight Q are defined for Re(s) > 0 using
with a contour integral,

Q−s =

∫

Γ

λs(Q − λId)−1dλ,

where Γ is a contour around the real positive axis. Let A be a log-polyhomogeneous
pseudo-differential operator. The map ζ(A,Q, s) = s ∈ C 7→ tr (AQ−s) ∈ C ,
defined for Re(s) large, extends on C to a meromorphic function [16]. When A is
classical, ζ(A,Q, .) has a simple pole at 0 with residue 1

q resWA, where resW is the

Wodzicki residue ([34], see also [10]). Notice that the Wodzicki residue extends the
Adler trace [2] on formal symbols. Following textbooks [28, 33] for the renormalized
trace of classical operators, we define

Definition 1.8. Let A be a log-polyhomogeneous pseudo-differential operator. The
finite part of ζ(A,Q, s) at s = 0 is called the renormalized trace trQA. If A is a
classical pseudo-differential operator,

trQA = lims→0(tr(AQ
−s)−

1

qs
resW (A).

If A is trace class acting on L2(S1,Ck), trQ(A) = tr(A). The functional trQ is of
course not a trace. In this formula, it appears that the Wodzicki residue resW (A).

Proposition 1.9.

(i) The Wodzicki residue resW is a trace on the algebra of classical pseudo-differential
operators Cl(S1, E), i.e. ∀A,B ∈ Cl(S1, V ), resW [A,B] = 0.
(ii) (local formula for the Wodzicki residue) Moreover, if A ∈ Cl(S1, V ),

resWA =
1

2π

∫

S1

∫

|ξ|=1

trσ−1(x, ξ)dξdx =
1

2π

∑

ξ=±1

∫

S1

trσ−1(x, ξ)dξdx.

In particular, resW does not depend on the choice of Q.

Since trQ is a linear extension of the classical trace tr of trace-class operators
acting on L2(S,V ), it has weaker properties. Let us summarize some of them which
are of interest for our work following first [4], completed by [22] for the third point.

Proposition 1.10. • Given two (classical) pseudo-differential operators A
and B, given a weight Q,

(1.2) trQ[A,B] = −
1

q
res(A[B, logQ]).

• Under the previous notations, if C is a classical elliptic injective operator

or a diffeomorphism, trC
−1QC

(

C−1AC
)

is well-defined and equals trQA.

Since trQ is not tracial, let us give one more property on the renormalized trace
of the bracket, from e.g. [24].

Proposition 1.11.

∀(A,B) ∈ Cl−∞(S1, V )× Cl(S1, V ), trQ[A,B] = 0.
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1.2. Groups of invertible PDOs. Let us consider the infinite dimensional group
PDO∗(S1, V ) ⊂ PDO(S1, V ) of operators A ∈ PDO(S1, V ) with an inverse in
PDO(S1, V ). Let us consider here the space PDO(S1, V ) ⋊ PDO∗(S1, V ) as an
heuristic analog to the full tangent space of PDO∗(S1, V ). Concerning Cl(S1, V ),
one can define the same way Cl∗(S1, V ) and Cl(S1, V ) ⋊ Cl∗(S1, V ). Indeed, for
a classical (maybe infinite dimensional) Lie group G with Lie algebra g, we have
TG ∼ g⋊G, when G acts on the left on g by Adjoint action.

We mention here only an heuristic correspondence because of the following facts:

• The groups PDO∗(S1, V ) and Cl∗(S1, V ) carry no atlas, as is was first
mentioned in [1], see e.g. [24]. Then, in order to deal rigorously with them,
one has to consider Gelfand’s formal geometry or, from another viewpoint,
diffeological Lie groups.

• As mentioned in [24] there is no exponential map from paths on Cl(S1, V ) to
paths on Cl∗(S1, V ). The same obstruction holds obviously with PDO(S1, V )
and PDO∗(S1, V ). This means that the “tangent space at identity” of
PDO∗(S1, V ) should not be defined as a domain for an exponential maps,
but as a generalized version of a kinetic tangent space along the lines of
[15] (generalized because we are not here in the c∞ setting).

Hence, in the sequel, when dealing with left invariant objects PDO(S1, V ) ⋊
PDO∗(S1, V ) for the action of PDO∗(S1, V ), we shall circumvent the technical
difficulties by restricting our investigations to PDO(S1, V ), ignoring which one of
the two already mentionned frameworks have been chosen.

2. A family of cocycles

Definition 2.1. We define on PDO(S1, V )⋊PDO∗(S1, V ), understood as a trivial
vector bundle, the left-invariant connection 1-form

θ : a ∈ PDO(S1, V ) 7→ θ(a) = a ◦ p+.

We remark that, concerning formal symbols,

σ (θ(a)) = σ(a)+

which implies straightway the following property:

Proposition 2.2. Let Ω the curvature of θ. Then Ω is a PDO−∞(S1, V )−valued
2-form.

This is the main property to get the following theorem

Theorem 2.3. The Chern-Weil like forms

tr(Ωk)

define closed 2k−cocycles in Hochschild cohomology of PDO(S1, V ).

Proof. The forms Ωk, and hence tr(Ωk), are left-invariant 2k−forms in de Rham
cohomology. Adapting slightly the arguments of [18, Theorem 1], we remark that

dtrΩk = tr∇Ωk = 0

since Ω takes values in the two-sided ideal Cl−∞(S1, V ). Restricting tr(Ωk) to left-
invariant vector fields over PDO∗(S1, V ), trΩk is now a 2k−form on PDO(S1, V )
and the de Rham differential coincides with the differential in Hochschild cohomol-
ogy. Thus, tr(Ωk) is closed in Hochschild cohomology. �
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Remark 2.4. One may wonder whether an Ambrose-Singer type theorem would ap-
ply here, in order to reduce the connection θ to a principal subbundle of frames over
PDO∗(S1, V ) with structure group a group of Fredholm type invertible operators
with Lie algebra in PDO(S1, V ). In this case, [18, Theorem 1] would apply and
would show directly that tr(Ωk) is closed. To our best knowledge, there only exists
an infinite diemnsional version of an Ambrose Singer theorem when the structure
group before reduction is regular (in the sense of the existence of an exponential
map, see [15, 21, 26, 27] for definitions in various settings). In our case, this does
not seem to be the case since [23] suggests that even PDO∗(S1, V ) may not be
regular. Some related works are actually in progress to clarify these aspects.

This result remains valid for any Lie subalgebra A ⊂ PDO(S1, V ). Let us now
give a key elementary lemma about non-exactness, already applied in [20]:

Lemma 2.5. Let A be a Lie subalgebra of PDO(S1, V ). Let c be a cocycle on A.
Let B be a commutative Lie subalgebra of A, i.e. [B,B] = {0}. If c is non vanishing
on B, then c is not exact.

3. Case studies

3.1. trΩ is cohomologous to the Schwinger cocycle on Cl(S1, V )..

Theorem 3.1. On Cl(S1, V ), trΩ has the same cohomology class as 1
2cs, where

cs is the Schwinger cocycle. By the way it has non-trivial Hochschild cohomology
class on PDO(S1, V ).

Proof. First, let (X,Y ) ∈ Cl(S1, V )2. We have that

trΩ(X,Y ) = tr∆ [θX , θY ]− tr∆θ[X,Y ].

The term tr∆θ[X,Y ] is a coboundary. Let us calculate tr∆ [θX , θY ] . For this, we
remark that σ(θX) = σ+(X) thus

tr∆ [θX , θY ] = −
i

2π
resσ+(X) [σ+(Y ), log∆] .

The last term thus can be identified with the pull-back of the Kravchenko-Khesin-
Radul cocycle on Cl(S1, V ) so that it has the same cohomology class as the Schwinger
cocycle following [19].

If trΩ was a coboundary on PDO(S1, V ), it would be also a coboundary on
Cl(S1, V ). So that, trΩ has non-trivial Hochschild cohomology class on PDO(S1, V ).

�

3.2. tr(Ω2) is a 4−cocycle with non trivial cohomology class.

Theorem 3.2. Let A be a Lie algebra such that

C∞(S1,C)⊗ IdV ⊂ A ⊂ PDO(S1, V ).

Then tr(Ω2) is a 4−cocycle with non-trivial cohomology class.

Proof. Let (zn)n∈Z be the Fourier L2−orthonormal base of L2(S1,C). In this proof,
traces will be calculated in this prefered base.

∀(m,n) ∈ Z
2, [zm, zn] = 0 ⇐ Ω(zm, zn) = [θzm , θzn ].
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Let (k,m, n) ∈ Z3. We compute:

Ω(zm, zn)zk = [θzm , θzn ]zk

= (zmp+z
n − znp+z

m) p+z
k

=







0 if k ≤ 0 or ((m+ k > 0) and (n+ k > 0))
zk+m+n if k > 0 and (m+ k ≤ 0) and (n+ k > 0)
−zk+m+n if k > 0 and (m+ k > 0) and (n+ k ≤ 0)

Let (k,m, n, p, q) ∈ Z5. The previous calculations are preliminary to compute now:

Ω(zm, zn)Ω(zp, zq)zk =







0 if k ≤ 0 or ((m+ k > 0) and (n+ k > 0))
Ω(zm, zn)zk+p+q if k > 0 and (p+ k ≤ 0) and (q + k > 0)

−Ω(zm, zn)zk+m+n if k > 0 and (p+ k > 0) and (q + k ≤ 0)

=







0 if A0

zk+m+n+p+q if A1

−zk+m+n+p+q if A−1

where the first condition in the list reads as

A0 = k ≤ 0 or ((p+ k > 0) and (q + k > 0))

or k + p+ q < 0 or ((m+ k + p+ q > 0) and (n+ k + p+ q > 0)) ,

the second one reads as:

A1 = k > 0 and k + p+ q > 0 and

((p+ k ≤ 0 and q + k > 0andk +m+ p+ q ≤ 0 and k + n+ p+ q > 0) or

(p+ k > 0 and q + k ≤ 0 and k +m+ p+ q > 0 and k + n+ p+ q ≤ 0))

and the third one reads as:

A−1 = k > 0 and k + p+ q > 0 and

((p+ k ≤ 0 and q + k > 0andk +m+ p+ q > 0 and k + n+ p+ q ≤ 0) or

(p+ k > 0 and q + k ≤ 0 and k +m+ p+ q ≤ 0 and k + n+ p+ q > 0))

We now turn to traces. We remark from explicit formulas that the operator
Ω(zm, zn)Ω(zp, zq), for fixed (m,n, p, q) ∈ Z4, is not only smoothing, it is more-
over with finite rank. Recall that d = dimV. we note by n1 the number of integers
k satisfying A1, and by n−1 the number of integers k satisfying A−1.

tr (Ω(zm, zn)Ω(zp, zq)) = d
∑

k∈Z

(

Ω(zm, zn)Ω(zp, zq)zk, zk
)

L2

=

{

0 if n+m+ p+ q 6= 0
d(n1 − n−1) if n+m+ p+ q = 0

Then, in order to calculate tr(Ω2)(zm, zn, zp, zq), we need to skew-symmetrize with
respect to the 4 variables the results obtained. Let us consider (m,n, p, q) =
(−2, 2,−3, 3) and let us calculate tr

(

Ω(zs(m), zs(n))Ω(zs(p), zs(q))
)

for s ∈ G4.
Then, computing the corresponding numbers n1(s) and n−1(s), we get the fol-

lowing properties:

• ∀s ∈ G4, (n1(s), n−1(s)) ⊂ {0; 2}
2
.

• if ǫ(s) = 1, then n−1(s) = 0
• if ǫ(s) = −1, then n1(s) = 0
• tr

(

Ω(z−2, z2)Ω(z−3, z3)
)

= 2d > 0.



CLOSED COCYCLES ON PDOS 9

By the way

tr(Ω2)(z−2, z2, z−3, z3) =
1

24

∑

s∈G4

ǫ(s)tr
(

Ω(zs(m), zs(n))Ω(zs(p), zs(q))
)

is a sum of non-negative terms, with at least one positive one. Thus

tr(Ω2)(z−2, z2, z−3, z3) 6= 0.

Since tr(Ω2) is ono-vanishing on C∞(S1,C)⊗ IdV applying Lemma 2.5 we get that
for any Lie algebra A such that

C∞(S1,C)⊗ IdV ⊂ A ⊂ PDO(S1, V ),

tr(Ω2) is a cocycle with non-vanishing cohomology class. �

4. Conclusion

The family of cocycles on PDO(S1, V ) that we produced show that there can
exist some non-trivial 2k−cocycles on PDO(S1, V ). Beside the 2−cocycle trΩ which
is cohomologous to the well-known Schwinger cocycle on Cl(S1, V ) we produced
a non-trivial 4-cocycle new to our knowledge. Algebraically, the full description
of the Hochschild cohomoloy of various Lie subalgebras of PDO(S1, V ) (especially
those with some unbounded operators) needs to be investigated. From a geometric
viewpoint, the meaning of the higher Chern-Weil forms that we describe here,
intrinsically liked with the sign of the Dirac operator, carry interpretations that
can be only heuristic since the classical differential geometry (with atlases) fail to
apply.

We have here pointed out some open questions that may be investigated in the
future from various viewpoints. Our hope is to see these open problems solved in
a very next future.
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LAREMA - UMR CNRS 6093, Université d’Angers, 2 Boulevard Lavoisier 49045 Angers
cedex 01, and, Lycée Jeanne dArc, 30 avenue de Grande Bretagne, F-63000 Clermont-
Ferrand, http://orcid.org/0000-0002-3959-3443

Email address: jean-pierr.magnot@ac-clermont.fr

http://orcid.org/0000-0002-3959-3443

	Introduction
	1. Preliminaries
	1.1. Renormalized traces of classical pseudodifferential operator
	1.2. Groups of invertible PDOs

	2. A family of cocycles
	3. Case studies
	3.1. tr is cohomologous to the Schwinger cocycle on Cl(S1,V).
	3.2. tr(2) is a 4-cocycle with non trivial cohomology class

	4. Conclusion
	References

