
HAL Id: hal-03066187
https://hal.science/hal-03066187v1

Submitted on 15 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SuperDeConFuse: A Supervised Deep Convolutional
Transform based Fusion Framework for Financial

Trading Systems
Pooja Gupta, Angshul Majumdar, Emilie Chouzenoux, Giovanni Chierchia

To cite this version:
Pooja Gupta, Angshul Majumdar, Emilie Chouzenoux, Giovanni Chierchia. SuperDeConFuse: A Su-
pervised Deep Convolutional Transform based Fusion Framework for Financial Trading Systems. Ex-
pert Systems with Applications, 2021, 169, pp.114206. �10.1016/j.eswa.2020.114206�. �hal-03066187�

https://hal.science/hal-03066187v1
https://hal.archives-ouvertes.fr

SuperDeConFuse: A Supervised Deep Convolutional

Transform based Fusion Framework for Financial

Trading Systems

Pooja Guptaa,∗, Angshul Majumdara,b, Emilie Chouzenouxc, Giovanni
Chierchiad

aIndraprastha Institute of Information Technology, Delhi, India
bTCS Research, Kolkata, India

cCVN, Inria Saclay, CentraleSupélec, Gif-sur-Yvette, France
dLIGM, Université Gustave Eiffel, CNRS, ESIEE Paris, Noisy-le-Grand, France

Abstract

This work proposes a supervised multi-channel time-series learning framework

for financial stock trading. Although many deep learning models have recently

been proposed in this domain, most of them treat the stock trading time-series

data as 2-D image data, whereas its true nature is 1-D time-series data. Since

the stock trading systems are multi-channel data, many existing techniques

treating them as 1-D time-series data are not suggestive of any technique to ef-

fectively fusion the information carried by the multiple channels. To contribute

towards both of these shortcomings, we propose an end-to-end supervised learn-

ing framework inspired by the previously established (unsupervised) convolution

transform learning framework. Our approach consists of processing the data

channels through separate 1-D convolution layers, then fusing the outputs with

a series of fully-connected layers, and finally applying a softmax classification

layer. The peculiarity of our framework, that we call SuperDeConFuse (SDCF),

is that we remove the nonlinear activation located between the multi-channel

convolution layers and the fully-connected layers, as well as the one located

between the latter and the output layer. We compensate for this removal by

∗Corresponding author
Email addresses: poojag@iiitd.ac.in (Pooja Gupta), angshul@iiitd.ac.in (Angshul

Majumdar), emilie.chouzenoux@centralesupelec.fr (Emilie Chouzenoux),
giovanni.chierchia@esiee.fr (Giovanni Chierchia)

Preprint submitted to Elsevier December 15, 2020

introducing a suitable regularization on the aforementioned layer outputs and

filters during the training phase. Specifically, we apply a logarithm determinant

regularization on the layer filters to break symmetry and force diversity in the

learnt transforms, whereas we enforce the non-negativity constraint on the layer

outputs to mitigate the issue of dead neurons. This results in the effective learn-

ing of a richer set of features and filters with respect to a standard convolutional

neural network. Numerical experiments confirm that the proposed model yields

considerably better results than state-of-the-art deep learning techniques for the

real-world problem of stock trading.

Keywords: information fusion, deep learning, convolution, transform learning,

stock trading.

1. Introduction

Financial time series forecasting, and particularly stock price forecasting,

requires to determine the future value of a company’s stock or any other form

of a financial instrument traded on exchange as per the company. It plays a

significant role in trading strategies to identify opportunities to buy and sell

a stock and this process is known as stock trading. This future movement

prediction of stock could capitulate the significant profit.

However, the problem of stock trading has been one of the most difficult

problems for the researchers in finance data processing, and speculators. Strug-

gles are mainly due to the uncertainties and noises of the samples. These sam-

ples are generated as a consequence of historical market behaviors. But their

generation is also affected by other factors such as macroeconomy and investor

feelings, hence it is not only dependent on historical information [1]. Two fa-

mous hypotheses emphasize how difficult it is to accurately predict a stock price.

First, the efficient market hypothesis introduced in [2] states that the current

price of an asset always reflects all previous information available for it instantly.

Second, the random-walk hypothesis [3] claims that stock price changes inde-

pendently from its history. In other words, tomorrow’s price will only depend

2

on tomorrow’s information regardless of today’s price. Hence, automating the

prediction of stock trends/movements is a very challenging task.

In past works, feature engineering played a key role in the prediction pro-

cess. Features were extracted from the original stock data using technical anal-

ysis/indicators, which are in general used for analysing the stock market data.

Traditional statistical methods such as linear regression, autoregressive moving

average (ARMA), and GARCH, were much beneficial for financial time series

forecasting due to their interpretability. These statistical models were thus used

on the extracted features, processed using technical indicators related to histor-

ical data for future value prediction [4]. Previous works have also used the

extracted features as input to machine learning models like Naive Bayes (NB),

Logistic Regression (LR), Random Forest (RF), and k-nearest neighbors (kNN)

[5, 6, 7].

In the last decade, deep learning based models/techniques have gained at-

tention in multiple domains, and financial stock trading is one such domain.

Owing to the success of Convolutional Neural Networks (CNNs), there are pre-

vious studies that have used this model for the future prediction of the stock

value. In [1], the features extracted using technical indicators for stock data are

fed as a 2-D “image” matrix to the CNN, where each column represents shifted

windows of the data. The work [8] utilizes long short-term memory (LSTM),

deemed most suitable for time series analysis as they were supposed to mimic

memory, and CNN for the stock trading task. However, it is likely that the most

natural and thus efficient way to process time-series is to consider its original

form as 1-D data rather than a 2-D matrix. It is worth mentioning that, up

to our knowledge, despite its multi-channel form, the problem of financial stock

trading has been rarely treated as a fusion problem. We can only mention [9, 10]

where a fusion framework is proposed, but only at the feature level rather than

at the raw level.

In this work, motivated by the success of CNNs, we propose an end-to-

end supervised fusion framework for multi-channel time-series based financial

trading systems that makes use of our recently introduced convolutional trans-

3

form learning (CTL) approach [11]. We call this framework -SuperDeConFuse

(SDCF).1 Our framework has the following contributions:

• It is an end-to-end framework that treats the multi-channel time-series

stock data as univariate data corresponding to every channel, thus over-

coming both the aforementioned issues present in the previous works solv-

ing the problem of stock trading.

• It promotes the learning of unique filters and hence a richer set of features,

that was not guaranteed with CNNs, due to a “logarithm determinant”

penalty applied to the transforms/filters.

• A non-negativity constraint on coefficients/features mitigates the dead

neurons issue by removing the nonlinear activation of the fully-connected

layers and the last convolution layer.

The remainder of this paper is organized as follows. Section 2 summarizes

related works in the field of machine learning and deep learning that have been

proposed for solving the stock trading problem/ stock market prediction.

Since our work focuses on a supervised multi-channel fusion framework,

we will also review recent machine learning approaches for information fusion.

Section 3 introduces the details of our proposed SuperDeConFuse (SDCF) ap-

proach, the mathematical tools involved and the training strategy that is re-

tained. Section 4 discusses the considered dataset, data labeling, data prepro-

cessing and the training methodology used. Section 5 provides the experimental

results. Finally, Section 6 concludes this work.

2. Literature Review

2.1. Financial stock data analysis

In literature, different methodologies have been applied to the stock data for

predicting future trading strategies (eg, buy and sell decisions). These include

1https://github.com/pooja290992/SuperDeConFuse.git

4

statistical methods, machine learning algorithms like Support Vector Machine

(SVM) and Artificial Neural Networks (ANN), feature extraction approaches,

deep learning models (eg, CNN, LSTM), that we briefly review in this section.

Statistical methods are probably the methods among others that are univer-

sally used for the prediction of financial stock trading strategies. In particular,

many studies rely on the use of sequential statistical models, such as ARMA

[12], ARCH [13], GARCH [14] and [15], Kalman filter [16].

Feature-based techniques are also considered as state-of-the-art. Technical

indicators like Exponential moving average (EMA), Moving average convergence

and divergence (MACD), Williams %R, etc. have been used in past studies to

extract the features from the data. Text mining can also be used, to process

financial analysis from newspapers [17]. The features are then used as input to

machine learning models, for example, SVM, ANN, kNN [4]. Further studies

have proposed hybrid machine learning models, based on the use of multiple

types of base classifiers that operate on a common input and a meta classifier

that learns from base classifiers’ outputs to obtain a more precise stock return

and risk predictions. Strategies such as Bagging, Boosting and AdaBoost, can

be also applied to create diversity in classifier combinations [18, 19]. For ex-

ample, a hybrid weighted SVM and weighted KNN model for predicting stock

market indices is proposed in [20]. Similarly, a technique that combines Sup-

port Vector Regression (SVR), Random Forests and ANNs for predicting stock

market index, is introduced in [21]. Another study [22] combines the statistical

and probabilistic Bayesian Learning and the machine learning model ANN for

the same. However, in all the aforementioned techniques, the relationship built

between historical data and future value prediction may lack interpretation.

Hence, the performance of the methods are directly related to the quality of

the features. Moreover, with machine learning techniques, overfitting is a major

issue owing to their capability of non-linear mapping and fitting.

Deep learning based models have also been extensively used for solving stock

forecasting problems. Recurrent Neural Networks (RNNs) are considered to be

the most appropriate models for time-series analysis. LSTM is one such RNN

5

which is regarded as the memory-mimicking model. Some studies use LSTM for

the time-series stock forecasting [23]. Another work uses LSTM on the technical

indicators for the prediction [24]. However, despite the great performance ob-

tained, the time complexity of training RNN via backpropagation has encour-

aged the users for searching for more tractable models and solutions. CNNs

constitute another important deep learning model, apart from RNNs, which

have been used profusely and have performed well in the stock time-series fore-

casting, especially 2-D CNNs. In [1], the said techniques have been used on

stock prices for forecasting. A slightly different input is used in [25], instead

of using the standard variables (opening, closing, high, low and NAV), it uses

high frequency data for forecasting major points of inflection in the financial

market. In another work [26], a similar approach is used for modeling exchange

traded fund (ETF). The 2-D CNN model performs similarly as LSTM or the

standard multi-layer perceptron [27, 28] while being simpler to train. This ap-

parent lack of performance improvement may be owing to the incorrect choice

of CNN model, since these studies model an inherently 1D time series as an

image.

2.2. Information Fusion

Many real world domains raise problems pertaining to the need for the fu-

sion of information from multiple sources. Consider the problem of demand

forecasting which requires estimating the power consumption at a future point

given the available information until the current instant. At the building level

forecasting, the inputs are usually power consumption, weather (temperature,

humidity), and occupancy. This is a crucial problem in smart grids that ranges

from planning electricity generation to preventing non-technical losses. Another

area is biomedical signal analysis, for example, the problem of blood pressure

estimation. The inputs are usually from two sources, namely the electrocardio-

gram (ECG) and pulsepleithismogram (PPG) [29], and the goal is to estimate

the systolic and diastolic pressures. Transportation is also one such domain that

needs the fusion of information from many sources to build intelligent trans-

6

portation systems (ITS) [30, 31]. This is needed to improve passenger safety,

reduced transportation time and fuel consumption, etc.

Image fusion is another area where the information from two or more images

of an object has to be integrated into a single image that is more informative

and appropriate for visual perception or computer analysis. It finds great ap-

plication in medical imaging. One can mention for instance the fusion of MRI

(Magnetic Resonance Imaging) and PET (Positron Emission Tomography) im-

ages using IHS (Intensity Hue Saturation) and RIM (Retina-Inspired Models)

fusion methods to improve the functional and spatial information content of the

PET images [32].

Deep learning has been widely used for analyzing multi-channel / multi-

sensor signals. In such studies, all the sensors are stacked one after the other

to form a matrix using 2-D CNN further to analyze these signals. For example,

[33] uses the same explained model to analyze human activity recognition from

multiple body sensors. Note that it must be distinguished from the studies

mentioned before ([1, 25, 26, 27, 28]), as the images in [33] are not formed from

stacking windowed signals from the same signal one after the other, they are

formed by stacking signals from different sensors. Note, however, that [33] does

not account for any temporal modeling. This is rectified in [10] where 2-D CNN

is used on a time series window. The different windows are finally processed

by GRU, thus explicitly incorporating time series modeling. In the aforesaid

studies, there is however no explicit fusion framework. The information from

raw signals is fused to form matrices and treated by 2-D convolutions. A true

fusion framework was proposed in [34]. Here, the fusion was happening at the

feature level and not in the raw signal level as was in [33, 10].

Multi-modal data processing is another area that makes use of deep learn-

ing based fusion techniques. Although this problem is not multi-channel data

processing per se, we will briefly review here some studies on this topic. In [35]

a fusion scheme is proposed for audio-visual analysis, that uses a fusion scheme

for deep belief network (DBN) and stacked autoencoder (SAE) for fusing the

audio and video channels. Each of the said channels is processed separately and

7

connected by a fully connected layer to produce fused features. These fused

features are further processed for inference. The problem of video based ac-

tion recognition is addressed in [36]. It does not require audio data for the

task; rather it proposes a fusion scheme for incorporating temporal information

(processed by CNN) and spatial information (also processed by CNN). Experi-

ments were carried out with different levels of early and late fusion. The fusion

of multi-channel image datasets has also been investigated. In [37], a fusion

scheme is proposed for processing color and depth information (via 3-D and

2-D convolutions, respectively) with the objective of action recognition. In [38],

the authors consider fusing hyperspectral data (high spatial resolution) with

Lidar (depth information), with the consequence of better classification results.

In [39], it was shown that by fusing deeply learnt features (from CNN) with

handcrafted features via a fully connected layer, can improve analysis tasks.

It is worthy to point out that the aforementioned time-series data based fu-

sion studies do not process the time-series data as 1-D but as 2-D image/matrix.

In the context of financial time-series, the state-of-the-art methods seem mostly

based either on statistical and machine learning models or CNNs. For the for-

mer, the relationship built between historical data and future value prediction

may lack interpretation; and hence, the performance of the methods is directly

related to the quality of the features. While in the latter case of CNNs, there is

no guarantee of unique filters learnt. In this work, we propose a novel framework

that can tackle those issues.

3. Proposed Technique

This paper introduces a novel supervised framework for multi-channel data

representation learning. A crucial element of the latter is our recently introduced

CTL [11]. For clarity, we first recall the important steps of the CTL technique.

Then, we propose an extension of this approach in order to handle a multi-

layer architecture. Finally, we present the overall SuperDeConFuse (SDCF)

architecture.

8

3.1. Convolutional Transform Learning

As introduced in our seminal paper [11], CTL learns some filters (tm)1≤m≤M

operated on samples
(
s(k)

)
1≤k≤K

to generate the features (x
(k)
m)1≤m≤M,1≤k≤K .

The inherent learning model is expressed by convolution operations (assuming

suitable padding) defined as

(∀m ∈ {1, . . . ,M} , ∀k ∈ {1, . . . ,K}) tm ∗ s(k) = x(k)m . (1)

A regularization is imposed on the filters to improve the representation abil-

ity and limit the overfitting issues, following from the original study on transform

learning [40]. Also, non-negativity constraint is imposed on the features, as it

is commonly done in CNNs. The convolutional filters and the representation

coefficients are learnt from the data during training. This is expressed as the

following optimization problem:

minimize
(tm)m,(x(k)

m)m,k

1

2

K∑

k=1

M∑

m=1

(
‖tm ∗ s(k) − x(k)m ‖

2
2 + ψ(x(k)m)

)

+ µ
M∑

m=1

‖tm‖
2
2 − λ log det ([t1 . . . tM]), (2)

where ψ is a suitable penalization function, and (µ, λ) are positive hyperparam-

eters. It should be noted that the regularization term promotes unique filters

to be learnt, something that is not easy to guarantee in CNNs. We can rewrite

equivalently Equation (2) in matrix notation as2

F (T,X) =
1

2
‖T ⋆ S −X‖

2
F +Ψ(X) + µ ‖T‖

2
F − λ log det (T) , (3)

where T =
[
t1 . . . tM

]
, S =

[
s(1) . . . s(K)

]⊤
,X =

[
x
(k)
1 . . . x

(k)
M

]
1≤k≤K

,

T ⋆ S =

t1 ∗ s
(1) . . . tM ∗ s(1)

...
. . .

...

t1 ∗ s
(K) . . . tM ∗ s(K),

 (4)

2Note that T is not necessarily a square matrix. By an abuse of notation, we define the

“log-det” of a rectangular matrix as the sum of logarithms of its singular values, taking infinity

value as soon as one of those is non positive.

9

and Ψ amounts to applying the penalty term ψ column-wise on X and summing.

A local minimizer to (3) can be reached efficiently using the alternating

proximal algorithm [41, 42, 43], which alternates between proximal updates on

variables T andX. The proximity operator [44] at x̃ ∈ H, with (H, ‖·‖) a Hilbert

space, of a proper lower-semi-continuous convex function ϕ : H →]−∞,+∞] is

defined as

proxϕ(x̃) = argmin
x∈H

ϕ(x) +
1

2
‖x− x̃‖

2
. (5)

Then, the alternating proximal algorithm for CTL reads:

For n = 0, 1, ... T [n+1] = proxγ1F (·,X[n])

(
T [n]

)

X [n+1] = proxγ2F (T [n+1],·)

(
X [n]

)
(6)

with initializations T [0], X [0] of suitable dimensions, and γ1, γ2 some positive

constants. For more details on the derivations and the convergence guarantees,

the readers can refer to [11].

3.2. Deep Convolutional Transform Learning

Deep CTL consists in stacking multiple convolutional layers on top of each

other to generate the features, as shown in Figure 1. Deep CTL depends on the

key property that the solution X̂ to the CTL problem, assuming fixed filters

T , can be reformulated as the simple application of an element-wise activation

function. That is:

argmin
X

F (T,X) = Φ(T ⋆ S), (7)

with Φ the proximity operator of Ψ [45]. It is interesting to remark that, if

Ψ is the indicator function of the positive orthant, then Φ identifies with the

famous rectified linear unit (ReLU) activation function. Many other examples

of mapping between proximity operators and activation functions are provided

in [45]. Consequently, we propose to compute deep features by stacking many

such layers:

(∀ℓ ∈ {1, . . . , L− 1}) Xℓ = Φℓ(Tℓ ⋆ Xℓ−1), (8)

10

Figure 1: Deep CTL architecture for L = 2 layers.

where we set X0 = S. Deep CTL consists of solving the problem

minimize
T1,...,TL,X

Fconv(T1, . . . , TL, X |S) (9)

with

Fconv(T1, . . . , TL, X |S) =
1

2
‖TL ⋆ ΦL−1(TL−1 ⋆ . . .Φ1(T1 ⋆ S))−X‖2F

+Ψ(X) +

L∑

ℓ=1

(µ||Tℓ||
2
F−λ log det(Tℓ)). (10)

Deep CTL can thus be viewed as a natural and simple extension of the one-layer

CTL formulation in (3).

3.3. Our Proposed Approach - SuperDeConFuse

We now present our novel approach, SuperDeConFuse (SDCF), which is

a supervised fusion framework for multi-channel time-series stock data. This

framework takes the channels of input data samples to separate branches of

convolutional layers, leading to multiple sets of channel-wise features. The fea-

tures obtained are thus decoupled. In order to couple (i.e., fuse) them, these are

concatenated and passed to a fully-connected layer, which yields a set of unique

coupled features via transform learning. These features are then fed to another

linear fully-connected layer. This provides features that are finally inputted to

the softmax layer that yields the probabilities for the classes. The complete

architecture, called SuperDeConFuse (SDCF), is shown in Figure 2.

As the data considered is multi-channel, we learn a different set of convo-

lutional filters T
(c)
1 , . . . , T

(c)
L and features X(c) for each channel c ∈ {1, . . . , C}.

11

Figure 2: SuperDeConfuse Architecture. The architecture is tested for L = 1, 2, 3, 4 layers.

Here P1 × 1, . . . , PL × 1 represents the kernel size used in each layer ℓ ∈ {1, . . . , L}. Here,

maxpooling is not performed after layer 4 due to the small window size/input sequence length.

We also learn the (not convolutional) linear transform T̃ = (T̃c)1≤c≤C to fuse

the channel-wise features X = (X(c))1≤c≤C , along with the corresponding fused

features Z at the same time. The latter task is carried out by the cost function

Ffusion(T̃ , Z,X) =
1

2

∥∥∥Z−
C∑

c=1

flat(X(c))T̃c

∥∥∥
2

F
+Ψ(Z)+

C∑

c=1

(
µ
∥∥∥T̃c

∥∥∥
2

F
−λ log det(T̃c)

)

(11)

where the operator “flat” transforms X(c) into a matrix where each row contains

the “flattened” features of a sample.

Further, we learn the weight matrix θ of a multiclass classifier which takes

the input features Z and yields the class probabilities. The cross-entropy (CE)

loss associated with the final classification is given by

FCE(θ, Z | y) =
K∑

k=1

log
(V∑

v=1

ez
⊤

k (θv−θyk)
)
, (12)

where V is the number of classes, θv is the v-th column of matrix θ, z⊤k is the

k-th row of matrix Z, and yk ∈ {1, . . . , V } is the label of the k-th sample. This

12

finally leads to the joint optimization problem defined as

minimize
(T,X,T̃ ,Z,θ)

C∑

c=1

Fconv(T
(c)
1 , . . . , T

(c)
L , X(c)|S(c)) + Ffusion(T̃ , Z,X) + FCE(θ, Z | y).

︸ ︷︷ ︸
J(T,X,T̃ ,Z,θ)

(13)

Conclusively, our formulation aims at jointly training the channel-wise con-

volutional filters T
(c)
l , the fusion coefficients T̃ , and the multiclass classifier θ

in an end-to-end fashion. We explicitly learn the features X and Z subject

to the regularization Ψ, so as to avoid the problem of dead neurons. More-

over, the “log-det” regularization on both T
(c)
l and T̃ breaks the symmetry and

enforces the diversity in the learnt transforms, whereas the Frobenius regular-

ization keeps the transform coefficients bounded.

3.4. Optimization algorithm

We propose to find a local minimizer to the nonconvex Problem (13) through

the projected (sub)gradient descent, whose iterations read:

For n = 0, 1, ...

T [n+1] = T [n] − γ∇TJ(T
[n], X [n], T̃ [n], Z [n], θ[n])

X [n+1] = P+(X
[n] − γ∇XJ(T

[n], X [n], T̃ [n], Z [n], θ[n]))

T̃ [n+1] = T̃ [n] − γ∇
T̃
J(T [n], X [n], T̃ [n], Z [n], θ[n])

Z [n+1] = P+(Z
[n] − γ∇ZJ(T

[n], X [n], T̃ [n], Z [n], θ[n]))

θ[n+1] = θ[n] − γ∇θJ(T
[n], X [n], T̃ [n], Z [n], θ[n])

(14)

with P+ = max{·, 0} (applied element-wise). In practice, we initialize it with

some random matrices T [0], X [0], T̃ [0], Z [0], θ[0], we choice a suitable stepsize γ >

0, and we evaluate numerically the gradient step with the accelerated scheme

initially introduced for the ADAM method in [46].

There are two remarkable advantages of the proposed optimization approach.

Firstly, we depend on automatic differentiation [47] and stochastic gradient ap-

proximations to efficiently solve Problem (13). Secondly, any sub-differentiable

activation function Φ in (7) can be plugged into our model, for instance SELU

13

[48] or Leaky ReLU [49]. This flexibility will play a key role in the performance,

as shown in the experimental section.

3.5. Computational Complexity of Proposed Framework - SuperDeConFuse(SDCF)

Table 1 summarizes the computational complexity of SuperDeconFuse(SDCF)

architecture, both for training and test phases. We report the cost incurred for

one input sample, either at an iteration of the training algorithm or at the

testing phase. It is to be noted that the computational complexity of SDCF ar-

chitecture is comparable to that of a standard CNN. The log-det regularization

is the only addition that requires to compute the truncated singular value de-

composition of T
(c)
ℓ and T̃c. However, as the size of these matrices is determined

by the filter size, the number of filters, and the number of output features per

sample, the training complexity is not worse than that of a CNN.

Table 1: Time complexity in training and test phases (for one input sample)

Phase Steps Time Dimension

Complexity Description

Training 1. Convolution layers O(PℓDℓMℓC)

2. Fully-connected (f.-c.) layer O(I2C2) S(c) ∈ R
K×D

3. Frobenius norm on conv. layers O(PℓMℓC) T
(c)
ℓ

∈ R
Pℓ×Mℓ

4. Frobenius norm on f.-c. layer O(I2C2) flat(X(c)) ∈ R
K×I

5. log-det on conv. layers O(P 2

ℓ MℓC) T̃c ∈ R
I×O

6. log-det on f.-c. layer O(I3C2) Z ∈ R
K×O

7. output layer (classifier) O(V) θ ∈ R
O×V

Test Step 1 + Step 2 + Step 7. See above.

D = input sample size – K = num. of samples – C = num. of channels – L = num. of layers

Pℓ = filter size at layer ℓ – Mℓ = num. of filters at layer ℓ – Dℓ = output sample size at layer ℓ

I = DLML is the num. of output features per sample and per channel at last convolution layer

O = αIC (with α ∈]0, 1]) is the num. of output features per sample at the fully-connected layer

V = num. of classes

14

4. Methodology

4.1. Dataset Description

The dataset consists of 15 Indian stocks that fall under the National Stock

Exchange (NSE) and the Bombay Stock Exchange (BSE). The stock symbols

end with .NS if fall under NSE and .BO for BSE otherwise. These stock sym-

bols are taken from Yahoo finance symbols data available publicly. The data

for the past 22 years i.e. from 1998 - 2019 is collected using the in-built python

module web and the Yahoo API end-point internally. However, since at the

time of data collection, the data for the year 2019 is not a complete year’s data;

hence, we have not used the data for 2019 in our problem for the sake of sim-

plicity. The dataset includes stocks from multiple sectors like Indian consumer

products manufacturers - HINDUNILVR.NS, oil and gas - CAIRN.NS, pharma-

ceuticals - AUROPHARMA.NS, DRREDDY.NS, mining and metal industry -

NATIONALUM.BO, etc.

4.2. Labeling

After curating the dataset for 15 stocks with values for the features - date,

symbol, adjusted (adj.) close price, opening price, low price, high price, and net

asset value, we have labeled the data. We will call the adj. close price as Close

Price in the rest of the paper. In the labeling phase, we manually assign the

labels to the daily close prices as Buy (0), Hold (1), Sell (2). The labels are

determined by performing a grid search on the list of holding percentages to

identify the percentage change for which the stocks should be held to maximize

the annualized returns for the company. Algorithm 1 gives the details of the

labeling process.

15

Algorithm 1 Labelling Method

Input : CP - Array of Closing Prices, S - stock/symbol

Parameter : X - array of K holding percentages,

NUMDAYS - number of days for the current symbol or len(CP)

Labels - 2D array of size K x NUMDAYS

Output : FinalLabels - Labelled Dataset for S

1: AR = [] //it is of size K

2: for k = 0, 1, 2, . . . ,K − 1 do

3: for n = 0, . . . , NUMDAY S − 1 do

4: change = abs((CP [n+ 1]− CP [n]/CP [n]) ∗ 100) //where CP[n+1] is

the next day closing price

5: if change > X[k] then

6: if CP [n+ 1] > CP [n] then

7: label == “Sell”

8: else

9: label == “Buy”

10: end if

11: else

12: label == “Hold”

13: end if

14: Labels[k].append(label)

15: end for

16: ar = AnnualisedReturn(Labels[k],CP)

17: AR.append(ar)

18: end for

19: maxAr = Max(AR), maxIndex = index(Max(AR))

20: HoldPercentage = X[maxIndex]

21: FinalLabels = Labels[maxIndex]

22: return FinalLabels

23: Repeat all steps till 22 for all the Stocks/Symbols in the dataset.

16

4.3. Training Details

We use the sliding walk forward validation technique which is used as the

cross-validation technique in case of time-series data also shown in Figure 3.

As can be seen from Figure 3, we use 10 years of data for training and the

subsequent 1 year data for testing, i.e., the stock data from 1998-2007 is for

training and the year 2008 for testing. Then we slide the training window by

1 year which implies that we next train it from 1999-2008 and test it on the

following year 2009 data and this period is called as horizon. In general, we

train for 10 years, test it for the following year and then slide it by a 1 year

horizon and again train and test and so on till the year 2018. Thus, 11 years

of data from 2008 - 2018 are used as test data. This way, we have 11 models

and we select the set of hyperparameters that give the best results across all the

11 models. The set of hyperparameters that we tune includes µ, λ, kernel sizes,

number of filters/kernels, learning rate, weight decay of the Adam optimizer,

batch size, and number of epochs. Additionally, we randomly initialize the

weights for each stock’s training. This appears here as a very efficient technique

to analyse the robustness of the architecture. In other words, we calculate the

model performance every time a year’s data becomes available for testing and

we use previous 1 year test data for training. We standardize the training and

the test data using Normalizer from Python library as prices and the NAV

features/channels have a varied range of values.

17

Figure 3: Sliding walk-forward validation technique used for hyperparameters tuning

5. Experimental Evaluation

We carry out experiments on the real world problem of stock trading. Stock

trading is a classification problem, where the decision whether to buy or hold

or sell a stock has to be taken at each time. The problem makes a decision

that if the price of a stock at a later date is expected to increase, the stock

must be bought; and if the stock price is expected to go down, the stock must

be sold; and if there is no change in the price then it should be held, i.e., do

nothing until the price increases. This is done in a way so as to maximize the

annualized returns from the stock for the company’s profit as mentioned in the

labeling process.

We use the five raw inputs for both the tasks, namely open price, close price,

high, low and net asset value (NAV). We chose to stay with the raw values.

However, one could compute technical indicators based on the raw inputs [1]

but raw values allow here to keep up with the essence of the true nature of

representation learning. Each of the five inputs is processed by a separate 1D

processing pipeline. Each of these pipelines produces a flattened output (Figure

2). These flattened outputs are then concatenated and fed for fusion into the

Transform Learning layer acting as the fully connected layer (Figure 2). Further,

18

this is connected to another linear fully connected layer and finally, there is a

softmax function. The softmax function gives the classification output which

consists of the class probabilities for the three classes (BUY, HOLD and SELL).

We extend the architecture by adding CTL layers to 4 layers deep SDCF

architectures. The details for all the four architectures are briefed in Table 2.

Maxpooling halves the input sequence length/window size/Time Steps with its

every operation. Thus, after 3 layers, the size is reduced to the value that it

cannot be employed after the 4th CTL layer; and, hence, the architecture with

4 CTL layers of SDCF will not have maxpooling operation after layer 4. This is

due to the small window size. Also, for making predictions on any day, the past

10 days will be analysed through the model which are labeled as Time Steps

shown in Figure 2. Additionally, to avoid the data leak, we do not predict the

stock trading signal for the first 10 days of every test year. The predictions

from every year totaling to 11 years will be saved and further, the metrics will

be computed to analyse the performance of our model. We will compute two

sets of metrics here, namely (i) classification metrics and (ii) financial metrics.

(i) Classification Metrics - This set of metrics includes class-wise F1 score,

Precision and Recall to assess the performance from a classification point

of view. We also calculate the weighted F1 Score, Precision and Recall

to account for the class imbalance for every stock. Note that, in such

case, the F1 score is not equivalent to the harmonic mean of Precision and

Recall since it is weighted.

(ii) Financial Metrics - We also evaluate the performance of our framework and

state-of-the-art from the financial point of view. We calculate, in specific,

the Annualized Returns(AR) which is calculated using the predictions

from all the models. The AR value will be calculated as mentioned in [1].

The starting capital will be Rs 10,00,00,000.0 and transaction charges will

be Rs 10. We will use Indian currency to calculate the AR values since we

have used all the Indian stocks. Note, however, that our metric is versatile

and could be used to evaluate the model in any currency depending on

19

the stocks analysed.

Table 2: Description of compared models

Method Architecture Description Other Parameters

SDCF 1L

5×

layer1 : 1D Conv(1, 16, 3, 1, 1)1

Maxpool(2, 2)2

layer2 : Fully Connected (TL)3

layer3 : Fully Connected (Linear)

Softmax

LearningRate = 0.001,

λ = 0.01, µ = 0.0001

epochs = 100,

Optimizer Used: Adam

with parameters

(β1, β2) = (0.9, 0.999),

weight decay = 1e-4,

epsilon = 1e-8

SDCF 2L

5×

layer1 : 1D Conv(1, 8, 3, 1, 1)1

SELU+Maxpool(2, 2)2

layer2 : 1D Conv(8, 16, 3, 1, 1)1

Maxpool(2, 2)2

layer3 : Fully Connected (TL)3

layer4 : Fully Connected (Linear)

Softmax

SDCF 3L

5×

layer1 : 1D Conv(1, 4, 11, 1, 5)1

SELU+Maxpool(2, 2)2

layer2 : 1D Conv(4, 8, 7, 1, 3)1

SELU+Maxpool(2, 2)2

layer3 : 1D Conv(8, 16, 3, 1, 1)1

Maxpool(2, 2)2

layer4 : Fully Connected (TL)3

layer5 : Fully Connected (Linear)

Softmax

20

SDCF 4L

5×

layer1 : 1D Conv(1, 4, 13, 1, 6)1

SELU+Maxpool(2, 2)2

layer2 : 1D Conv(4, 8, 11, 1, 5)1

SELU+Maxpool(2, 2)2

layer3 : 1D Conv(8, 16, 9, 1, 4)1

SELU+Maxpool(2, 2)2

layer4 : 1D Conv(8, 16, 5, 1, 2)1

layer5 : Fully Connected (TL)3

layer6 : Fully Connected (Linear)

Softmax

1 (in˙planes, out˙planes, kernel size, stride, padding)

2 (kernel size, stride)

3 TL - Transform Learning

L - #CTL layers

We compare with three state-of-the-art time series based analysis models,

out of which two techniques present the models proposed specifically for financial

stock trading - CNN-TA [1] and MFNN [8]; and the last technique presents a

generic model for time-series based data - FCN(Fully Convolutional Network)

[50]. The latter is used as it helps understand how generic the proposed model

is if compared against both specific stock trading based and general time-series

models. In all the techniques, processing pipelines are based on CNN. Other

than CNN, MFNN [8] is also based on the RNN type of network - LSTM. In [1],

the data is not used raw but processed as technical indicator values and passed

as an image, hence uses 2D CNN whereas, in FCN [50], the data is processed

via 2D CNN. The same hyperparameters for the benchmark techniques are used

as given in the study except for FCN which is best tuned for our data. We have

also compared our model to the simple CNN with the architecture same as

that of our framework i.e. 3 convolutional layers deep architecture and used

the same hyperparameters too except the kernel sizes of P1 = 11, P2 = 9 and

P3 = 7 for the convolutional layers ℓ = 1, 2 and 3 (padding size is Pℓ/2). The

difference lies in the objective function of the convolutional learning in both

21

the techniques i.e. our 3 layers deep SDCF and 3 layers deep simple 1D CNN.

This is done to analyze the performance difference between the two supervised

learning techniques. Additionally, we chose the architecture for CNN having 3

convolutional layers, since the results depleted after 3 convolutional layers for

our framework and were best with 3 layers.

5.1. Classification Analysis

As mentioned previously, we first look at the Classification performance of

our models. We test the framework for shallow - 1 CTL layer and deeper ver-

sions - 2, 3 and 4 CTL layers. The generated features from the fully connected

layers are passed to the softmax and we get the probabilities for all the classes.

The one with the maximum probability is selected as the predicted label. The

performance is calculated for every class. Specifically, metrics - F1 Score, Pre-

cision and Recall are calculated for BUY, HOLD and SELL classes. The results

are detailed in Table A.8, A.9, A.10 in Appendix A.

Certain results are highlighted in bold or red. The first set of results in bold

are the ones where one or more techniques for each metric give the best/greater

than or equal performance. Analysing it in detail, we find that there are 8 stocks

for which our proposed model performs greater than or equal to when compared

with benchmark techniques for F1 score in case of the BUY class. Following

the same, we find that the SDCF gives greater than or equal to performance

for 13 stocks for precision and 5 stocks for recall metrics under the BUY class.

Similarly, 7 stocks for F1 score, 7 stocks for precision and 5 stocks for recall

in case of HOLD class and 7 stocks for F1 score, 11 stocks for precision and

6 stocks for recall in case of SELL class. Since we analyze our performance

difference to understand the technique that has better supervised learning, we

specifically look at the performance with CNN. CNN gives greater than or equal

to performance for 2 stocks for each metric under BUY class. Similarly, there

are 6, 1 and 9 stocks for the HOLD class and 2 stocks each for the metrics F1

score, precision and recall under SELL class.

Additionally, the other set of results in red indicate the performance where

22

one of our proposed model versions gives the similar/next best performance

under 0.02 error difference - err dif (let’s say) after one of the benchmarks i.e.

0.0 < err dif ≤ 0.02. Adhering to the same, we observed that for BUY class,

there is 1 stock each for metrics F1 score, precision and recall respectively.

Likewise, for the HOLD class, there are 7, 4 and 5 stocks for F1 score, precision

and recall metrics respectively; and for SELL class, we have 1 stock each for

F1 score and recall metrics. We haven’t, although, highlighted the results for

CNN when it gives similar/next best performance but we present the statistics

for the same here. Analyzing for CNN, there are 2 and 3 stocks for F1 score

and precision under HOLD class. Observing these statistics, they indicate that

the performance with our model is better than CNN for all three BUY, HOLD

and SELL classes.

Table 3: Summary of BUY Class Classification Results for Stock Trading

Method
Avg. BUY

F1 Score

Avg. BUY

Precision

Avg. BUY

Recall

SDCF 1L 0.0645 0.2182 0.0475

SDCF 2L 0.0916 0.2356 0.0683

SDCF 3L 0.1091 0.2205 0.0854

SDCF 4L 0.1566 0.3242 0.1355

CNN 0.0688 0.1179 0.0551

FCN 0.0758 0.1446 0.0617

CNN-TA 0.1205 0.1611 0.1263

MFNN 0.0881 0.1672 0.2401

23

Table 4: Summary of HOLD Class Classification Results for Stock Trading

Method
Avg. HOLD

F1 Score

Avg. HOLD

Precision

Avg. HOLD

Recall

SDCF 1L 0.7983 0.7091 0.9446

SDCF 2L 0.7912 0.7113 0.9164

SDCF 3L 0.7813 0.7113 0.8842

SDCF 4L 0.6684 0.5950 0.7960

CNN 0.7909 0.7090 0.9239

FCN 0.7825 0.7119 0.9051

CNN-TA 0.7686 0.7142 0.8557

MFNN 0.5161 0.6425 0.5718

Table 5: Summary of SELL Class Classification Results for Stock Trading

Method
Avg. SELL

F1 Score

Avg. SELL

Precision

Avg. SELL

Recall

SDCF 1L 0.0423 0.1778 0.0285

SDCF 2L 0.0650 0.1752 0.0503

SDCF 3L 0.0759 0.1574 0.0635

SDCF 4L 0.1410 0.2139 0.1250

CNN 0.0481 0.0946 0.0379

FCN 0.0742 0.1658 0.0802

CNN-TA 0.0679 0.1768 0.0487

MFNN 0.0633 0.1034 0.1734

The summary results for individual classes corresponding to every metric are

given in Tables 3, 4, 5 above. The average metric values for which the model

gives the best performance are average F1 score and precision for BUY class,

average F1 score and recall for HOLD class, average F1 score and precision for

SELL class; where F1 score being important metric, as it is the harmonic mean

24

of precision and recall, is the best with our model for all three classes.

As we can observe, the performance for HOLD class decrease when increasing

the number of layers for our model. However, we can also see that there is an

increase in correct identification for BUY and SELL points despite the fact

that BUY and SELL points appear extremely less in case of every stock as

compared to HOLD points. The latter identification capacity is actually more

crucial for the financial system as it directly influences the financial gains or

loss. Moreover, the overall individual class performance indicate that the model

captures all three classes i.e. BUY, HOLD and SELL well. This is also indicated

in the confusion matrices, given for each of the shallow and deeper versions of

our framework in Figure 4. With an increase in layers, the model starts to more

correctly identify the BUY and SELL points. The HOLD signal has more false

positives with shallow architecture (SDCF 1L) that decreases with the increase

in layer number, which is important for the system in order to correctly classify

other class points. Additionally, the overall performance with our model is

better than the CNN.

25

(a) CTL 1Layer (b) CTL 2Layers

(c) CTL 3Layers (d) CTL 4Layers

Figure 4: Confusion matrices corresponding to the different number of CTL layers of the

architecture: a) 1 layer of CTL (shallow version), b) 2 layers of CTL (deep version), c) 3

layers of CTL (deep version) and d) 4 layers of CTL (deep version) where 0 - BUY, 1 -

HOLD, 2 - SELL signals.

To better analyze the framework performance, we calculate the weighted F1

score, precision and recall metric values for all the stocks under consideration.

We calculate the weighted values to incorporate the class imbalance for every

stock. The detailed and summary results are given in Table A.11 in Appendix A

and Table 6. Again, the results comprise two sets of values marked in bold or

red with the same err dif of 0.02. There are 6, 9, and 5 stocks with respect to the

metrics F1 score, precision and recall for which the model performs greater than

or equal to the performance given by the state-of-the-arts. Also, there are 6, 3

26

and 6 stocks for the metrics F1 score, precision and recall respectively for which

the model gives the next best performance under 0.02 err dif. Although the

BUY and SELL classes performance with the 4 CTL Layers deep architecture

is better than the benchmarks compared against, but the overall performance

from the average weighted metric is suggestive of the good performance with

the 3 layers deep architecture classification wisely. This is also suggested from

the financial results explained later.

Again analyzing explicitly for CNN, we have 4, 2 and 7 stocks with greater

than or equal performance; and 3, 2 and 3 stocks under similar/next best per-

formance for the metrics F1 score, precision and recall respectively. As can be

referenced from the statistics presented here, our model is giving better results

with greater than or equal and the next best/similar performances except for

the number of stocks for recall metric are slightly more with CNN under greater

than or equal to performance. However, the next best performance statistic for

the recall metric is much better than CNN. Overall performance on an average

is good with our proposed model as compared to the benchmarks and CNN

which can be also referred from Table 6. For a deeper understanding of the

aforementioned statistics, please refer to Table C.13 in Appendix C.

Table 6: Summary of Weighted Classification Results for Stock Trading

Method
Avg.

F1 Score

Avg.

Precision

Avg.

Recall

SDCF 1L 0.6169 0.6216 0.6941

SDCF 2L 0.6229 0.6207 0.6867

SDCF 3L 0.6250 0.6146 0.6784

SDCF 4L 0.5345 0.5464 0.5890

CNN 0.6182 0.5907 0.6898

FCN 0.6090 0.6079 0.6725

CNN-TA 0.6148 0.6161 0.6575

MFNN 0.4162 0.5509 0.4676

27

5.2. Financial Analysis

It is very important to analyse the performance from a financial perspective

to understand the quality of predictions made by our model. For this, as ex-

plained earlier, we have calculated the AR values with the predictions generated

by each of the techniques for every stock over 11 years. We also calculate the

AR values with the True labels for every stock over the same period. Finally,

we calculate the absolute difference/error between the AR values from Predic-

tions and the AR values from True labels. We average the absolute difference

values for all stocks yielding the so-called Mean Absolute Error. The detailed

results are given in Table B.12. With our proposed model 5 stocks have the best

performance whereas with CNN-TA there is 1 stock and 2 stocks under MFNN

and FCN. On the whole, the performance is good with our proposed model as

also evident from the summary results in Table 7 where we have a mean of the

absolute difference/error(MAE) between the True AR and Predicted AR. Also,

there are 3 stocks for which the proposed model gives an equal performance as

the other benchmark techniques. Here, this set of results is illustrating that,

despite the higher capability of identifying the BUY and SELL points with 4

layers deep CTL, the AR values are better predicted with the 3 layers deep CTL

framework.

With respect to CNN, there are only 2 stocks for which CNN performs better

than any benchmarks and our proposed models, and 3 stocks for which it gives

an equal performance. Thus, from the combined (greater than or equal to and

next best / similar), average and the financial results, the CNN results are less

performant than our model. This also indicates that the quality of predictions

made with our model is better than CNN as the identified class labels give

AR values quite close to the True AR values. This remains true for all the

benchmarks. The statistics presented here can be deduced from Table C.13 in

Appendix C for complete understanding.

28

Table 7: Summary of Financial Results for Stock Trading

Method MAE AR

SDCF 1L 22.5613

SDCF 2L 20.7227

SDCF 3L 20.5067

SDCF 4L 22.8287

CNN 21.1140

FCN 23.7720

CNN-TA 22.1380

MFNN 22.3040

To further understand the better supervised learning for both regular CNN

and our SDCF framework, we visualize channel-wise Xc features for both the

frameworks which are obtained after the last maxpool layer for the 3 convolu-

tional layers deep framework. The following Figure 5 shows the visualizations

of the features for one sample of the stock ‘BSELINFRA.BO’.

29

Features generated by the proposed SDCF network.

Features generated by a standard CNN with a similar architecture.

(a) Channel X1

Close Price

(b) Channel X2

Open Price

(c) Channel X3

High Price

(d) Channel X4

Low Price

(e) Channel X5

NAV

Figure 5: Visualization of channel-wise features Xc for SDCF versus a standard CNN, for one

sample of stock BSELINFRA.BO (with 16x1 as the shape of the features obtained and resized

to 8x2 for better visualization)

30

As can be seen from Figure 5, heatmap for each channel corresponding to

the prices(Close, Open, High and Low) show no variation in the case of CNN

as compared to the SDCF architecture. While it shows some variations for

the features learnt corresponding to NAV, however, the features are still better

learnt with SDCF. Also, darker the color in the heatmap, more it is indicative of

the larger negative exponent values. In the case of CNN, hence, the values are

very very small that are almost diminishing to zero. This also corroborates the

fact that the filters learnt with our model are distinct due to the “log-det” term

added which further gives different features with very less redundancy. Thus,

the visualizations of these channel-wise features are also supportive of better

supervised training with our framework than CNN.

Overall, our model performs better than benchmarks and CNN both classification-

wise and financially, specifically, it gives the best performance with 3 CTL lay-

ers deep SDCF framework of all the 4 SDCF architectures. We also display

the empirical convergence plots for a few stocks, namely INDRAMEDCO.BO

and NATIONALUM.BO in Figure 6 for both shallow and deeper versions. We

can see that the training loss decreases to a point of stability for each example

considered.

31

(a) CTL 1 layer (b) CTL 2 layers

(c) CTL 3 layers (d) CTL 4 layers

Figure 6: Evolution of the loss during training for few stock examples, of our proposed model

with (a) CTL 1 layer, (b) CTL 2 layers, (c) CTL 3 layers and (d) CTL 4 layers.

32

6. Conclusion

In this work, we propose SDCF, a deep fusion end-to-end framework for

the processing of stock trading data. Unlike other deep learning models, our

framework is a fusion supervised framework. It relies on a novel deep version

of our recently proposed CTL model. We have applied the proposed model for

stock trading leading to very good performance. In particular, the classifica-

tion results are better with the proposed SDCF model, than with the 1-D CNN

approach. Also, the features Xc visualized for each channel and each method

indicate the better feature learning with SDCF. The results show that the pro-

posed solution is superior to CNN and other state-of-the arts techniques in this

problem.

We believe that the framework is generic enough to handle other multi-

channel fusion problems as well. In the future, we plan to extend the application

to other fusion 1-D as well as 2-D multi-channel problems to test its generality.

For example, we plan to implement it in the biomedical domain to analyse PPG

and ECG signals for the blood pressure estimation pertaining to the 1-D multi-

channel problem. In case of 2-D problems, we would like to do multi-spectral

image classification using this technique. Currently, the shortcoming with our

model is that it takes slightly more time than CNN, for its training. Thus, we

will investigate on the reduction of the time complexity of our framework in

order to make it more efficient from this viewpoint.

7. Acknowledgement

This work was supported by the CNRS-CEFIPRA project under grant NextGenBP

PRC2017.

33

References

[1] O. B. Sezer, A. M. Ozbayogl, Algorithmic financial trading with

deep convolutional neural networks: Time series to image con-

version approach, Applied Soft Computing 70 (2018) 525–538.

doi:https://doi.org/10.1016/j.asoc.2018.04.024.

[2] E. F. Fama, B. G. Malkiel, Efficient capital markets: A review of the-

ory and empirical work, The Journal of Finance 25(2) (1970) 383–417.

doi:https://doi.org/10.2307/2325486.

[3] B. G. Malkiel, A random walk down wall street, Norton, New York (1973).

[4] Y. Shynkevich, T. McGinnity, S. Coleman, A. Belatreche, Y. Li, Fore-

casting price movements using technical indicators: investigating the im-

pact of varying input window length, Neurocomputing 164 (2017) 163–173.

doi:https://doi.org/10.1016/j.neucom.2016.11.095.

[5] J. Patel, S. Shah, P. Thakkar, K. Kotecha, Predicting stock and stock

price index movement using trend deterministic data preparation and

machine learning techniques, Expert Syst. Appl. 42(1) (2015) 259–268.

doi:https://doi.org/10.1016/j.eswa.2014.07.040.

[6] J. Sen, T. Chaudhuri, A robust predictive model for

stock price forecasting, International Conference on Busi-

ness Analytics and Intelligence 42(1) (2017) 259–268.

doi:https://doi.org/10.13140/RG.2.2.19130.49603/1.

[7] M. Ballings, D. V. Poel, N. Hespeels, R. Gryp,

Evaluating multiple classifiers for stock price direction prediction,

Expert Systems with Applications 42 (20) (2015) 7046 – 7056.

doi:https://doi.org/10.1016/j.eswa.2015.05.013.

URL http://www.sciencedirect.com/science/article/pii/S0957417415003334

34

http://dx.doi.org/https://doi.org/10.1016/j.asoc.2018.04.024
http://dx.doi.org/https://doi.org/10.2307/2325486
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.11.095
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2014.07.040
http://dx.doi.org/https://doi.org/10.13140/RG.2.2.19130.49603/1
http://www.sciencedirect.com/science/article/pii/S0957417415003334
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2015.05.013
http://www.sciencedirect.com/science/article/pii/S0957417415003334

[8] W. Long, Z. Lu, L. Cui, Deep learning-based feature engineering for stock

price movement prediction, Knowledge-Based Systems 164 (2019) 163–173.

doi:https://doi.org/10.1016/j.knosys.2018.10.034.

[9] J. Yang, M. Nguyen, P. San, X. Li, S. Krishnaswamy, Deep convolutional

neural networks on multichannel time series for human activity recognition,

In Twenty-Fourth International Joint Conference on Artificial Intelligence

42(1) (June 2015) 259–268.

[10] S. Yao, S. Hu, Y. Zhao, A. Zhang, T. Abdelzaher, Deepsense: A unified

deep learning framework for time-series mobile sensing data processing,

In Proceedings of the 26th International Conference on World Wide Web

(April 2017) 351–360doi:https://doi.org/10.1145/3038912.3052577.

[11] J. Maggu, E. Chouzenoux, G. Chierchia, A. Majumdar,

Convolutional transform learning, In International Confer-

ence on Neural Information Processing (Dec 2018) 162–

174doi:https://doi.org/10.1007/978-3-030-04182-3_15.

[12] C. Kocak, Arma(p,q) type high order fuzzy time series forecast method

based on fuzzy logic relations, Applied Soft Computing 58 (2017) 92–103.

doi:https://doi.org/10.1016/j.asoc.2017.04.021.

[13] G. Zumbach, L. Fernndez, Option pricing with realistic

arch processes, Quantitative Finance 14(1) (2014) 143–170.

doi:https://doi.org/10.1080/14697688.2013.816437.

[14] Z. Lin, Modelling and forecasting the stock market volatil-

ity of sse composite index using garch models, Fu-

ture Generation Computer Systems 79 (2018) 960–972.

doi:https://doi.org/10.1016/j.future.2017.08.033.

[15] N. lk, D. Kuruppuarachchi, O. Kuzmicheva, Stock market’s re-

sponse to real output shocks in eastern european frontier markets:

35

http://dx.doi.org/https://doi.org/10.1016/j.knosys.2018.10.034
http://dx.doi.org/https://doi.org/10.1145/3038912.3052577
http://dx.doi.org/https://doi.org/10.1007/978-3-030-04182-3_15
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.04.021
http://dx.doi.org/https://doi.org/10.1080/14697688.2013.816437
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.08.033

A varwal model, Emerging Market Review 33 (2017) 140 – 154.

doi:https://doi.org/10.1016/j.ememar.2017.09.004.

[16] R. Bisoi, P. Dash, A hybrid evolutionary dynamic neural net-

work for stock market trend analysis and prediction using un-

scented kalman filter, Applied Soft Computing 19 (2014) 41–56.

doi:https://doi.org/10.1016/j.asoc.2014.01.039.

[17] F. Ming, F. Wong, Z. Liu, M. Chiang, Stock market predic-

tion from wsj: Text mining via sparse matrix factorization, 2014

IEEE International Conference on Data Mining, Shenzhen (2014) 430–

439doi:https://doi.org/10.1109/ICDM.2014.116.

[18] S. Barak, A. Arjmand, S. Ortobelli, Fusion of multiple diverse

predictors in stock market, Information Fusion 36 (2017) 90–102.

doi:https://doi.org/10.1016/j.inffus.2016.11.006.

[19] B. Weng, L. Lu, X. Wang, F. M. Megahed, W. Martinez,

Predicting short-term stock prices using ensemble methods and online data sources,

Expert Systems with Applications 112 (2018) 258 – 273.

doi:https://doi.org/10.1016/j.eswa.2018.06.016.

URL http://www.sciencedirect.com/science/article/pii/S0957417418303622

[20] Y. Chen, Y. Hao, A feature weighted support vector machine and k-nearest neighbor algorithm for stock market indices prediction,

Expert Systems with Applications 80 (2017) 340–355.

doi:https://doi.org/10.1016/j.eswa.2017.02.044.

URL http://www.sciencedirect.com/science/article/pii/S0957417417301367

[21] J. Patel, S. Shah, P. Thakkar, K. Kotecha,

Predicting stock market index using fusion of machine learning techniques,

Expert Systems with Applications 42 (4) (2015) 2162 – 2172.

doi:https://doi.org/10.1016/j.eswa.2014.10.031.

URL http://www.sciencedirect.com/science/article/pii/S0957417414006551

36

http://dx.doi.org/https://doi.org/10.1016/j.ememar.2017.09.004
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2014.01.039
http://dx.doi.org/https://doi.org/10.1109/ICDM.2014.116
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2016.11.006
http://www.sciencedirect.com/science/article/pii/S0957417418303622
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2018.06.016
http://www.sciencedirect.com/science/article/pii/S0957417418303622
http://www.sciencedirect.com/science/article/pii/S0957417417301367
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2017.02.044
http://www.sciencedirect.com/science/article/pii/S0957417417301367
http://www.sciencedirect.com/science/article/pii/S0957417414006551
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2014.10.031
http://www.sciencedirect.com/science/article/pii/S0957417414006551

[22] J. L. Ticknor, A bayesian regularized artificial neural network for stock

market forecasting, Expert Systems with Applications 40(14) (2013) 5501–

5506. doi:https://doi.org/10.1016/j.eswa.2013.04.013.

[23] D. M. Q. Nelson, A. C. M. Pereira, R. A. de Oliveira, Stock market’s price

movement prediction with lstm neural networks, 2017 International Joint

Conference on Neural Networks (IJCNN),Anchorage, AK (2017) 1419–

1426doi:https://doi.org/10.1109/IJCNN.2017.7966019.

[24] G. Tingwei, C. Yueting, Improving stock closing price prediction using

recurrent neural network and technical indicators, Neural Computation

30(10) (2018) 2833–2854. doi:https://doi.org/10.1162/neco_a_01124.

[25] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, A. Iosi-

fidis, Forecasting stock prices from the limit order book using convolutional

neural networks, In 2017 IEEE 19th Conference on Business Informatics

(CBI) 1 (July 2017) 7–12. doi:https://doi.org/10.1109/CBI.2017.23.

[26] M. U. Gudelek, S. A. Boluk, A. M. Ozbayoglu, A deep learning based

stock trading model with 2-d cnn trend detection, In 2017 IEEE Sym-

posium Series on Computational Intelligence (SSCI) (November 2017) 1–

8doi:https://10.1109/SSCI.2017.8285188.

[27] L. D. Persio, O. Honchar, Artificial neural networks architectures for stock

price prediction: Comparisons and applications, International journal of

circuits, systems and signal processing 10 (2016) 403–413.

[28] M. Hiransha, E. A. Gopalakrishnan, V. K. Menon, K. P.

Soman, Nse stock market prediction using deep-learning

models, Procedia computer science 132 (2018) 1351–1362.

doi:https://doi.org/10.1016/j.procs.2018.05.050.

[29] Y. Yoon, J. Cho, G. Yoon, Non-constrained blood pressure monitoring

using ecg and ppg for personal healthcare, Journal of medical systems 33(4)

(2009) 261–266. doi:https://doi.org/10.1007/s10916-008-9186-0.

37

http://dx.doi.org/https://doi.org/10.1016/j.eswa.2013.04.013
http://dx.doi.org/https://doi.org/10.1109/IJCNN.2017.7966019
http://dx.doi.org/https://doi.org/10.1162/neco_a_01124
http://dx.doi.org/https://doi.org/10.1109/CBI.2017.23
http://dx.doi.org/https://10.1109/SSCI.2017.8285188
http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.05.050
http://dx.doi.org/https://doi.org/10.1007/s10916-008-9186-0

[30] N.-E. El Faouzi, H. Leung, A. Kurian, Data fusion in intelligent transporta-

tion systems: Progress and challenges – a survey, Information Fusion 12

(2011) 4–10. doi:https://doi.org/10.1016/j.inffus.2010.06.001.

[31] I. Saadi, B. Farooq, A. Mustafa, J. Teller, M. Cools,

An efficient hierarchical model for multi-source information fusion,

Expert Systems with Applications 110 (2018) 352 – 362.

doi:https://doi.org/10.1016/j.eswa.2018.06.018.

URL http://www.sciencedirect.com/science/article/pii/S0957417418303646

[32] S. Daneshvar, H. Ghassemian, Mri and pet image fusion by combining

ihs and retina-inspired models, Information Fusion 11(2) (2010) 114–123.

doi:https://doi.org/10.1016/j.inffus.2009.05.003.

[33] J. Yang, M. Nguyen, P. San, X. Li, S. Krishnaswamy, Deep convolutional

neural networks on multichannel time series for human activity recognition,

In Twenty-Fourth International Joint Conference on Artificial Intelligence

(June 2015).

[34] Y. Zheng, Q. Liu, E. Chen, Y. Ge, J. Zhao, Time series classification using

multi-channels deep convolutional neural networks, In International Con-

ference on Web-Age Information Management,Springer, Cham (June 2014)

289–310doi:https://doi.org/10.1007/978-3-319-08010-9_33.

[35] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A. Ng, Multimodal deep

learning, In Proceedings of the 28th international conference on machine

learning (ICML-11) (2011) 689–696doi:10.5555/3104482.3104569.

[36] C. Feichtenhofer, A. Pinz, A. Zisserman, Convolutional two-stream net-

work fusion for video action recognition, In Proceedings of the IEEE

conference on computer vision and pattern recognition (2016) 1993–

1941doi:https://doi.org/10.1109/CVPR.2016.213.

[37] A. Eitel, J. Springenberg, L. Spinello, M. Riedmiller, W. Bur-

gard, Multimodal deep learning for robust rgb-d object recog-

38

http://dx.doi.org/https://doi.org/10.1016/j.inffus.2010.06.001
http://www.sciencedirect.com/science/article/pii/S0957417418303646
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2018.06.018
http://www.sciencedirect.com/science/article/pii/S0957417418303646
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2009.05.003
http://dx.doi.org/https://doi.org/10.1007/978-3-319-08010-9_33
http://dx.doi.org/10.5555/3104482.3104569
http://dx.doi.org/https://doi.org/10.1109/CVPR.2016.213

nition, In 2015 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS) (September 2015) 681–

687doi:https://doi.org/10.1109/IROS.2015.7353446.

[38] Y. Chen, C. Li, P. Ghamisi, X. Jia, Y. Gu, Deep fusion

of remote sensing data for accurate classification, IEEE Geo-

science and Remote Sensing Letters 14(8) (2017) 1253–1257.

doi:https://doi.org/10.1109/LGRS.2017.2704625.

[39] N. Antropova, B. Huynh, M. Giger, A deep feature fusion method-

ology for breast cancer diagnosis demonstrated on three imag-

ing modality datasets, Medical physics 44(10) (2017) 5162–5171.

doi:https://doi.org/10.1002/mp.12453.

[40] S. Ravishankar, Y. Bresler, Learning sparsifying transforms,

IEEE Transactions on Signal Processing 61(5) (2012) 1072–1086.

doi:https://doi.org/10.1109/TSP.2012.2226449.

[41] H. Attouch, J. Bolte, B. F. Svaiter, Convergence of de-

scent methods for semi-algebraic and tame problems: proximal

algorithms,forward-backward splitting, and regularized gauss-seidel

methods, Mathematical Programming 137 (Feb 2011) 91–129.

doi:https://doi.org/10.1007/s10107-011-0484-9.

[42] E. Chouzenoux, J. C. Pesquet, A. Repetti, A block coordinate variable

metric forward-backward algorithm, Journal on Global Optimization 66(3)

(2016) 457–485. doi:https://doi.org/10.1007/s10898-016-0405-9.

[43] J. Bolte, S. Sabach, M. Teboulle, Proximal alternating lin-

earized minimization for nonconvex and non-smooth prob-

lems, Mathematical Programming 146(1-2) (2014) 459–494.

doi:https://doi.org/10.1007/s10107-013-0701-9.

[44] P. L. Combettes, J. Pesquet, Proximal splitting methods in sig-

nal processing, In: Bauschke H., Burachik R., Combettes P.,

39

http://dx.doi.org/https://doi.org/10.1109/IROS.2015.7353446
http://dx.doi.org/https://doi.org/10.1109/LGRS.2017.2704625
http://dx.doi.org/https://doi.org/10.1002/mp.12453
http://dx.doi.org/https://doi.org/10.1109/TSP.2012.2226449
http://dx.doi.org/https://doi.org/10.1007/s10107-011-0484-9
http://dx.doi.org/https://doi.org/10.1007/s10898-016-0405-9
http://dx.doi.org/https://doi.org/10.1007/s10107-013-0701-9

Elser V., Luke D., Wolkowicz H. (eds) Fixed-Point Algorithms

for Inverse Problems in Science and Engineering. Springer Op-

timization and Its Applications,Springer,New York 49 (2011).

doi:https://doi.org/10.1007/978-1-4419-9569-8_10.

[45] P. Combettes, J.-C. Pesquet, Deep neural network structures solving variational inequalities,

Set-Valued and Variational Analysis (2018).

URL https://arxiv.org/abs/1808.07526

[46] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, Proc.

of ICLR (2015).

URL https://arxiv.org/abs/1412.6980

[47] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch,

NIPS Autodiff Workshop (2017).

[48] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochre-

iter, Self-normalizing neural networks, Proc. of NeurIPS

(2017)doi:https://doi.org/10.5555/3294771.3294864.

[49] A. Mass, A. Hannun, A. Ng, Rectifier nonlinearities improve neural network

acoustic models, Proc. of ICML (2013).

[50] Z. Wang, W. Yan, T. Oates, Time series classification from scratch with

deep neural networks: A strong baseline, 2017 International Joint Confer-

ence on Neural Networks (IJCNN) (2017) 1578–1585.

40

http://dx.doi.org/https://doi.org/10.1007/978-1-4419-9569-8_10
https://arxiv.org/abs/1808.07526
https://arxiv.org/abs/1808.07526
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://dx.doi.org/https://doi.org/10.5555/3294771.3294864

Appendix A. Class-Wise Classification Results for Stock Trading

This section displays all the tables with the Classification Metrics results, both

class-wise and weighted, for stock trading.

Table A.8: Classification Results for BUY Class for Stock Trading

SYMBOL Method
BUY

F1 Score

BUY

Precision

BUY

Recall

ALKYLAMINE.BO SDCF 1L 0.1022 0.2450 0.0646

SDCF 2L 0.1708 0.2222 0.1387

SDCF 3L 0.1670 0.2056 0.1407

SDCF 4L 0.1880 0.2500 0.1507

CNN 0.1678 0.2458 0.1274

FCN 0.1131 0.2484 0.0732

CNN-TA 0.0924 0.2308 0.0578

MFNN 0.1205 0.1974 0.0867

AUROPHARMA.NS SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0000 0.0000 0.0000

SDCF 3L 0.0048 0.3333 0.0024

SDCF 4L 0.0299 0.5000 0.0154

CNN 0.0000 0.0000 0.0000

FCN 0.0000 0.0000 0.0000

CNN-TA 0.0814 0.2121 0.0504

MFNN 0.0046 0.0625 0.0024

BPCL.NS SDCF 1L 0.0238 0.3125 0.0124

SDCF 2L 0.0318 0.3333 0.0167

SDCF 3L 0.0054 0.1250 0.0028

SDCF 4L 0.0988 0.4000 0.0563

CNN 0.0000 0.0000 0.0000

FCN 0.2275 0.2628 0.2006

CNN-TA 0.0000 0.0000 0.0000

41

MFNN 0.0107 0.1250 0.0056

BSELINFRA.BO SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0000 0.0000 0.0000

SDCF 3L 0.0000 0.0000 0.0000

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.0000 0.0000 0.0000

CNN-TA 0.0000 0.0000 0.0000

MFNN 0.0000 0.0000 0.0000

CAIRN.NS SDCF 1L 0.0744 0.3523 0.0416

SDCF 2L 0.2201 0.3646 0.1577

SDCF 3L 0.2348 0.3371 0.1802

SDCF 4L 0.3179 0.4068 0.2609

CNN 0.1212 0.3699 0.0725

FCN 0.0313 0.2895 0.0165

CNN-TA 0.2405 0.3023 0.1997

MFNN 0.0453 0.4000 0.0240

DEEPAKSP.BO SDCF 1L 0.1106 0.2293 0.0729

SDCF 2L 0.1280 0.2213 0.0900

SDCF 3L 0.1427 0.2305 0.1033

SDCF 4L 0.1818 0.2895 0.1325

CNN 0.1300 0.2243 0.0915

FCN 0.1437 0.2450 0.1017

CNN-TA 0.2590 0.2319 0.2933

MFNN 0.0457 0.2679 0.0250

DRREDDY.NS SDCF 1L 0.0134 0.1053 0.0072

SDCF 2L 0.0227 0.3750 0.0117

SDCF 3L 0.0148 0.1429 0.0078

SDCF 4L 0.0755 0.5000 0.0408

42

CNN 0.0000 0.0000 0.0000

FCN 0.0148 0.1429 0.0078

CNN-TA 0.1192 0.1769 0.0898

MFNN 0.1790 0.0985 0.9805

HCC.NS SDCF 1L 0.0238 0.0556 0.0152

SDCF 2L 0.0274 0.1000 0.0159

SDCF 3L 0.0290 0.1667 0.0159

SDCF 4L 0.0800 1.0000 0.0417

CNN 0.0000 0.0000 0.0000

FCN 0.0471 0.0909 0.0317

CNN-TA 0.0370 0.0197 0.3016

MFNN 0.0392 0.0203 0.6032

HINDPETRO.NS SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0000 0.0000 0.0000

SDCF 3L 0.0000 0.0000 0.0000

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.0377 0.0500 0.0303

CNN-TA 0.0000 0.0000 0.0000

MFNN 0.0543 0.0319 0.1818

INDRAMEDCO.BO SDCF 1L 0.0744 0.3523 0.0416

SDCF 2L 0.2201 0.3646 0.1577

SDCF 3L 0.2474 0.3377 0.1952

SDCF 4L 0.3358 0.5111 0.2500

CNN 0.1212 0.3699 0.0725

FCN 0.0313 0.2895 0.0165

CNN-TA 0.2972 0.3446 0.2613

MFNN 0.0143 0.4167 0.0073

IOC.BO SDCF 1L 0.0976 0.5000 0.0541

43

SDCF 2L 0.1026 0.5000 0.0571

SDCF 3L 0.1026 0.5000 0.0571

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.0533 0.0500 0.0571

CNN-TA 0.0000 0.0000 0.0000

MFNN 0.0267 0.0250 0.0286

KENNAMET.BO SDCF 1L 0.3173 0.3137 0.3210

SDCF 2L 0.2771 0.3303 0.2387

SDCF 3L 0.2857 0.3160 0.2607

SDCF 4L 0.3662 0.3611 0.3714

CNN 0.3236 0.3131 0.3349

FCN 0.2792 0.3078 0.2555

CNN-TA 0.3558 0.3224 0.3969

MFNN 0.0269 0.3667 0.0140

NATIONALUM.BO SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0000 0.0000 0.0000

SDCF 3L 0.0000 0.0000 0.0000

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.0000 0.0000 0.0000

CNN-TA 0.0000 0.0000 0.0000

MFNN 0.0000 0.0000 0.0000

NATIONALUM.NS SDCF 1L 0.0025 0.5000 0.0013

SDCF 2L 0.0026 0.5000 0.0013

SDCF 3L 0.1775 0.3516 0.1187

SDCF 4L 0.3576 0.3253 0.3971

CNN 0.0000 0.0000 0.0000

FCN 0.0000 0.0000 0.0000

44

CNN-TA 0.2471 0.3286 0.1980

MFNN 0.4342 0.2987 0.7949

NITINALOY.BO SDCF 1L 0.1272 0.3067 0.0803

SDCF 2L 0.1708 0.2222 0.1387

SDCF 3L 0.2242 0.2609 0.1965

SDCF 4L 0.3172 0.3194 0.3151

CNN 0.1678 0.2458 0.1274

FCN 0.1587 0.1928 0.1349

CNN-TA 0.0779 0.2474 0.0462

MFNN 0.3208 0.1978 0.8478

45

Table A.9: Classification Results for HOLD Class for Stock Trading

SYMBOL Method
HOLD

F1 Score

HOLD

Precision

HOLD

Recall

ALKYLAMINE.BO SDCF 1L 0.7216 0.6062 0.8912

SDCF 2L 0.6932 0.6137 0.7963

SDCF 3L 0.6762 0.6113 0.7565

SDCF 4L 0.5761 0.5072 0.6667

CNN 0.7214 0.6196 0.8632

FCN 0.7318 0.6060 0.9236

CNN-TA 0.7298 0.5951 0.9432

MFNN 0.0906 0.6048 0.0490

AUROPHARMA.NS SDCF 1L 0.7887 0.6523 0.9973

SDCF 2L 0.7849 0.6474 0.9964

SDCF 3L 0.7850 0.6473 0.9970

SDCF 4L 0.7024 0.5458 0.9850

CNN 0.7878 0.6499 1.0000

FCN 0.7815 0.6480 0.9845

CNN-TA 0.7722 0.6524 0.9457

MFNN 0.0661 0.5463 0.0352

BPCL.NS SDCF 1L 0.8136 0.6891 0.9930

SDCF 2L 0.8158 0.6927 0.9922

SDCF 3L 0.8153 0.6912 0.9939

SDCF 4L 0.5982 0.4322 0.9714

CNN 0.8152 0.6880 1.0000

FCN 0.8085 0.7169 0.9271

CNN-TA 0.8138 0.6914 0.9889

MFNN 0.8068 0.6904 0.9705

BSELINFRA.BO SDCF 1L 0.9860 0.9723 1.0000

SDCF 2L 0.9881 0.9765 1.0000

46

SDCF 3L 0.9881 0.9765 1.0000

SDCF 4L 0.9918 0.9837 1.0000

CNN 0.9860 0.9723 1.0000

FCN 0.9782 0.9761 0.9803

CNN-TA 0.9840 0.9763 0.9917

MFNN 0.4514 0.9751 0.2937

CAIRN.NS SDCF 1L 0.6850 0.5274 0.9768

SDCF 2L 0.6738 0.5364 0.9060

SDCF 3L 0.6698 0.5390 0.8845

SDCF 4L 0.5019 0.3860 0.7174

CNN 0.6812 0.5299 0.9535

FCN 0.6804 0.5217 0.9778

CNN-TA 0.6613 0.5567 0.8142

MFNN 0.6806 0.5249 0.9674

DEEPAKSP.BO SDCF 1L 0.6771 0.5564 0.8648

SDCF 2L 0.6426 0.5380 0.7977

SDCF 3L 0.6261 0.5395 0.7460

SDCF 4L 0.4925 0.3837 0.6875

CNN 0.6517 0.5497 0.8000

FCN 0.6463 0.5488 0.7860

CNN-TA 0.5636 0.5404 0.5888

MFNN 0.6872 0.5338 0.9643

DRREDDY.NS SDCF 1L 0.8810 0.7920 0.9926

SDCF 2L 0.8799 0.7879 0.9961

SDCF 3L 0.8761 0.7893 0.9843

SDCF 4L 0.7558 0.6176 0.9735

CNN 0.8833 0.7910 1.0000

FCN 0.8771 0.7872 0.9902

CNN-TA 0.8548 0.7970 0.9217

47

MFNN 0.0000 0.0000 0.0000

HCC.NS SDCF 1L 0.9660 0.9417 0.9915

SDCF 2L 0.9667 0.9411 0.9939

SDCF 3L 0.9668 0.9404 0.9947

SDCF 4L 0.8989 0.8163 1.0000

CNN 0.9697 0.9412 1.0000

FCN 0.9254 0.9535 0.8989

CNN-TA 0.7497 0.9368 0.6249

MFNN 0.4091 0.9263 0.2625

HINDPETRO.NS SDCF 1L 0.9688 0.9401 0.9993

SDCF 2L 0.9690 0.9407 0.9992

SDCF 3L 0.9690 0.9407 0.9992

SDCF 4L 0.9135 0.8408 1.0000

CNN 0.9691 0.9401 1.0000

FCN 0.8844 0.9545 0.8240

CNN-TA 0.9686 0.9406 0.9984

MFNN 0.8979 0.9428 0.8571

INDRAMEDCO.BO SDCF 1L 0.6850 0.5274 0.9768

SDCF 2L 0.6738 0.5364 0.9060

SDCF 3L 0.6678 0.5403 0.8742

SDCF 4L 0.5196 0.3862 0.7935

CNN 0.6812 0.5299 0.9535

FCN 0.6804 0.5217 0.9778

CNN-TA 0.6569 0.5665 0.7816

MFNN 0.6755 0.5202 0.9630

IOC.BO SDCF 1L 0.9817 0.9647 0.9993

SDCF 2L 0.9810 0.9634 0.9992

SDCF 3L 0.9810 0.9634 0.9992

SDCF 4L 0.9325 0.8735 1.0000

48

CNN 0.9817 0.9640 1.0000

FCN 0.9737 0.9628 0.9848

CNN-TA 0.9808 0.9624 1.0000

MFNN 0.9737 0.9628 0.9848

KENNAMET.BO SDCF 1L 0.5067 0.4475 0.5840

SDCF 2L 0.5201 0.4664 0.5878

SDCF 3L 0.4585 0.4407 0.4779

SDCF 4L 0.2419 0.2459 0.2381

CNN 0.4243 0.4236 0.4250

FCN 0.5202 0.4568 0.6040

CNN-TA 0.5381 0.4619 0.6445

MFNN 0.6001 0.4297 0.9947

NATIONALUM.BO SDCF 1L 0.9983 0.9966 1.0000

SDCF 2L 0.9984 0.9968 1.0000

SDCF 3L 0.9984 0.9968 1.0000

SDCF 4L 0.9959 0.9918 1.0000

CNN 0.9983 0.9966 1.0000

FCN 0.9888 0.9968 0.9810

CNN-TA 0.9983 0.9966 1.0000

MFNN 0.9775 0.9965 0.9592

NATIONALUM.NS SDCF 1L 0.5892 0.4188 0.9937

SDCF 2L 0.5869 0.4190 0.9792

SDCF 3L 0.5525 0.4242 0.7919

SDCF 4L 0.4000 0.4429 0.3647

CNN 0.5905 0.4189 1.0000

FCN 0.5857 0.4171 0.9830

CNN-TA 0.5258 0.4463 0.6397

MFNN 0.2237 0.4171 0.1528

NITINALOY.BO SDCF 1L 0.7252 0.6036 0.9082

49

SDCF 2L 0.6932 0.6137 0.7963

SDCF 3L 0.6891 0.6282 0.7631

SDCF 4L 0.5044 0.4711 0.5429

CNN 0.7214 0.6196 0.8632

FCN 0.6746 0.6105 0.7539

CNN-TA 0.7305 0.5927 0.9517

MFNN 0.2017 0.5663 0.1227

Table A.10: Classification Results for SELL Class for Stock Trading

SYMBOL Method
SELL

F1 Score

SELL

Precision

SELL

Recall

ALKYLAMINE.BO SDCF 1L 0.1207 0.2279 0.0821

SDCF 2L 0.1820 0.2681 0.1378

SDCF 3L 0.1945 0.2522 0.1583

SDCF 4L 0.3594 0.3710 0.3485

CNN 0.1278 0.2537 0.0854

FCN 0.0879 0.2800 0.0521

CNN-TA 0.0282 0.2667 0.0149

MFNN 0.3347 0.2075 0.8641

AUROPHARMA.NS SDCF 1L 0.0178 0.3333 0.0092

SDCF 2L 0.0193 0.3571 0.0099

SDCF 3L 0.0194 0.4167 0.0099

SDCF 4L 0.0385 0.2500 0.0208

CNN 0.0000 0.0000 0.0000

FCN 0.0510 0.3111 0.0278

CNN-TA 0.0524 0.2206 0.0298

MFNN 0.3210 0.1932 0.9484

BPCL.NS SDCF 1L 0.0039 0.1111 0.0020

SDCF 2L 0.0000 0.0000 0.0000

50

SDCF 3L 0.0000 0.0000 0.0000

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.0000 0.0000 0.0000

CNN-TA 0.0213 0.1786 0.0113

MFNN 0.0321 0.1429 0.0181

BSELINFRA.BO SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0000 0.0000 0.0000

SDCF 3L 0.0000 0.0000 0.0000

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.0000 0.0000 0.0000

CNN-TA 0.0000 0.0000 0.0000

MFNN 0.0319 0.0164 0.6383

CAIRN.NS SDCF 1L 0.0183 0.4286 0.0094

SDCF 2L 0.0230 0.2500 0.0120

SDCF 3L 0.0231 0.2800 0.0120

SDCF 4L 0.1282 0.3125 0.0806

CNN 0.0207 0.2000 0.0109

FCN 0.0197 0.2143 0.0103

CNN-TA 0.1337 0.2800 0.0879

MFNN 0.0431 0.2059 0.0241

DEEPAKSP.BO SDCF 1L 0.1140 0.2252 0.0763

SDCF 2L 0.1914 0.2890 0.1431

SDCF 3L 0.2174 0.2688 0.1826

SDCF 4L 0.2772 0.4000 0.2121

CNN 0.1436 0.2188 0.1069

FCN 0.2302 0.3068 0.1842

CNN-TA 0.1799 0.2577 0.1382

51

MFNN 0.0245 0.1818 0.0132

DRREDDY.NS SDCF 1L 0.0060 0.1667 0.0031

SDCF 2L 0.0066 0.2000 0.0034

SDCF 3L 0.0363 0.1765 0.0202

SDCF 4L 0.0417 0.3333 0.0222

CNN 0.0000 0.0000 0.0000

FCN 0.0129 0.1667 0.0067

CNN-TA 0.0700 0.1359 0.0471

MFNN 0.0116 0.0417 0.0067

HCC.NS SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0392 0.2222 0.0215

SDCF 3L 0.0000 0.0000 0.0000

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.1090 0.0730 0.2151

CNN-TA 0.0204 0.2000 0.0108

MFNN 0.0000 0.0000 0.0000

HINDPETRO.NS SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0000 0.0000 0.0000

SDCF 3L 0.0000 0.0000 0.0000

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.1007 0.0603 0.3068

CNN-TA 0.0000 0.0000 0.0000

MFNN 0.0000 0.0000 0.0000

INDRAMEDCO.BO SDCF 1L 0.0183 0.4286 0.0094

SDCF 2L 0.0230 0.2500 0.0120

SDCF 3L 0.0164 0.1852 0.0086

SDCF 4L 0.1081 0.3333 0.0645

52

CNN 0.0207 0.2000 0.0109

FCN 0.0197 0.2143 0.0103

CNN-TA 0.1506 0.2664 0.1050

MFNN 0.0587 0.2174 0.0339

IOC.BO SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0000 0.0000 0.0000

SDCF 3L 0.0000 0.0000 0.0000

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.0000 0.0000 0.0000

CNN-TA 0.0000 0.0000 0.0000

MFNN 0.0000 0.0000 0.0000

KENNAMET.BO SDCF 1L 0.2050 0.3039 0.1546

SDCF 2L 0.2697 0.2855 0.2556

SDCF 3L 0.2960 0.2880 0.3045

SDCF 4L 0.4387 0.4416 0.4359

CNN 0.2805 0.2927 0.2693

FCN 0.2739 0.3374 0.2304

CNN-TA 0.0883 0.3636 0.0503

MFNN 0.0000 0.0000 0.0000

NATIONALUM.BO SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0000 0.0000 0.0000

SDCF 3L 0.0000 0.0000 0.0000

SDCF 4L 0.0000 0.0000 0.0000

CNN 0.0000 0.0000 0.0000

FCN 0.0000 0.0000 0.0000

CNN-TA 0.0000 0.0000 0.0000

MFNN 0.0000 0.0000 0.0000

NATIONALUM.NS SDCF 1L 0.0053 0.1429 0.0027

53

SDCF 2L 0.0383 0.2381 0.0208

SDCF 3L 0.1540 0.2582 0.1097

SDCF 4L 0.4333 0.4333 0.4333

CNN 0.0000 0.0000 0.0000

FCN 0.0340 0.2955 0.0181

CNN-TA 0.2527 0.2887 0.2247

MFNN 0.0821 0.2500 0.0491

NITINALOY.BO SDCF 1L 0.1247 0.2994 0.0787

SDCF 2L 0.1820 0.2681 0.1378

SDCF 3L 0.1810 0.2351 0.1471

SDCF 4L 0.2906 0.3333 0.2576

CNN 0.1278 0.2537 0.0854

FCN 0.1747 0.2282 0.1415

CNN-TA 0.0211 0.1935 0.0112

MFNN 0.0105 0.0938 0.0056

54

Table A.11: Weighted Classification Results for Stock Trading

SYMBOL Method F1 Score Precision Recall

ALKYLAMINE.BO SDCF 1L 0.4738 0.4559 0.5590

SDCF 2L 0.4824 0.4635 0.5278

SDCF 3L 0.4741 0.4554 0.5089

SDCF 4L 0.4014 0.3934 0.4262

CNN 0.4882 0.4694 0.5556

FCN 0.4741 0.4666 0.5723

CNN-TA 0.4564 0.4539 0.5730

MFNN 0.1472 0.4407 0.2257

AUROPHARMA.NS SDCF 1L 0.5160 0.4869 0.6499

SDCF 2L 0.5104 0.4872 0.6451

SDCF 3L 0.5112 0.5522 0.6459

SDCF 4L 0.3952 0.4760 0.5407

CNN 0.5121 0.4224 0.6499

FCN 0.5144 0.4786 0.6409

CNN-TA 0.5217 0.4980 0.6243

MFNN 0.1057 0.4001 0.2071

BPCL.NS SDCF 1L 0.5638 0.5369 0.6852

SDCF 2L 0.5687 0.5252 0.6886

SDCF 3L 0.5647 0.4953 0.6878

SDCF 4L 0.2839 0.2999 0.4309

CNN 0.5608 0.4733 0.6880

FCN 0.5907 0.5322 0.6690

CNN-TA 0.5665 0.5086 0.6859

MFNN 0.5650 0.5191 0.6751

BSELINFRA.BO SDCF 1L 0.9587 0.9454 0.9723

SDCF 2L 0.9649 0.9536 0.9765

SDCF 3L 0.9649 0.9536 0.9765

55

SDCF 4L 0.9757 0.9677 0.9837

CNN 0.9587 0.9454 0.9723

FCN 0.9552 0.9531 0.9573

CNN-TA 0.9609 0.9534 0.9684

MFNN 0.4414 0.9525 0.2983

CAIRN.NS SDCF 1L 0.3801 0.4604 0.5216

SDCF 2L 0.4120 0.4283 0.5142

SDCF 3L 0.4137 0.4293 0.5089

SDCF 4L 0.3389 0.3752 0.3862

CNN 0.3907 0.4156 0.5178

FCN 0.3662 0.3934 0.5150

CNN-TA 0.4354 0.4296 0.4942

MFNN 0.3752 0.4215 0.5146

DEEPAKSP.BO SDCF 1L 0.4217 0.4075 0.5075

SDCF 2L 0.4168 0.4058 0.4791

SDCF 3L 0.4176 0.4039 0.4640

SDCF 4L 0.3293 0.3562 0.3714

CNN 0.4189 0.4013 0.4831

FCN 0.4315 0.4212 0.4853

CNN-TA 0.4024 0.4021 0.4140

MFNN 0.3821 0.3891 0.5221

DRREDDY.NS SDCF 1L 0.6988 0.6554 0.7862

SDCF 2L 0.6955 0.6800 0.7855

SDCF 3L 0.6952 0.6555 0.7778

SDCF 4L 0.4886 0.5419 0.6122

CNN 0.6987 0.6257 0.7910

FCN 0.6933 0.6528 0.7809

CNN-TA 0.6925 0.6602 0.7397

MFNN 0.0190 0.0145 0.0974

56

HCC.NS SDCF 1L 0.9097 0.8876 0.9336

SDCF 2L 0.9108 0.8949 0.9353

SDCF 3L 0.9094 0.8880 0.9353

SDCF 4L 0.7386 0.7612 0.8171

CNN 0.9127 0.8859 0.9412

FCN 0.8749 0.9011 0.8533

CNN-TA 0.7063 0.8882 0.5951

MFNN 0.3855 0.8712 0.2614

HINDPETRO.NS SDCF 1L 0.9108 0.8838 0.9394

SDCF 2L 0.9116 0.8849 0.9399

SDCF 3L 0.9116 0.8849 0.9399

SDCF 4L 0.7681 0.7070 0.8408

CNN 0.9111 0.8839 0.9401

FCN 0.8364 0.9012 0.7863

CNN-TA 0.9112 0.8848 0.9392

MFNN 0.8461 0.8877 0.8109

INDRAMEDCO.BO SDCF 1L 0.3801 0.4604 0.5216

SDCF 2L 0.4120 0.4283 0.5142

SDCF 3L 0.4144 0.4089 0.5065

SDCF 4L 0.3471 0.4196 0.4065

CNN 0.4316 0.4621 0.5223

FCN 0.3662 0.3934 0.5150

CNN-TA 0.4517 0.4425 0.4969

MFNN 0.3681 0.4259 0.5102

IOC.BO SDCF 1L 0.9476 0.9363 0.9640

SDCF 2L 0.9457 0.9341 0.9626

SDCF 3L 0.9457 0.9341 0.9626

SDCF 4L 0.8145 0.7629 0.8735

CNN 0.9456 0.9293 0.9634

57

FCN 0.9381 0.9276 0.9488

CNN-TA 0.9443 0.9267 0.9626

MFNN 0.9377 0.9272 0.9484

KENNAMET.BO SDCF 1L 0.3665 0.3677 0.3864

SDCF 2L 0.3790 0.3762 0.3926

SDCF 3L 0.3625 0.3616 0.3657

SDCF 4L 0.3574 0.3571 0.3577

CNN 0.3705 0.3709 0.3715

FCN 0.3808 0.3797 0.3976

CNN-TA 0.3601 0.3934 0.4072

MFNN 0.2646 0.2926 0.4295

NATIONALUM.BO SDCF 1L 0.9949 0.9932 0.9966

SDCF 2L 0.9953 0.9937 0.9968

SDCF 3L 0.9953 0.9937 0.9968

SDCF 4L 0.9877 0.9836 0.9918

CNN 0.9949 0.9932 0.9966

FCN 0.9857 0.9936 0.9779

CNN-TA 0.9949 0.9932 0.9966

MFNN 0.9742 0.9931 0.9560

NATIONALUM.NS SDCF 1L 0.2491 0.3655 0.4174

SDCF 2L 0.2564 0.3919 0.4146

SDCF 3L 0.3272 0.3553 0.3968

SDCF 4L 0.4005 0.4064 0.3992

CNN 0.2473 0.1755 0.4189

FCN 0.2539 0.2578 0.4150

CNN-TA 0.3653 0.3665 0.3903

MFNN 0.2460 0.3344 0.3141

NITINALOY.BO SDCF 1L 0.4817 0.4814 0.5715

SDCF 2L 0.4824 0.4635 0.5278

58

SDCF 3L 0.4675 0.4474 0.5027

SDCF 4L 0.3906 0.3885 0.3975

CNN 0.4956 0.4786 0.5455

FCN 0.4741 0.4666 0.5723

CNN-TA 0.4524 0.4406 0.5750

MFNN 0.1859 0.3943 0.2438

59

Appendix B. Financial Results for Stock Trading

This section mentions the table with financial results for stock trading for all

the stocks.

Table B.12: Financial Results for Stock Trading

SYMBOL Method True AR
Predicted

AR

Absolute

Difference AR

ALKYLAMINE.BO SDCF 1L 86.3000 5.7500 80.5500

SDCF 2L 12.3000 74.0000

SDCF 3L 25.9600 60.3400

SDCF 4L 10.3700 75.9300

CNN 8.2300 78.0700

FCN 1.6500 84.6500

CNN-TA 14.6200 71.6800

MFNN 6.4200 79.8800

AUROPHARMA.NS SDCF 1L -0.8300 9.9400 10.7700

SDCF 2L 9.9200 10.7500

SDCF 3L 10.5700 11.4000

SDCF 4L 10.3300 11.1600

CNN 0.0000 0.8300

FCN 9.2100 10.0400

CNN-TA 19.7400 20.5700

MFNN 0.6200 1.4500

BPCL.NS SDCF 1L 14.1200 0.7800 13.3400

SDCF 2L 0.3800 13.7400

SDCF 3L -0.3500 14.4700

SDCF 4L 0.2000 13.9200

CNN 0.0000 14.1200

FCN 0.0000 14.1200

CNN-TA 0.0000 14.1200

60

MFNN 1.3800 12.7400

BSELINFRA.BO SDCF 1L 7.5200 0.0000 7.5200

SDCF 2L 0.0000 7.5200

SDCF 3L 0.0000 7.5200

SDCF 4L 0.0000 7.5200

CNN 0.0000 7.5200

FCN -0.0700 7.5900

CNN-TA 0.0000 7.5200

MFNN 0.0000 7.5200

CAIRN.NS SDCF 1L 9.6600 2.6100 7.0500

SDCF 2L 2.2300 7.4300

SDCF 3L 1.4400 8.2200

SDCF 4L 0.1100 9.5500

CNN 6.4100 3.2500

FCN 5.4900 4.1700

CNN-TA 1.4400 8.2200

MFNN 4.3300 5.3300

DEEPAKSP.BO SDCF 1L 55.8800 12.6400 43.2400

SDCF 2L 19.9200 35.9600

SDCF 3L 9.0700 46.8100

SDCF 4L -2.2900 58.1700

CNN 18.3800 37.5000

FCN 1.0200 54.8600

CNN-TA 6.9100 48.9700

MFNN 19.8300 36.0500

DRREDDY.NS SDCF 1L 10.8200 4.7500 6.0700

SDCF 2L 16.6000 5.7800

SDCF 3L 13.2000 2.3800

SDCF 4L 2.5000 8.3200

61

CNN 0.0000 10.8200

FCN 16.1800 5.3600

CNN-TA 4.3200 6.5000

MFNN 17.5800 6.7600

HCC.NS SDCF 1L 3.0200 4.39000 1.3700

SDCF 2L 4.4300 1.4100

SDCF 3L 5.3900 2.3700

SDCF 4L 5.6200 2.6000

CNN 0.0000 3.0200

FCN 3.7600 0.7400

CNN-TA -1.1800 4.2000

MFNN -19.8300 22.8500

HINDPETRO.NS SDCF 1L 33.6400 0.0000 33.6400

SDCF 2L 0.0000 33.6400

SDCF 3L 0.0000 33.6400

SDCF 4L 0.0000 33.6400

CNN 0.0000 33.6400

FCN 0.3200 33.3200

CNN-TA 0.0000 33.6400

MFNN 0.0000 33.6400

INDRAMEDCO.BO SDCF 1L 9.6600 2.6100 7.0500

SDCF 2L 2.2300 7.4300

SDCF 3L 2.2200 7.4400

SDCF 4L 5.4900 4.1700

CNN 6.4100 3.2500

FCN 5.4900 4.1700

CNN-TA -2.3300 11.9900

MFNN -3.4500 13.1100

IOC.BO SDCF 1L 26.1000 0.0000 26.1000

62

SDCF 2L 0.0000 26.1000

SDCF 3L 0.0000 26.1000

SDCF 4L 0.0000 26.1000

CNN 0.0000 26.1000

FCN 0.0000 26.1000

CNN-TA 0.0000 26.1000

MFNN 0.0000 26.1000

KENNAMET.BO SDCF 1L 18.3100 0.6300 17.6800

SDCF 2L 6.4400 11.8700

SDCF 3L 3.6600 14.6500

SDCF 4L 9.2800 9.0300

CNN -0.8800 19.1900

FCN -0.8200 19.1300

CNN-TA -1.4000 19.7100

MFNN 0.0000 18.3100

NATIONALUM.BO SDCF 1L 0.0000 0.0000 0.0000

SDCF 2L 0.0000 0.0000

SDCF 3L 0.0000 0.0000

SDCF 4L 0.0000 0.0000

CNN 0.0000 0.0000

FCN 6.3500 6.3500

CNN-TA 0.0000 0.0000

MFNN -1.1100 1.1100

NATIONALUM.NS SDCF 1L 1.3300 0.1200 1.2100

SDCF 2L 0.1200 1.2100

SDCF 3L 0.4300 0.9000

SDCF 4L 5.6900 4.3600

CNN 0.0000 1.3300

FCN 0.0000 1.3300

63

CNN-TA 4.2400 2.3100

MFNN 9.7500 8.4200

NITINALOY.BO SDCF 1L 86.3000 3.4700 82.8300

SDCF 2L 12.3000 74.0000

SDCF 3L 14.9400 71.3600

SDCF 4L 8.3400 77.9600

CNN 8.2300 78.0700

FCN 1.6500 84.6500

CNN-TA 29.7600 56.5400

MFNN 24.1600 62.1400

64

Appendix C. Performance Analysis for SDCF vs. CNN

This section mentions the table with the summary of number of stocks achieving

good performance under SDCF and CNN, giving the comparative analysis of

the performance between the two techniques.

Table C.13: Comparative performance of SDCF vs. CNN in terms of #stocks

Model Performance
BUY HOLD SELL WEIGHTED

AR
F1 P R F1 P R F1 P R F1 P R

SDCF best(>) 6 11 2 6 6 0 5 9 4 6 9 4 5

equal(=) 2 2 3 1 1 5 2 2 2 0 0 1 3

Total >= 8 13 5 7 7 5 7 11 6 6 9 5 8

next best/similar 1 1 1 7 4 5 1 1 1 6 3 6 0

CNN best(>) 0 0 0 5 1 4 0 0 0 4 2 6 2

equal(=) 2 2 2 1 0 5 2 2 2 0 0 1 3

Total >= 2 2 2 6 1 9 2 2 2 4 2 7 5

next best/similar 0 0 0 2 3 0 0 0 0 3 2 3 0

F1 - F1 Score, P - Precision, R - Recall

W - Weighted

AR - Annualized Returns

65

	Introduction
	Literature Review
	Financial stock data analysis
	Information Fusion

	Proposed Technique
	Convolutional Transform Learning
	Deep Convolutional Transform Learning
	Our Proposed Approach - SuperDeConFuse
	Optimization algorithm
	Computational Complexity of Proposed Framework - SuperDeConFuse(SDCF)

	Methodology
	Dataset Description
	Labeling
	Training Details

	Experimental Evaluation
	Classification Analysis
	Financial Analysis

	Conclusion
	Acknowledgement
	Class-Wise Classification Results for Stock Trading
	Financial Results for Stock Trading
	Performance Analysis for SDCF vs. CNN

