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ABSTRACT

Digital breast tomosynthesis images provide volumetric mor-
phological information of the breast helping physicians to de-
tect malign lesions. In this work, we propose a new spatially
adaptive total variation (SATV) regularization function allow-
ing to preserve adequately the shape of small objects such as
microcalcifications while ensuring a high quality restoration
of the background tissues. First, an original formulation for
the weighted gradient field is introduced, that efficiently in-
corporates prior knowledge on the location of small objects.
Then, we derive our SATV regularization, and integrate it in a
novel 3D reconstruction approach for DBT. Experimental re-
sults carried out on both phantom and clinical data show the
great interest of our method for the recovery of DBT volumes
showing small lesions.

Index Terms— Digital Breast Tomosynthesis, total vari-
ation, spatially adaptive regularization, 3D image reconstruc-
tion, optimization.

1. INTRODUCTION

In a will to reduce the mortality associated with breast can-
cer, heavy demands on the improvement of medical imaging
modalities for breast cancer detection have been carried out
in the last few years. Recently, Digital Breast Tomosynthesis
(DBT) has demonstrated its superiority over X-ray mammog-
raphy, the current modality of choice for breast cancer screen-
ing, for detecting lesions with comparable X-ray dose and a
higher detection rate [1].

One of the most important features of DBT is that it pro-
vides a quasi-3D image of the breast. This is of a crucial
importance, especially for young women with heterogeneous
breasts, from which cancer detection can be difficult when
using standard mammography. In an analog way that it is a
difficult task to see a needle in a haystack, detecting by visual
inspection a cancer lesion in a standard 2D mammography
remains quite challenging. Yet, three-dimensional DBT pro-
vides a piercing view through the haystack, i.e., the breast,
by reducing the impact of tissue structures overlapping [2]
and so potentially increases the sensitivity and specificity of

cancer detection. A key ingredient to guarantee such ben-
efits is the image reconstruction algorithm. Exhaustive in-
vestigations and comparative studies on DBT reconstruction
algorithms have clearly shown the advantages of iterative re-
construction algorithms [3]. Many of these algorithms rely
on a convex optimization formulation employing a total vari-
ation (TV) regularization function [4, 5, 6]. The TV regu-
larizer has illustrated its great performance in various appli-
cations in image processing [7, 8, 9]. However, the unde-
sired staircasing side-effect of TV [10] has led researchers
to propose alternative TV-based penalties, by proposing vari-
ous smooth approximations [11, 12, 13, 14], by investigating
the non-locality [15], or by computing a posterior mean in-
stead of the MAP estimation framework [16]. Better recovery
of anisotropic objects can also be reached, using anisotropic
TV-based regularization [17, 18, 19, 20, 21]. Nonetheless,
to the best of our knowledge none of them have provided a
TV formulation that takes into consideration the heterogene-
ity (in shape and texture) within the image to be regularized.
Breasts consist of different anatomical components such as
tissues (background) and lesions that require a more sophis-
ticated regularization when reconstructing the DBT volume.
In such challenging context, our contribution is to propose a
new Spatially Adaptive TV (SATV) regularization function
which responds to the need for heterogeneous spatial regular-
ization in DBT reconstruction, and accounts for the different
morphological contents of the breast. Henceforth, we provide
a new definition of the gradient field in the discrete image that
takes into consideration an input detection map incorporating
prior knowledge on the structural contents of the image. Thus,
the SATV operator acts differently according to the sought lo-
cal information around each voxel.

The paper is organized as follows: Section 2 provides the
description of our convex optimization framework for DBT
reconstruction. In Section 3, we present our main contribu-
tion which lies in the mathematical formulation of the SATV
regularization function, and we discuss its incorporation in
3D reconstruction algorithms. Section 4 shows the experi-
mental results carried out on both physical phantom and clini-
cal data and discusses the obtained qualitative results. Finally,
conclusions are drawn in Section 5.



2. CLINICAL TASK-BASED RECONSTRUCTION IN
DBT

From a mathematical point of view, the reconstruction of the
volumic image from DBT measurements is an inverse prob-
lem. The forward model is often simplified into the following
linear form [3]:

p = Ad+ e (1)

where p ∈ Rn is a vector derived from the acquired projec-
tions, d ∈ Rm is a vector representing the unknown volume,
A ∈ Rn×m is a matrix describing the geometry of the sys-
tem, and e ∈ Rn is the noise. The objective is then to have an
accurate reconstruction d from under-sampled data p. Since
the sampling rate for acquiring the projections p is very low
in standard DBT configurations, it is challenging to obtain a
solution dwhich reaches a globally satisfactory visual quality.
It appears also crucial to take into consideration, in the recon-
struction process, the different clinical tasks that are carried
out by the radiologist when reading DBT images, in particu-
lar microcalcifications detection. To reach both of these goals,
we formulate the solution to (1) as the minimization of a pe-
nalized least squares cost function:

minimize
d∈[0,dmax]m

1

2
‖p−Ad‖22 + Φ(d)−D(d). (2)

Hereabove, Φ : Rm → R is a TV-based spatial regularizer,
and D : Rm → R denotes a detectability function enhancing
the visibility of certain objects related to the sought clinical
task. In a previously published work we have shown that the
minimization of the cost function (2) yields good results in
terms of microcalcifications enhancement in DBT reconstruc-
tion [22] while a slight spreading on the microcalcifications
shapes can be observed. Furthermore, it can be expected that
a better image quality trade-off is obtained by designing a TV-
based regularization taking into account some prior knowl-
edge on the different regions of the volume, as it is already
done for building the clinical-based term D. Subsequently,
we introduce a new total variation operator that enables an
apter spatial regularization in the DBT volume accounting for
the sought morphological content in the neighborhood of each
voxel.

3. SATV REGULARIZATION

3.1. Mathematical formulation

With the aim to make regularization adaptive to the local con-
tents of the DBT volume d ∈ Rm, we define the new SATV
regularization function as follows

Φ(d) =

m∑
i=1

ψ
(
(1− η)λi(∆d)i + η(1− λi)δdi

)
, (3)

where δ = [1 1 1]>, ψ : R3 → R represents a sparsity pro-
moting function which applies either on the image intensity
or its gradients, η controls the overall contribution of each
regularizing term, ∆ denotes the 3D gradient operator that is
expressed as

(∆i)
> = [∆x

i ∆y
i ∆z

i ]
> (4)

where ∆x
i (resp. (∆y

i ) and (∆z
i )) denotes the horizontal,

(resp. vertical and depth) gradient at voxel i ∈ {1, . . . ,m},
with zero-boundaries assumption. It must be emphasized that
the nonnegative weight parameters (λi)1≤i≤m play a crucial
role in the adaptation to the local spatial contents which is per-
formed. In particular when, for every i ∈ {1, . . . ,m}, λi = 0
and ψ = ‖ · ‖1, Φ reduces to the `1 regularization, whereas,
when for every i ∈ {1, . . . ,m}, λi = 1 and ψ = ‖ · ‖, we re-
cover the standard isotropic total variation. In the case of DBT
volumes, we would like to apply different regularizations in
the areas where microcalcification are present/absent. The ad-
vantage of formulation (2) is that it allows us to exploit the de-
tection map, extracted from a Computer-Aided Detection like
tool [23], that enables the retrieval of the location of micro-
calcifications in the DBT volume. Using this detection map,
a prior estimate µi of the normalized intensity value of voxel
i ∈ {1, . . . ,m} can be derived [22]. We recall that the mi-
crocalcifications are defined, in this framework, as localized
structures lying within a predefined radius range. Henceforth,
the proposed expression of the weight parameters is given by

λi =


1 if µi ≤ ν − θ
θ + ν − µi

2θ
if ν − θ ≤ µi ≤ ν + θ

0 otherwise,

where ν ∈ [0,+∞[ with θ ∈]0,min(ν, 1 − ν)]. The value
µi is high in zones where structures are present, while it is
low in other areas. The threshold ν allows us to set the binary
transition between the two zones, while the parameter θ is
used to smooth the latter transition.

3.2. Reconstruction algorithms

In this section, we briefly explain how Problem (2) can be nu-
merically handled when SATV regularization is used. From
(3), function Φ can be reexpressed as

∀d ∈ Rm, Φ(d) = Ψ(Ld), (5)

where

∀u = (ui)1≤i≤m ∈ (R3)m, Ψ(u) =

m∑
i=1

ψ
(
ui), (6)

and

L = (1− η)(Λ⊗ δ)∆+ η(1− Λ)⊗ δ ∈ R3m×m, (7)



where ⊗ denotes the Kronecker product and Λ =
Diag(λ1, . . . , λm). The function ψ can be assumed proper,
lower-semicontinuous and convex and the detectability func-
tion D can be chosen linear [22]. Since Φ is the composition
of matrix L and the proper, lower-semicontinuous and convex
function Ψ , a variety of splitting iterative algorithms can be
applied to solve Problem (2):

• If the proximity operator of ψ has a closed form expres-
sion, proximal algorithms [24] which include ADMM
[25] and primal-dual methods [26] provide efficient so-
lutions.

• If ψ is Lipschitz-differentiable, then the problem can
even be solved in a simpler manner through (possibly
accelerated) projected gradient algorithms, where a
projection onto the hypercube [0, dmax]

m is performed
at each iteration.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results carried out
first on a physical phantom, then on two realistic clini-
cal datasets. Each dataset contains 9 projections acquired
using a DBT commercial system (Senographe Essential,
GE Healthcare) with an angular aperture of 25o. The de-
tector is composed of 3062 × 2394 detector elements of
100µm2 in size. The volumes are reconstructed under a
100µm × 100µm × 1mm sampling grid. We aim at iden-
tifying small microcalcifications of size within the range
[0.2, 0.4]mm from the rest of the breast. Therefore, we rely
on a map µ allowing us to detect structures with the latter
size range following the approach proposed in [22]. We then
construct (λi)1≤i≤m as detailed in Section 3.1. The detection
map is binarized by setting the threshold value ν so that the
geometric shape of the detected microcalcifications are well
recovered. Moreover, θ is manually finetuned to optimize
the transitions between breast background and microcalcifi-
cations. Finally, we set η in order to achieve a certain image
quality optimization of DBT. In the general expression (3)
of SATV regularization, a smooth approximation of the Eu-
clidean norm is used as a penalty function, namely for every
u ∈ R3, ψ(u) = β

√
‖u‖2 + ε2, where (β, ε) ∈ (R+)

2

control the weight and smoothness of the regularization, re-
spectively. The upper bound in the range value constraint is
chosen equal to dmax = 4095. As explained in Section 3.2
the minimization of (2), in the considered setting, can be
performed by projected gradient descent. The algorithm was
initialized with the Filtered Back Projection solution, and
ran until a maximum number of iterations (here equal to
200), which was shown to be sufficient to reach practical
convergence in our experiments.

(a) (b)

(c) (d)

Fig. 1: Region of ACR phantom slice containing 6 ROIs: (a)
Weights (λi)1≤i≤m, (b) DBT reconstruction with classical TV and
no clinical term, (c) DBT reconstruction with classical TV and clini-
cal term (d) DBT reconstruction with SATV regularization and clin-
ical term.

4.1. Physical phantom data

We have first evaluated our approach using the physical phan-
tom accreditation Model 015 (CIRS). Its dimension is 45 ×
102 × 108mm3, with uniform background. For the sake of
visualization, we only display a zoomed region containing
6 microcalcifications of 0.3mm in size and with known lo-
cations. We display in Fig. 1(a) the constructed (λi)1≤i≤m
as explained in Section 3.1. We set ν = 1.5 × 10−3 and
θ = ν/3. It is worth mentioning that the background is
merely equal to zero in the detection map. Yet, the detected
microcalcifications present different grey level values which
will lead to a different regularization magnitude for each of
them. The benefits of our proposed method as illustrated in
Fig. 1(d) is twofold. First, compared to the results obtained
with a classical DBT reconstruction (Fig. 1(b)), we signifi-
cantly enhance the visibility as well as the sharpness of the
detected microcalcifications. Second, compared to the re-
sults obtained with a clinical task-based reconstruction using
a classical TV, as illustrated in Fig. 1(c), we greatly improve
the shape restoration of the enhanced microcalcifications. We
emphasize that the comparison between the SATV-based re-
construction and the classical TV-based reconstruction is fair,
since the regularization parameters, namely β and η, are set
such that the background is restored with the same quality.
In this example, β = 600, ε = 10 for classical TV while
β = 630, ε = 10, η = 0.048 in the case of the new SATV
regularization.



(a) (b)

(c) (d)

Fig. 2: Sample of slices of a DBT reconstruction with size 3062×
994 × 67(pixels) : (a) Constructed (λi)1≤i≤m from the represen-
tative clinical data. (b) DBT reconstruction with classical TV regu-
larization and without the clinical term, (c) DBT reconstruction with
classical TV regularization and the clinical term, (d) DBT recon-
struction with SATV regularization and the clinical term.

4.2. Clinical data

We have also assessed the performance of our proposed ap-
proach on a clinical scenario. We considered here two BI-
RADS b breast density clinical datasets, which correspond
to breasts with scattered areas of fibroglandular density [27].
We show in Fig. 2 a case compromising a potentially malig-
nant cluster of microcalcifications, while in Fig. 3 a case con-
taining an isolated microcalcification. We display the map
of (λi)1≤i≤m obtained from the estimated signal where ν =
0.09 and θ = ν/3, in Fig. 2(a) and Fig. 3(a) respectively. De-
spite the presence of false positives in these latter maps, we
note that the enhancement is more effective in the lesion area.
One can clearly observe in Fig. 2 and in Fig. 3 the behavior al-
ready unveiled in the physical phantom dataset. With our pro-
posed method, we highlight the advantage of simultaneously
enabling a robust preservation of the shape of the enhanced
microcalcifications and of a high quality restoration of the
background tissues. Hereagain, the reconstruction with our
proposed approach and the one based on classical TV provide

(a) (b)

(c) (d)

Fig. 3: Sample of slices of a DBT reconstruction with size 2344×
868 × 44(pixels) : (a) Constructed (λi)1≤i≤m from the represen-
tative clinical data. (b) DBT reconstruction with classical TV regu-
larization and without the clinical term, (c) DBT reconstruction with
classical TV regularization and the clinical term, (d) DBT recon-
struction with SATV regularization and the clinical term.

the same breast texture quality, after fine-tuning of the reg-
ularization parameters η and β for this purpose. Here, β =
600, ε = 10 for classical TV and β = 660, ε = 10, η = 0.09
when SATV penalization is used.

5. CONCLUSION

Despite the tremendous amount of research works highlight-
ing the success of TV in various image processing applica-
tions, this penalty does not model properly the heterogeneity
within images. In this paper, our main contribution lies in a
novel definition of a spatially adaptive total variation which
incorporates prior shape knowledge on the image to be re-
stored. In the DBT context, the proposed SATV allows to
take into account the expected location of small microcalci-
fications. We have demonstrated on different datasets the in-
terest of our proposed approach with respect to classical TV-
based DBT reconstruction. One future direction for further
improvements is to investigate techniques for a more auto-
matic setting of the different parameters involved in SATV,
depending on the targeted task and images to be processed.
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