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We make use of two well-known numerical approaches of nonlinear pulse propagation, namely the uni-
directional pulse propagation equation and the multimode generalized nonlinear Schrödinger equation,
to provide a detailed comparison of ultrashort pulse propagation and possible conical emission in the
context of multimode optical fibers. We confirm the strong impact of the frequency dispersion of the non-
linear response on pulse splitting and supercontinuum dynamics in the femtosecond regime for pumping
powers around the critical self-focusing threshold. Our results also confirm that the modal distribution of
optical fibers provides a discretization of conical emission of the corresponding bulk medium (i.e., here
fused silica). This study also provides some criteria for the use of numerical models and it paves the way
for future nonlinear experiments in commercially-available optical fibers. © 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Nonlinear light propagation in multimode fibers (MMFs) has re-
cently attracted a surge of interest [1, 2] through the investigation
of complex linear and nonlinear modal interactions provided
by the added spatial degrees of freedom when compared to
single-mode waveguides. In that respect, recent observations
include ultrabroadband supercontinuum generation, Kerr and
Raman beam cleaning, as well as intermodal four-wave mixing
processes to name a few [2–4]. The motivation of mentioned
works is usually two-fold: (i) a deeper understanding of nonlin-
ear optics, and (ii) to address the great expectations concerning
the application of multimode fibers for high-capacity communi-
cation networks [5, 6] and for high-energy fiber lasers [3, 7].

However, most of the time, the derived numerical models
only support qualitatively experimental results, in particular,
when the number of modes involved becomes significant (i.e.,
higher than 10) and ultrabroadband frequency conversion pro-
cesses (i.e., more than one octave) also occur [8, 9]. Basically,
two different approaches can be mentioned, namely the multi-
mode generalized nonlinear Schrödinger equation (MM-GNLSE)
[10, 11] and the Gross-Pitaevskii equation (GPE) [12–14], even
if some related alternatives were also investigated [15, 16]. The
first one considers a modal decomposition of the electrical field
and then intermodal nonlinear couplings, whereas as the second
one is based on a direct representation of the electric field in
the space-time domain and the refractive index distribution acts
as a potential term. As already noted in a few papers [17, 18],
for both approaches, strong approximations are present in the

propagation equation used that can lead to significant diver-
gences from the exact case. For instance, such limiting issues
have been already solved during the last decade in the case of
simpler modelings related to light propagation in single-mode
highly nonlinear waveguides and fibers. In that case, the stan-
dard nonlinear Schrödinger equation (NLSE) is usually extended
with higher-order linear and nonlinear terms to give rise to gen-
eralized versions of the NLSE [19, 20]. In other words, their
derivation from the Maxwell equations contain less approxima-
tions, and such models usually follow a common structure that
originate from the unidirectionnal pulse propagation equation
(UPPE) [8, 21, 22]. The same approach can be applied to multi-
mode systems through the UPPE generalized to structure media
[17, 18]. One can derive the MM-GNLSE and GPE from general-
ized UPPE. It is worth mentioning that numerical models based
on UPPE have been widely used for studying nonlinear optics in
bulk transparent media and gases [23–25]. Among many nonlin-
ear spatiotemporal phenomena, conical emission, femtosecond
filamentation, harmonic generation and light bullets remain
some of the striking phenomena that can be described [26].

In this paper, we compare two modeling approaches in
a highly nonlinear regime of pulse propagation in multimode
fibers, which corresponds to femtosecond pulse pumping with
peak power close the critical self-focusing power of silica glass
[27]. Indeed, there is an urgent need of clarifying the poten-
tial and areas of applicability of numerical models to facilitate
the accurate design of future nonlinear and multimode fibers
[28–31]. As a consequence, the numerical models under study

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article Journal of the Optical Society of America B 2

are here the MM-GNLSE, well-known in the nonlinear fiber
community [10, 11], and the multimode unidirectional pulse
propagation equation (MM-UPPE) [18]. This easily-accessible
pumping regime, from the experimental point of view, appears
as a good starting point to reveal some limitations of approx-
imated numerical models and novel alluring phenomena in
optical fibers. A detailed comparison of ultrashort pulse propa-
gation is provided in the case of commercially-available multi-
mode step-index fibers. It clearly reveals the strong impact of
the dispersion of the nonlinearity on pulse splitting and super-
continuum dynamics in the femtosecond regime. Moreover, we
show that the resulting spatiotemporal dynamics are associated
with conical wave formation.

This article is organized as follows, first we recall the back-
ground of numerical tools used to describe optical pulse prop-
agation in the scalar approximation, and we briefly describe
the fiber properties under study (see Section 2). Next, we si-
multaneously present the results of both numerical models of
high-power femtosecond pulse propagation in a short segment
of standard multimode step-index fiber. More specifically, we
compare the available information provided by each approach
and analyze the discrepancies on pulse dynamics in space-time
and frequency domains as a function of modeling assumptions
(see Section 3). Finally, we investigate in more detail the for-
mation of X-waves as a function of the fiber core diameter (see
Section 4).

2. NUMERICAL MODELS AND FIBER’S PARAMETERS

A. Multimode unidirectional pulse propagation equation
We first recall the linear wave equation, which writes in the
frequency domain:[

4⊥ +
n2(−→r , ω)ω2

c2 + ∂2
z

]
−→
Eω −

−→∇
(−→∇ .
−→
Eω

)
=
−→
0 , (1)

In the following, we consider only optical waveguides whose
refractive indices are invariant along the z direction. Optical
modes are electromagnetic fields that are solutions of Eq.1 that
write: −→

E (−→r⊥, ω, z) =
−→
A (−→r⊥, ω)eiβ(ω)z, (2)

where −→r⊥ is a vector perpendicular to the propagation axis z. In
the weak guidance approximation (neglecting the second term in
the above equation), Eq.1 can be simplified in its scalar version:[

4⊥ +
n2(−→r⊥, ω)ω2

c2 + ∂2
z

]
Eω = 0. (3)

Accordingly, the modes are transverse, i.e., their polarizations
are contained in the plane perpendicular to the propagation
axis z. For clarity, we will limit our discussion here to linearly
polarized modes. Injecting Eq.2 in Eq.3, one obtains[
4⊥ +

n2(−→r⊥, ω)ω2

c2

]
A(−→r⊥, ω) = β2(ω)A(−→r⊥, ω)

�⊥A(−→r⊥, ω) = β2(ω)A(−→r⊥, ω).
(4)

Optical modes are then eigenvectors of the operator �⊥ with
the eigenvalue β2. Structured and/or finite media (i.e., waveg-
uides) support only a discrete (but infinite) number of modes at
a given frequency ω. Among all modes, one can exhibit three dis-
tinct families: core-guided, clad-guided, and evanescent modes.
Moreover, since the number of modes is discrete, they can be

sorted and indexed by a number m. A mode is then unambigu-
ously identified by the couple (m, ω) and writes in the spatio-
temporal domain as:

ε(−→r⊥, t, m, ω) = F (−→r⊥, m, ω)e−iωt, (5)

whereF is the transverse shape of the mth mode at the frequency
ω. Moreover, they are orthogonal with respect to the following
scalar product:∫∫∫

ε(−→r⊥, t, m, ω)ε(−→r⊥, t, m′, ω′)∗rdrdθdt = δm,m′δ(ω−ω′).

(6)
The modes ε(−→r⊥, t, m, ω) form an orthogonal basis set for

representing the electric field E(−→r⊥, t):

E(−→r⊥, t) =
∫

∑
m

E(m, ω)ε(−→r⊥, t, m, ω)dω, (7)

where E(m, ω) is a function representing the weight (i.e., the
coordinate) of the mth mode at the frequency ω of the field
decomposition in the modal basis. Moreover, E(m, ω) can be
evaluated as:

E(m, ω) =
∫∫∫

E(−→r⊥, t)ε(−→r⊥, t, m, ω)∗rdrdθdt

=
∫∫

Ẽ(−→r⊥, ω)F (−→r⊥, m, ω)rdrdθ,
(8)

where Ẽ(−→r⊥, ω) is the Fourier transform of E(−→r⊥, t):

Ẽ(−→r⊥, ω) =
∫

E(−→r⊥, t)eiωtdt. (9)

It can be interesting to calculate the instantaneous power
embedded in a particular mode m. According to Eq.7, the electric
field Em(

−→r⊥, t) in a mode m writes:

Em(
−→r⊥, t) =

∫
E(m, ω)ε(−→r⊥, t, m, ω)dω

=
∫

E(m, ω)F (−→r⊥, m, ω)e−iωtdω.
(10)

The optical power Pm(t) in the mode m is then given as:

Pm(t) =
∫∫
|Em(
−→r⊥, t)|2rdrdθ

=
∫∫
|TF−1 [E(m, ω)F (−→r⊥, m, ω)

]
|2rdrdθ.

(11)

Accordingly, the optical power in the mode m does not correspond
to |E(m, t)|2 in the general case. In fact, the relation Pm(t) =
|E(m, t)|2 is valid only if one considers that the transversal shape
of the mode m does not depend on ω, which is, strictly speaking,
never the case in realistic waveguides.

Expressed in the modal basis, the unidirectional pulse propa-
gation equation driving the evolution of the electric field E along
the coordinate z is given by [18]:

∂zE(m, ω) = i
(

β (m, ω)− ω

vg0

)
E(m, ω)

+
iω2

2ε0c2β (m, ω)
PNL(m, ω),

(12)

where β (m, ω) is the propagation constant of the mth mode at a
given ω, ε0 is the vacuum permittivity, c is the light velocity in
vacuum, and PNL(m, ω) is the nonlinear polarization expressed
in the modal basis. Moreover, for convenience, the equation is
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written in a local frame propagating at an arbitrarily chosen
velocity vg0 . The latter is often chosen as the group velocity of
the fundamental mode (m = 1) calculated at the initial central
frequency ω0 of the laser pulse.

In the context of fiber propagation, using a complex represen-
tation of the electric field ξ (expressed now so that |ξ|2 = I(r, t),
I being the pulse intensity), we obtain the MM-UPPE as follows:

∂z ξ̄(m, ω) = i
(

β(m, ω)− ω

vg0

)
ξ̄ +

i neff0 n2ω2

c2β(m, ω){
(1− fR) |ξ|2ξ + fR

[∫
hR(τ)|ξ(t− τ)|2dτ

]
ξ

}
,

(13)

where neff0 is the effective refractive index of the fundamental

mode at the central frequency ω0 of the laser pulse, n2 = 3
4

χ(3)

ε0cn2
eff0

is the nonlinear refractive index of the medium (here for silica
glass, we used n2 = 3.2× 10−20m2/W) [20]. The function hR
is the Raman response of the fiber medium, with Raman frac-
tion fR = 0.18 for fused silica glass. We used an intermediate-
broadening model using convolutions of Lorentzians and Gaus-
sians adapted from spontaneous Raman scattering spectra and
estimated Raman gain coefficient given in [32].

For the following, we will limit our discussion to the case
where the refractive index only depends on r (in cylindrical co-
ordinates) and to cylindrically symmetric modes. As described
in [18], solving this equation is performed in two distinct steps.
First, for each ω, the solver calculates the modes and its propaga-
tion constant. This is done in an efficient way by projecting the
operator �⊥ on a basis composed of zeroth-order Bessel func-
tions (i.e., decomposing any function of space coordinate r as
a zeroth-order Bessel-Fourier series). Using Nr points in space,
the diagonalization procedure will then give Nr eigenvectors
(i.e., modes) expressed in the Bessel basis (i.e., in the Hankel
space) and their associated eigenvalues. Depending on their
eigenvalues, these eigenvectors will correspond to either core-
guided, clad-guided or evanescent modes. Calling Vω the matrix
filled with the eigenvectors coordinates, an electric field whose
coordinates are F in the Hankel space (i.e., in the Bessel basis)
will write F′ = Vω F in the modal basis. Numerically speaking,
an electric field (at a given ω) is evaluated at particular values
of r, denoted rj (with 1 ≤ j ≤ Nr), which forms a vector Fj(ω).
In order to express the electric field in the Bessel basis, one has
to calculate the Hankel transform of Fj(ω), which is performed
by multiplying Fj(ω) by an unitary matrix H: F = HFj(ω). As a
consequence, in order to go from a spatial representation of the
field to a modal one, one has:

F′(ω) = Mω Fj(ω), (14)

with Mω = Vω H. Reciprocally, one also has

Fj(ω) = M−1
ω F′(ω). (15)

Using this fast modal transform then allows to solve the prop-
agation very efficiently by a split-step algorithm during which
the linear propagation term is evaluated within the modal basis
while the nonlinear propagation step is calculated in the direct
(r, t) space.

B. Multimode generalized nonlinear Schrödinger equations
The derivation of the MM-GNLSE from Maxwell’s equations or
UPPE can be found in [8, 10]. One has to emphasize that during

the derivation of MM-GNLSE, the space and frequency depen-
dence of a given mode is assumed as decoupled. Consequently,
a mode is assumed to have the same transverse distribution
whatever the frequency is. While this assumption is fair for
relatively narrow spectra, it can lead to unphysical situation in
the case of supercontinua or few-cycle pulse propagation sim-
ulations. In particular, in the case of multimode fibers, this as-
sumption leads to say that the same number of modes is guided
whatever the frequency is, while it is well known that high fre-
quency supports more guided modes than low frequencies (by
contrast, the MM-UPPE is not restricted to the modes that are
guided within the fiber core but remains exact for modes that are
guided within the clad or for evanescent modes). Here the fre-
quency dependence of the resulting transverse overlap integrals
between guided modes is truncated to the linear term around
ω0. The MM-GNLSE is given by the following set of coupled
equations to analyze the evolution of electric field amplitude
envelope of an optical pulse as it propagates through multimode
fibers

∂ζ Am(ζ, τ) = D(Am) + i
n2ω0

c

(
1 +

i
ω0

∂τ

)
×

N

∑
l,p,n

[
(1− fR)SK

mlpn Al Ap A∗n+

+ fRSR
mlpn Al ×

∫ τ

−∞
[hR(τ

′)Ap(z, τ − τ′)A∗n(z, τ − τ′)]dτ′
]

,

(16)
where Am(ζ, τ) is the complex temporal envelope of the mth

mode. This approach allows to investigate observed phenomena
in division modes. Additionally by switching on/off terms
corresponding to some exact processes their real participation in
the inspected effect could be examined.

The first right-hand side term in Eq. (16): D(Am) stands
for the dispersion operator in time domain, which could be
expressed as follows with a Taylor expansion:

D(Am) = i (β0(m, ω0)− Re[β0(1, ω0)]) Am

− (β1(m, ω0)− Re[β1(1, ω0)]) ∂τ Am

+ i ∑
j≥2

β j(m, ω0)

j!
(i∂τ)

j Am,
(17)

where β j = ∂
j
ω β(m, ω). In our simulations, we used the full

β(m, ω) dependencies obtained with the scalar mode solver.
The dispersion operator of mth mode expressed in frequency
domain takes the following form:

D̃(Ãm) = i (β(m, ω)− β0(1, ω0)− β1(1, ω0)Ω) Ãm, (18)

where Ãm is a spectral amplitude of mth mode obtained as
a Fourier transform of Am, Ω = (ω−ω0), and ω0 = 2πc/λ0.

Next terms in Eq. (16) represent the effects of optical nonlin-
earity with the nonlinear refractive index n2. SK

mlpn and SR
mlpn

are the mode coupling tensors for the Raman and Kerr effect
respectively [9]. For linearly polarized modes we have

SK
mlpn = SR

mlpn = ∫
[FmFl FpFn]dxdy√∫

F2
mdxdy

∫
F2

l dxdy
∫

F2
p dxdy

∫
F2

n dxdy
,

(19)

where Fm is the electric field of mth mode calculated with a scalar
mode solver at ω0. It is worth noting, that Smmmm equals the in-

verse of the effective mode area of mth mode, Smmmm = 1/A(m)
eff .
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Fig. 1. Parameters of fiber and input pulse. (a) Refractive in-
dices of the core (solid black), the clad (dashed black), and ex-
emplary LP0,n modes of the optical fiber, (b) associated group
velocity dispersion, and (c) associated effective mode areas
as a function of wavelength. Dashed green lines indicate the
central pump wavelength. (d) Normalized electric field of
exemplary modes and (e) power of input pulse as a function
of time (f) intensity of input pulse as a function of time and
radius at the beginning of the fiber.

In our simulations of MM-GNLSE model, we used the solver
architecture developed by Wright [3]. The approach is computa-
tionally demanding, but the calculations can be paralleled with
massively parallel algorithm (MPA) [33]. Here, we apply the
solver implementing MPA, which was developed by Wright et
al. [11].

C. Fiber properties
In the following, we first consider a commercially-available
multimode step-index fiber with a pure silica glass core (Thor-
labs, FG105LCA). Fiber parameters were calculated accord-
ing to the information provided by the manufacturer, namely
the core diameter (Φ = 105 µm) and the numerical aperture
(NA = 0.22± 0.02). In our modal calculations, we account the
material dispersion of pure silica glass as given by the Sellmeier
formula from Ref. [34]. We then fixed the difference of refractive
indices of core and cladding glasses to an approximated fixed
value ∆n = 0.01675. The refractive indices of core and cladding
glasses are shown in Fig. 1(a). Note that fiber losses (less than
10 dB/km for the wavelength range under study) can be taken
into account in our modelings, however their impact was fully
negligible on the few-cm-long segment studied.

The described step-index fiber supports at λ0 = 850 nm more
than 3600 modes. The number of modes M can be easily calcu-
lated as M = V2/2 [35], where V is a normalized frequency

V =
2π

λ0

Φ
2

√
n2

core − n2
clad. (20)

We developed the scalar mode solver based on the well-known
Hondros-Debye equation for circular symmetry waveguides to
calculate effective refractive indices and electric field distribu-
tions of the guided modes [35]. The mode solver allow us to

calculate the properties of all guided modes. However, it would
be practically impossible to account all of them in simulations of
nonlinear propagation.

We restricted ourselves to the linearly polarized modes of
LP0,n class, due to assumed excitation as will be described fur-
ther. The fiber supports 27 LP0,n modes at chosen pump wave-
length λ0 = 850 nm. The wavelength dependency of effective
refractive indices of a few chosen modes are presented in Fig. 1(a)
with reference to material refractive indices of the core and
cladding glasses. One can then calculate the group-velocity
dispersion expressed as β2 = ∂2β/∂ω2, where β is the propaga-
tion constant of the considered mode, shown in Fig. 1(b). The
calculated distribution of the normalized electric field of exem-
plary modes at λ0 is provided in Fig. 1(d). Knowing electric
field distributions, we calculated wavelength dependency of the
effective mode area Aeff, shown in Fig. 1(c). It is worth noting
that effective area for high-order LP0,n modes decreases with
mode order.

D. Numerical parameters

The duration and efficiency of simulations with both models de-
pend on different numerical parameters. We keep them aligned
between models (whenever it was possible).

The MM-GNLSE calculations start with the mode solver. By
solving scalar wave equation for wavelengths in 0.4 µm–3.0 µm
range, we calculated the effective refractive indices and later the
dispersion operator given by Eq. (18). We also used the electric
field distributions at λ0 to calculate the coupling coefficients
according to equation (19). In the MM-GNLSE, we accounted the
15 LP0,n lowest orders modes: from LP0,1 to LP0,15. This gives
us the SR

mlpn tensor with 154 = 50625 elements. The accounted
number of modes was limited by the size of memory (8 GB) on
a graphic card used for parallelization.

In the case of MM-UPPE simulations, we limited the space
coordinate to a radius R = 75 µm with NR = 50 discretiza-
tion points. The mode calculation returns NR eigenvalues for
each wavelength [18], and can be divided into three categories,
namely the guided modes, the propagative clad modes and
evanescent modes (a maximum of 35 guided modes for short
wavelengths was obtained for the above fiber). All the fiber
modes are reconstructed by summing the Bessel functions com-
posing the basis weighted by the coordinate of the mode on the
basis. Effective refractive index experienced by the mode can be
determined as well as group-velocity dispersion and effective
area if needed. Corresponding results are not shown here, since
it would be almost indistinguishable from previous ones for
guided modes in MM-GNLSE.

In both models, we solve initial value problem over propa-
gation distance with fixed step size (∆z = 10 µm). The step size
should be small enough to resolve intermodal beat length [11]
which is in the considered fiber 178 µm at 0.85 µm and 117 µm
at 1.3 µm between LP0,1 and LP0,15. In MM-GNLSE solver, the
calculations are paralleled over 20 sub-steps. The time grids
were the same and given by width T = 10 ps and number of
equally distributed points NT = 213. Consequently, the fre-
quency grids were also identical. In MM-GNLSE the number
of points in a frequency grid determines the complexity of Fast
Fourier Transform used to switch between time and frequency
domains (independently in each considered mode). In MM-
UPPE the number of frequency points (Nω = NT) with the
number of discretization points along radius NR determines the
dimensions of the modal-frequency domain.
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As mentioned earlier, the modal properties are calculated in
both models before the nonlinear propagation is simulated. In
case of MM-GNLSE, any method can be used to calculate prop-
agation constants and mode profiles. For example, the mode
solver can be based on finite element method to account arbi-
trary fiber’s geometry. The mode profiles are used to calculate
the overlap integrals tensor, which (in general) has N4

M elements,
where NM is number of considered modes. In MM-UPPE the
modal properties are calculated by diagonalization of NR × NR
matrix for each frequency point in the basis composed by Bessel
functions. The result of diagonalization is used to build the
modal transform, the latter is performed in each simulation step
to switch between the modal-angular frequency domain and the
space-time domain.

E. Pumping conditions
The pump pulse is fixed at λ0 = 850 nm (operating in the nor-
mal dispersion regime as shown in Fig. 1(b)), and we assume
a gaussian pulse with T0 = TFWHM/1.665 and TFWHM = 100 fs.
The pumping configuration is a beam coupling into the funda-
mental mode of the fiber, namely LP0,1. As a considered fiber is
circularly symmetric, the coupling coefficients are nonzero only
for LP0,n modes [9].

We investigate ultrashort pulse propagation in MMFs with
a peak power around the critical power for self-focusing to evi-
dence clear spatiotemporal nonlinear effects. For instance, non-
linear dynamics of femtosecond pulses undergoing self-focusing
has been already studied experimentally with input powers up
to four times the critical power in BK7 glass [27]. It is worth
to note that the corresponding incident intensity is below the
damage threshold of the dielectric material [36], but consider-
able ionization preceding the damage thresholds may take place
for intensities beyond 1013W/cm2 [37, 38]. However, we favor
the normal dispersion regime for which dispersion is known to
dominate plasma generation in halting the collapse at powers
far above critical power [39]. The critical self-focusing power is
given as [24]

Pcrit = 1.86
λ2

0
4πn0n2

, (21)

where λ0 = 850 nm, n0 = 1.4525 (refractive index for funda-
mental mode). We obtain Pcrit = 2.3 MW. In the next section,
the peak power was set to Pp = 1.3Pcrit since the large normal
dispersion is known to increase the self-focusing threshold [40].
Corresponding spatiotemporal initial pulse profiles are shown
in Fig. 1(e) and Fig. 1(f).

Finally, in both models, noise effects during pulse propaga-
tion can be also studied through the addition of a noise seed in
initial pumping pulse. In case of MM-GNLSE, we added noise to
all considered modes with one-photon per mode with random
phase on each spectral discretization bin [19]. For MM-UPPE,
we simply used a white noise with random phase added to full
field in the space-time domain. Note that the presence of noise
does not modify the results described in the following.

3. NUMERICAL RESULTS AND COMPARISON

As a a first test, we compared maximum pulse intensities calcu-
lated with both modelings on short propagation distance (1 mm).
Discrepancies appear negligible in such cases. Moreover we also
evaluate reliability of our simulations by checking the conser-
vation of photon number and total energy along propagation
distance for both approaches. Figure 2 presents the numerical
results obtained from both models MM-GNLSE and MM-UPPE

Fig. 2. Comparison of two numerical models for simulation
parameters: λ0 = 850 nm, P0 = 1.3 × Pcrit, Φ = 105 µm,
z = 2 cm. The results were presented using graphs commonly
used for the discussed methods. (a) spectral energy density for
distinct modes, (b) pulse intensity for distinct modes, (c) pulse
intensity in space.

after 2 cm of propagation in the multimode fiber described above.
In the case of MM-GNLSE (left column), the electric field is ex-
pressed as a combination of electric fields of a limited number of
guided modes (15 in the case under study). The time-dependent
power profiles is then known for each mode separately Fig. 2(a)),
and it can be transformed into spectral dependency with one
dimensional Fourier transform (Fig. 2(b)). The full electric field
in the space-time domain could be restored by summing up
contributions from all modes. This way, we calculate optical
intensity as a function of radius and time (Fig. 2(c)). By contrast,
in MM-UPPE approach (right column), the electric field is ex-
pressed explicitly in the space-time domain (Fig. 2(c)), and with
both the Fourier transform and the fast modal transform, it can
be expressed into the corresponding modal basis as a function
of angular frequency (see Fig. 2(a)). The time-dependent modal
power distribution can be evaluate by calculating ξ̄(m, t), even
if one has to remind that the latter slightly deviates from the op-
tical power embedded in one particular mode because of the fre-
quency dispersion of the modal transversal shape, as discussed
in Section 2.A. Note that, in MM-GNLSE, the approximation of
frequency-invariant modal transversal shape is inherently made.

In both cases, we clearly observe a qualitative agreement
about the strong spectral broadening (i.e., an octave spanning
supercontinuum) associated with temporal compression of the
pump pulse as well as energy spreading in higher-order modes
from the fundamental mode. We note a typical signature of X-
pattern formation, namely that the lowest and highest frequen-
cies generated are continuously contained in the fiber modes
with increasing order up to the 15th. A detailed analysis of
the phase-matching condition is provided in the next section.
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However, one can note significant discrepancies about the super-
continuum bandwidth, the power distribution between modes,
as well as the temporal pulse splitting. More particularly, it
appears that MM-GNLSE overestimates the overall nonlinear
response compared to the MM-UPPE approach, thus leading
to a larger spectrum, a higher peak power in the space-time
domain, and larger power spectral densities in higher-order
modes. In that respect, recall that mode coupling tensors Smlpn
(Eq. (19)) are calculated only at the central pump wavelength λ0
[10, 15]. It means that the MM-GNLSE model does not take into
account the frequency dependence of nonlinear effects unlike
the MM-UPPE. In other words, the MM-GNLSE model only con-
siders a simplified self-steepening term (also called sometimes
shock term), which here comes from the Taylor expansion of the
nonlinear coefficient of the fiber, whereas this nonlinear term in
MM-UPPE is exact [22].

To give a better overview of the nonlinear dynamics during
propagation, Figure 3 compares the longitudinal evolution of
the spectral broadening, the pulse splitting, and the spatial be-
haviour over a longer propagation distance. As we study here
the region of normal dispersion, we globally note a typical sce-
nario that has been already analyzed in bulk dielectric media,
namely that the self-focusing dynamics and spectral broadening
are accompanied by pulse splitting phenomena [27]. The later
is also known to arrest the collapse of high-power ultrashort
pulses.

More particularly, a qualitative agreement is again noticeable
through the asymmetry between the powers of the split sub-
pulses, and the close link between pulse splitting and supercon-
tinuum generation. To go into detail [41], self-phase modulation
first broadens the pulse spectrum. The induced-nonlinear chirp
implies that red-shifted and blue-shifted frequencies are gener-
ated at the leading and trailing edges of the pulse, respectively.
Pulse splitting at the nonlinear focus produces two sub-pulses
moving with opposite directions in our retarded time frame.
The velocity difference between a pulse peak and its tails then
induces optical shocks due to the nonlinear dependence of the
refractive index. The slopes of dashed white lines in Fig. 3(b)
indicate the relative group velocities of the shock front formed at
the trailing edge. Pulse splitting is followed by a strong spectral
broadening induced by the latter self-steepening effect.

The detailed evolution of spectral broadening near the pulse
splitting process (i.e., about 1 cm of propagation) is shown in
Fig. 4. We again retrieve the usual asymmetry of the supercontin-
uum related to the steep edge formed at the trailing edge of the
trailing sub-pulse, giving rise to a strong blue-shifted pedestal
in the spectrum [41]. Besides, we note that spectral broadening
rapidly saturates after 2 cm of propagation only. This is asso-
ciated to a significant and continuous temporal broadening of
the sub-pulses as well as small periodic oscillations of the beam
dimension after the main nonlinear focus.

Concerning the numerical differences between both models,
Fig. 3 and Fig. 4 clearly show that MM-GNLSE overestimates the
nonlinear response since the self-focusing and self-steepening
effects appear to be faster and stronger in the space-time domain,
thus leading to a larger supercontinuum bandwidth.

Finally, we compare the duration time of simulations (cor-
responding to Fig. 3) with both models performed at the same
workstation gathered in Table 1. In both cases the duration of the
mode solver and nonlinear propagation are given separately. As
described in section 2.D, the mode solver calculations for MM-
GNLSE include calculations of propagation constants as well
as the complex overlap tensor, whereas only propagation con-

Fig. 3. (a) Evolution of the normalized integrated spectrum, (b)
the normalized instantaneous power, and (c) the normalized
fluence along the propagation distance in a 6 cm step-index
fiber. The dashed white lines indicate the relative group veloc-
ity of shock front formed at the trailing edge of the pulse.

Fig. 4. Spectral profiles for each mode (color lines) and for
its summation (black line) at 3 propagation distances: before,
at exact point of formation of conical wave, and when the X-
shape conical wave was established. Distances were almost
the same for both numerical models.
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Table 1. Comparison of simulation times corresponding to
Fig. 3 for both solvers on the same workstation.

MM-GNLSE MM-UPPE

mode solver 18 minutes 0.3 minute

nonlinear propagation 3.4 hours 0.75 hour

stants and the fast modal transform are calculated in MM-UPPE.
Note that the MM-GNLSE solver implements massively parallel
algorithm (MPA) and is performed on GPUs. By contrast, MM-
UPPE solver operates on CPU. The workstation operates under
Windows 10 operating system on Intel Core i9 9900K CPU with
32 GBytes DDR4 memory and uses NVIDIA GeForce RTX 2080
graphic card.

As already mentioned, our simulations clearly show that
space-time focusing of ultrashort pulses implies a particular
modal distribution of newly generated frequency components,
namely an X-shape pattern observed in both the modal-angular
frequency domain. In other words, we show that the axial su-
percontinuum generation is also connected with colored conical
emission [41–43]. Based on previous studies of filamentation
in various experimental conditions, the X shape in the Fourier
domain usually follows the linear dispersion characteristics of
the medium which determines the relation between the propa-
gation angle and frequency for phase-matched off-axis conical
emission. This is the spectral counterpart of space-time coupling.
In the following, we make use of the recent generalization of
conical wave formation in structured media, such as multimode
optical fibers [44], to analyze their observation in both numerical
modelings.

4. CONICAL EMISSION

Conical emission has been intensively studied in dispersive non-
linear bulk media, in particular in the filamentation regime [26].
Only recently, the possibility to generate such kind of waves in
fibers was suggested in few works [18, 45]. The interpretation of
light filaments in the normal dispersion usually present typical
features such as pulse splitting and conical emission, and it can
be interpreted assuming the pulses as spontaneously emerging
nonlinear X-waves [46, 47]. More specifically, off-axis (conical)
tails emerge on both the blue and red-shifted sides of the input
wavelength, forming a universal distinct X-shaped pattern of
conical emission. It was found that the input pulse can evolve
toward a final stationary state that has the form of either an
X-wave in the range of normal dispersion or an O-wave in the
range of anomalous dispersion [48]. Nonlinear X-waves and
O-waves are named because of their evident X-like and O-like
shapes, respectively, which appear in both the near and the far
fields [49]. The sign of dispersion governs the dynamics of fem-
tosecond filaments and so the time-frequency content of the
associated supercontinuum. It was demonstrated that the dis-
persion landscape is the key ingredient for accurately modeling
conical emission as it governs the specific shape of the conical
emission patterns (X-shaped for normal dispersion, O-shaped
for anomalous dispersion, or fish-shaped as their combination
when pumping close to the zero dispersion).

Here we investigate in detail the characteristics of the conical
emission observed in both models for the multimode fiber under
study. Figure 5 depicts the evolution of the conical emission
as a function of propagation distance for both space-time and

modal-frequency domains. The MM-UPPE simulation clearly
indicates the pulse splitting phenomenon in space-time after
8 mm of propagation and a moderate spectral broadening. The
two sub-pulses move apart in the retarded time frame, and an
optical shock forms on the trailing pulse associated with signifi-
cant spectral broadening. This process then seeds higher order
modes as shown after 11 mm of propagation, thus inducing the
emergence of X-features in the spectral domain. The insets in
Fig. 5(b) show the spectrally filtered data when the main pulsed
pump is removed. They confirm that the tail exhibiting an in-
creasing mode-number with frequency detuning from the pump
is departing from the trailing egde of the pulse in the time do-
main. Next we clearly note that well-defined frequencies for
each mode constitute this tail with further propagation. Those
frequencies correspond to the phase-matched frequencies of
a discretized conical wave induced nonlinearly as described in
Ref.[44].

Indeed the corresponding phase-matching condition of this
conical wave relies on phase-matched resonant radiations (i.e.,
dispersive waves) seeded by the optical shock. The phase-
matched frequencies ωC in mth mode fulfills the following rela-
tion (for both models, MM-UPPE and MM-GNLSE)

β(m, ω)− [β0(1, ω0) + δβ0]− [β1(1, ω0) + δβ1] [ωC −ω0] = 0.
(22)

Parameters δβ0 and δβ1 can be considered as corrections to
the phase and group velocities at ω0, and related to the non-
linear dynamics, respectively. The parameter δβ0 governs the
bandwidth of the phase-matching around the central frequency
ωC for each spatial mode, and the parameter δβ1 drives the
group velocity of the conical wave governed by to the group
velocity difference of the shock front in the retarded time frame
[44]. As a result, the shape of the conical emission is mainly
driven by the modal refractive index curves as well as the value
of δβ1. From Fig. 3(b) we estimated the group velocity differ-
ence to δβ1 ' −12 ps/m (for MM-UPPE model), this allowed
us to provide an accurate description based on Eq. 22 of the
conical wave observed numerically, namely the two asymmetric
discrete branches of (i.e., the discretized X-wave) in the mode
number-frequency space separated by a gap in frequency (see
white squares in Fig. 5(c)). Here δβ0 was first fixed to 0, and then
treated as a free parameter to describe the shape of the low-value
contours of X-shaped pattern.

Similar analysis performed with MM-GNLSE results
(Fig. 3(b)) requires a higher value of coefficient δβ1 since we
observed a faster optical shock induced by a reduced dispersion
of the nonlinearity with MM-GNLSE modeling. The group veloc-
ity difference here reaches δβ1 ' −19 ps m−1. Additionally, the
pulse splitting and conical emission occur at smaller propagation
distances than in MM-UPPPE modelling. As mentioned earlier,
the MM-GNLSE overestimates the overall nonlinear response
in comparison with MM-UPPE due to neglecting wavelength
dependency of the modes coupling tensor. However, we found
that the frequencies obtained from phase-matching condition
agree with mode number resolved spectra as shown in Fig. 6(c).
The MM-GNLSE allowed us to inspect also modal-time field
distribution (middle row in Fig. 6). The results of MM-GNLSE
simulations confirm that the energy conversion to higher fre-
quencies takes place at the trailing edge of the pulse and only
for specific phase-matched frequency of each mode. Finally, we
easily observe that the cone emitted at the shock front position
propagates into the fiber in a dispersive manner as theoretically
predicted in Ref. [44].
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Fig. 5. Evolution of conical emission as a function of propagation distance obtained from MM-UPPE. The intensity distributions in
the space-time domain are shown in the top row. The spectral energy density in the spatial modes are shown in bottom row. Data
are presented at three propagation distances: (a) z = 8 mm, (b) z = 11 mm, (c) z = 20 mm. The insets show spectrally filtered data
revealing the conical emission at the trailing edge of the pulse. The white squares in (c)-bottom indicate central phase-matched
frequencies in each spatial mode (as well as phase-matching bandwidth).

Fig. 6. Evolution of conical emission as a function of propagation distance obtained from MM-GNLSE. The intensity distribu-
tions in the space-time domain are shown in the top row. The intensity distributions in the spatial modes are shown in middle
row. The spectral energy density in spatial modes are shown in bottom row. Data are presented at three propagation distances:
(a) z = 7 mm, (b) z = 9 mm, (c) z = 20 mm. The insets show spectrally filtered data revealing the conical emission at the trail-
ing edge of the pulse. The white squares in (c)-bottom indicate central phase-matched frequencies in each spatial mode (as well as
phase-matching bandwidth). The grey regions in middle and bottom rows indicate the spatial modes which are not considered in
MM-GNLSE approach.
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For the sake of completeness, we also performed numer-
ical simulations with both modelings for smaller and bigger
fiber cores, namely Φ = 50 µm and Φ = 200 µm. Note again
that such dimensions are similar to commercially-available step-
index multimode fibers (Thorlabs FG050LGA and FG0200LGA).
The presented results from MM-UPPE in Fig. 7 could be refereed
to measurements, which would be performed in future experi-
ments, since they could be easily described through the expected
angle-resolved conical emission spectra. Note that an increasing
input power was required to observe the conical emission when
extending the core diameter, (i.e., when increasing the effective
mode area of the excited fundamental mode). For our studies,
we used Pp = 1.1Pcrit and Pp = 1.8Pcrit for Φ = 50 µm and
Φ = 200 µm, respectively. Other input parameters remained
unchanged. It is worth to mention that a less intense optical
shock on the leading edge of the pump pulse gives rise to an-
other discretized X-wave, this phenomenon becomes noticeable
when Φ = 200 µm (see Fig. 7(c), other tails can be observed).

Similar simulations were also performed by using the MM-
GNLSE modeling (not shown here). For Φ = 50 µm, due to
a smaller number of guided modes, we considered all the 13
modes of LP0,n class supported at the pump wavelength. By
contrast, for Φ = 200 µm, only 15 modes were included over
52 at the pump wavelength, due to memory limitations. As
expected, we can achieve better compatibility between models
for smaller core size, which is closely related to the use of lower
input power and numbers of accounted modes. A detailed
investigation of the impact of spatial input excitation and fiber
properties will be presented in future works.

5. SUMMARY

In this work we numerically studied the highly nonlinear regime
of ultrashort pulse propagation (i.e., fs pulse with peak power
around the self-focusing critical power of the medium) in mul-
timode step-index silica fibers by comparing two well-known
modeling approaches: (i) the MM-GNLSE is a common used
tool to investigate propagation of light in multimode fibers, (ii)
the use of unidirectional propagation equations (like MM-UPPE)
is a more general approach rather used for bulk medium, and
most of propagation equations in waveguides can be derived
from it. As expected, the difference in the nonlinear step of mod-
elings is the main origin of discrepancies. First, in the case of
MM-GNLSE, the mode coupling tensors were calculated only
at the central pump wavelength, which leads to non-dispersive
effective mode areas, but more importantly in this model, the
self-steepening term is expressed by approximation of the prop-
agation constants with its 1st order Taylor expansion. Both
approximations do not apply to the MM-UPPE approach. This
mainly results in overestimating the full nonlinear response
and associated spectral broadenings in the femtosecond regime.
Our configuration appears as a good starting point to reveal
some limitations of approximated numerical models such as the
MM-GNLSE. However, our numerical studies have shown that
outcomes from both models are qualitatively in good agreement.
In particular, we clearly reveal typical spatio-temporal dynamics
commonly observed from femtosecond pulse filamentation in
bulk media with normal dispersion, such as a strong space-time
reshaping followed by pulse splitting and conical emission. Our
results confirm that the modal distribution of optical fibers pro-
vides a discretization of conical waves of the corresponding bulk
medium [44].

In this work, we limited ourselves to pumping at single pump

wavelength in normal dispersion regime, as our goal was to com-
pare two modeling approaches. Further perspectives include
considering pumping in different dispersion regimes to observe
the formation of other types of conical waves as well as using
soft-glass or engineered multimode fibers with various disper-
sion landscapes. In conclusion, future nonlinear experiments in
commercially-available optical fibers could easily reveal novel
alluring phenomena, such as the possible formation of supercon-
tinuum light bullets in standard multimode fibers.
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