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ABSTRACT

Real-timeMR-imaging has been linially adapted for monitoring thermal therapies

sine it an provide on-the-�y temperature maps simultaneously with anatomial

information. However, proton resonane frequeny based thermometry of moving

targets remains hallenging sine temperature artifats are indued by the respi-

ratory as well as physiologial motion. If left unorreted, these artifats lead to

severe errors in temperature estimates and impair therapy guidane.

In this study, we evaluated deep learning for on-line orretion of motion related

errors in abdominal MR-thermometry. For this, a onvolutional neural network

(CNN) was designed to learn the apparent temperature perturbation from images

aquired during a preparative learning stage prior to hyperthermia. The input of

the designed CNN is the most reent magnitude image and no surrogate of motion

is needed. During the subsequent hyperthermia proedure, the reent magnitude

image is used as an input for the CNN-model in order to generate an on-line

orretion for the urrent temperature map.

The method's artifat suppression performane was evaluated on 12 free breath-

ing volunteers and was found robust and artifat-free in all examined ases. Fur-

thermore, thermometri preision and auray was assessed for in vivo ablation

using high intensity foused ultrasound. All alulations involved at the di�erent

stages of the proposed work�ow were designed to be ompatible with the linial

time onstraints of a therapeuti proedure.

1. Introdution

MRI is used for monitoring thermal therapies sine it an provide on-line anatomial informations (given

by the spatial distribution of the magnitude of the MR-signal) together with temperature mapping [10℄ [25℄

[29℄. Many approahes have been developed for MR-thermometry and the Proton-Resonane-Frequeny

shift (PRF) tehnique is widely used [3℄ [6℄ [19℄. In the PRF approah, the phase omponent ϕ of the MR-

signal, whih is aquired using gradient eho sequenes, is diretly used to estimate voxel-wise temperature

variations [3℄ [12℄ [15℄. Due to the spatial phase variations, this signal omponent needs to be measured on a

voxel-per-voxel basis. Let ~r = (x, y, z) ∈ Ω be the voxel oordinates, Ω being the image oordinates domain.

An estimate of the temperature hange (noted ∆T ) at a spatial loation ~r and at instant t is obtained by

omparing a baseline phase signal aquired at a referene instant t0 to the phase signal aquired and at t,

as follows:

∆T (~r, tn) = (ϕ(~r, t0)− ϕ(~r, t))× k (1)

⋆
Experiments presented in this paper were arried out using the PlaFRIM experimental testbed, supported by Inria, CNRS

(LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional d'Aquitaine (see https://www.plafrim.fr/).

Computer time for this study was provided by the omputing failities MCIA (Mésoentre de Calul Intensif Aquitain) of the

Université de Bordeaux and of the Université de Pau et des Pays de l'Adour.
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k is a onstant parameter, more details on its determination an be found in [18℄. Note that phase wraps need

to be ompensated on a voxel-by-voxel basis by adding (resp. substraing) 2π when ϕ(~r, t0)− ϕ(~r, t) < −π

(resp. ϕ(~r, t0)− ϕ(~r, t) > π).

While this approah works well on stati objets, the appliation of PRF thermometry to moving targets

remains hallenging sine additional variations of the phase omponent are indued by: (i) moving the

observed tissue through an inhomogeneous magneti �eld ; (ii) deforming/hanging the tissue so that the

demagnitisation �eld of the tissue hanges, whih are both a onsequene of the patient's physiologial

ativity and the assoiated organ motion [3℄. If left unorreted, these additional phase variations enter

Eq. (1) in full and ould lead to severe thermometri errors, leading to abolute errors exeeding the true

temperature di�erene by more than a magnitude.

As a mitigation strategy, one of the �rst proposed approahes has been respiratory gating. Respiratory

gating onsists of intermittent aquisitions performed in eah exhalation phase of the respiratory yle

[16℄. As a trigger for the gating, several types of respiratory motion desriptors have been proposed [14℄,

ranging from external pressure sensors [16℄, dediated 1D MR navigator ehoes [11℄ to self gated sequenes

based on MR magnitude images [5℄. Although gating is generally a robust solution to avoid motion indued

thermometri errors, it is nevertheless hampered by two drawbaks. First and foremost, the observed motion

pattern must be stritly repetitive/periodial and seondly onsidering a good spatial overage of the heated

region, the ahiveable temporal resolution is generally limited to a range of 3 to 6 s [28℄ [17℄ [21℄.

In partiular the latter motivated the development of non-gated MR-thermometry orretion strategies,

whih are able to seletively remove motion-indued phase hanges from the MR-phase and thus to provide

artefat-free temperature maps in real-time. However, the required preise modeling of the inhomogeneous

magneti �eld in vivo and the motion assoiated phase variations, in partiular under real-time onditions

for therapy guidane, has been di�ult to ahieve. Most of these early orretion strategies an be oarsely

lassi�ed into two di�erent types, whih are generally referred to as �Refereneless� and �Multi-baseline�

PRF thermometry. The interested reader is referred to [7℄ for a pragmati analysis of inherent advantages

and drawbaks assoiated with these two orretion strategies:

In refereneless PRF thermometry, the baseline phase signal used to ompute the urrent temperature

map is diretly estimated from the urrent MR phase image. To this end, the phase signal of non-heated

surrounding tissues is used to extrapolate a baseline phase signal in the targeted area [20℄ [9℄ [23℄. This

approah relies on an a priori hoie of a region of interest (ROI) and the quality of the thermometry highly

depends on an optimal ROI plaement. In pratie, the �tting ROI has to: (i) enompass � at least to

some extent � the ablation area ; (ii) be su�iently lose the target area to allow a preise estimate of the

bakground phase there ; (iii) be su�iently far from the heating zone to be una�eted by heat di�usion

and ondution ; (iv) not enompass areas prone to strong loal suseptibility variations.

In multi-baseline PRF thermometry (illustrated in �gure 1) a look-up table obtained in absene of

temperature variations establishes a relation between the phase variations assoiated with the patient's

physiologial motion and a desriptor/detetor [27℄. The bene�t of this approah is evident for appliation

senarios that do not permit a plaement of the �tting ROI ful�lling all above-mentioned four onditions

simultaneously. This is generally the ase for minimally invasive ablations, or interventions at the boundary

of organs. Both MR images and desriptors of motion patterns are ontinuously and simultaneously aquired

during a period overing several respiratory yles. A look-up table an then be used to store eah pair

of MR phase image/motion surrogate. During heating, phase artifats due to the periodial motion of

the respiration yle are addressed by alulating a baseline phase image based on a model of the phase

dependene of the urrent motion desriptor (red blok in �gure 1). Using multi-baseline strategies, the

stability of MR-thermometry largely depends on: (i) the determination of an aurate and preise motion

surrogate ; (ii) the auray of the model used to address suseptibility related phase hanges, espeially in

regions with omplex suseptibility distributions or signal disontinuities.

More reent approahes proposed to fuse these two largely omplementary approahes to ombined

orretion strategies, whih ompensate the respetive weaknesses in order to ahieve both inreased auray

and a less onvoluted work-�ow for linial appliations [8℄ [32℄.

The ontribution of the urrent study is threefold:

1. We introdue the use of deep learning for on-line orretion of motion related errors in abdominal

MR-thermometry. The existing multi-baseline strategy is extended by a onvolutional neural net-

First Author et al.: Preprint submitted to Elsevier Page 2 of 15



Deep orretion of breathing-related artifats in MR-thermometry

work (CNN) whih learns the apparent temperature perturbation from images aquired during the

preparative learning stage. The input of the designed CNN is the urrent magnitude image and as a

onsequene no surrogate of motion-state is needed. During the hyperthermia proedure, the most re-

ent magnitude image is used as an input for the pre-built CNN-model in order to generate a orretion

for the most reent temperature map.

2. Frequently, inherent omputational osts are a major di�ulty when dealing with deep learning in

appliations requiring adaptive / on-the-�y training. In order to mitigate this problem for linial

appliations of MR-thermometry, a �ne-tuning strategy is proposed to aelerate alulations during

the preparative learning stage. Moreover, to meet omputational requirements for real-time MR-

thermometry, whih requires that all alulations have to be ompleted within the interval between

two suessive image aquisitions, we propose to proess all temperature images in a sliding temporal

window within one single CNN-model all.

3. The ability of the proposed approah to remove thermometry artifats is demonstrated for dynami

MRI datasets of the the liver of 12 healthy volunteers in absene of temperature hanges. We demon-

strate that the amount of learning images and the CNN training time an be optimized to the point

that linial thermotherapy interventions are feasible. Thermometri preision and auray is demon-

strated with a heating experiment performed on a porine liver using high intensity foused ultrasound

(HIFU) [1℄. The proposed method is ompared to the two most frequently employed multi-baseline

strategies in terms of temperature preision, without penalty in auray.

2. Materials and Methods

2.1. Method overview

The proposed method is detailed in �gure 2: thermal maps with motion related temperature artifats and

magnitude images (noted M) are ombined to establish prior to hyperthermia a CNN-based temperature

orretion model (noted g). During hyperthermia, the inoming magnitude image is used as an input for

the pre-built CNN-model to generate in real time a temperture orretion for the urrent temperature map.

Di�erenes with existing multi-baseline approahes (�gure 1) are: (i) the input of the orretion model is

the most reent magnitude image, whih eliminates the need for surrogates/sensors ; (ii) the �tted data is

the apparent (artifated) temperature ; (iii) the model is a CNN. The bene�t of eah of these aspets is

disussed later in the manusript.

2.2. Datasets

Dynami MR-imaging was performed on a Philips Ahieva 1.5 T (Philips Healthare, Best, The Nether-

lands) under real-time onditions. The method was evaluated in 2D and the e�et of through plane motion

was redued by setting the imaging plane diretion parallel to the prinipal axis of the organ displaement.

2.2.1. Volunteer study.

An imaging frame rate of 10 Hz was maintained during 5 minutes on the abdomen of 12 healthy human

volunteers under free-breathing onditions. The MR-protool was omposed of a learning step of 20 s dedi-

ated to the aquisition of the training data, followed by 4 min-40 s devoted to mimi an interventional pro-

edure. The MR-sequene was a single-shot gradient realled eho-planar with the following parameters: one

oronal slie, repetition time (TR)=100 ms, eho time (TE)=26 ms, bandwidth in readout diretion=2085

Hz, �ip angle=35

◦
, �eld of view (FOV )=256 × 168 mm

2
, slie thikness=6 mm, matrix=128 × 84, using

a four element phased array body oil. The volunteer studies depited various SNR onditions: over the

twelve volunteers, the SNR was evaluated as 7± 3 (min=4, max=14) in the liver.

2.2.2. In vivo heating study in a porine liver.

MRI guided HIFU was performed in vivo in the liver of a pig under general anesthesia and arti�-

ial breathing. The MR sequene employed the following parameters: single-shot, gradient realled, eho-

planar imaging, 1000 dynami sagittal images, �ve slie, TR=250 ms, TE=33 ms, �ip angle=40

◦
, in-plane

FOV=370 × 162 mm

2
, voxel size=2.89 × 2.89 × 7 mm

3
using the integrated three elements phased array

oil of the HIFU system. A MR ompatible HIFU ablation system (Sonalleve, Profound Medial, Helskinki,
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Figure 1: Illustration of a typial multi-baseline orretion sheme. Both motion surrogate(s) and MR-images are used for

this strategy. Both the motion surrogate S(t) and the MR-images are aquired simultaneously in a training phase before

the hyperthermia proedure. A multi-baseline olletion is used to store eah pair of motion surrogate/phase image. During

hyperthermia, thermometry artifats due to the periodial motion of the respiration yle are addressed by alulating a

baseline phase (noted f(S(t))) based on the urrent motion surrogate and the training phase images.

Finland) omposed of a table top ontaining a 256 elements HIFU transduer, integrated in the 1.5 T

Ahieva-Intera MRI was used to perform a temperature elevation. The transduer radius and aperture were

120 mm and 126 mm, respetively, reating an ellipsoid foal point (1 × 1 × 7 mm

3
). The animals were

plaed in the prone position so that the liver was aessible through an unobstruted beam-path diretly

below the rib-age. MR-guided hyperthermia was performed for a duration of 4 minutes on the liver with

HIFU power of 160 W during 100 s. All animal studies were performed under an approved Animal Care

and Use protool.

2.3. Proposed CNN-based orretion

2.3.1. Learning motion-related errors in MR-thermometry.

Motion-related errors in MR-thermometry were learned during a preparative learning stage performed

before hyperthermia. This step is based on a training set of N dynamially aquired data (eah dynami

data is omposed by the magnitude, the phase and the apparent temperature map alulated with Eq. (1)).

The motion yle has to be sampled with a su�ient density in order to avoid disretization errors. With a

su�ient imaging frame rate of 5-10 Hz and a respiration frequeny of 3-6 seonds this pre-treatment step

an be ompleted in a relatively short duration of 15-20 seonds. For the volunteer study, we tested various
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Figure 2: Illustration of the proposed CNN orretion sheme. In this approah only MR-images are required and no motion

surrogate(s)/sensors are needed. MR-training data are aquired prior to hyperthermia in a training phase. Subsequently,

the motion-artifated thermal maps and the magnitude images are ombined to establish a CNN-based orretion model

of the temperature (red blok). During the hyperthermia proedure, the most reent magnitude image is used as an input

for the pre-built CNN-model in order to generate a orretion map (noted g(M)) for the urrent temperature map.

(reonstruted) imaging frame rates � ranking from 1 Hz (i.e., N = 20) to 10 Hz (i.e., N = 200) � to

train our CNN-model. For the in vivo heating study, we used N = 200.

2.3.2. Preproessing of input images.

During both learning and hyperthermia (thermotherapy) stages, all inoming images (i,e. anatomial

and temperature images) were preproessed on-the-�y as follows. First, anatomial (magnitude) image

intensities were normalized (z-soring) using the mean and standard deviation within the omplete image

�eld-of-view. Seond, thermal maps were registered onto a ommon referene position in order to allow

kineti analysis. Note that this registration step also allows for umulative thermal dose alulations, whih

may be bene�ial for on-line assessment of the therapy endpoint [24℄ [26℄. In the sope of this manusript, we

registered all inoming phase images using motion estimates of a real-time image optial-�ow (OF) algorithm

applied to magnitude images. Additional details about the employed image registration algorithm an be

found in [30℄. Temperature alulations were performed using Eq. (1) applied to the registered phase maps.

2.3.3. Implemented deep neural network model.

Figure 3 desribes the arhiteture of the proposed deep neural network model (noted g) designed to

learn motion-related artifats in MR-thermometry prior to hyperthermia (red blok in �gure 2). The input

of the model is a magnitude image M and the output is a orretion (noted g(M)) for the orresponding

temperature image (i.e., ∆T ). Note that potential mis-orreted phase wraps in Eq. (1) may have a

diret negative impat on the CNN-model optimization proess. To mitigate this drawbak, temperature

maps used for training were �ltered using a median �lter (kernel 5 × 5). We used a onvolutional enoder

with 3 layers per resolution level, using a basis of 24 �lters of 3 × 3 (i.e., 24 �lters for the �rst layer, 48

for the seond and so on). We empirially optimized this setting for redued memory onsumption without

impating performane. Eah blok was omposed of bath normalization, onvolution and ReLU ativation.

We employed the following parameters: bath size = 1, optimizer = Adam with default parameters, epoh

= 100, loss = Mean Square Error (MSE) and dropout = 0.5 after eah blok. We used one single input

hannel (i.e., the atual magnitude image). The implemented CNN-model is detailed in the supplementary

material of the manusript. The output shape and the number of parameters involved in eah layer of the

CNN-model are given.
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Figure 3: Arhiteture of the deep neural network proposed for learning motion-related errors in MR-thermometry before

heating (red blok in �gure 2). The most reent magnitude image (i.e., M) is used as a single input hannel. The CNN-

model onstruts a orretion map (noted g(M)) for the urrent temperature map. Eah blok of the CNN is omposed of

bath normalization, onvolution and ReLU ativation. The number of 3× 3 �lters is indiated on the top of eah blok.

2.3.4. Proposed �ne-tuning strategy.

CNN optimization is a omplex iterative proess whih is inherently time onsuming and depends on

initialization. To redue these two issues and to meet linial onstraints of a therapeuti work�ow, we

propose a �ne-tuning strategy. To this end, a pre-built CNN model (i.e., a CNN-model trained on several

data sets) � is loaded and used as a starting point for the atual model optimization (i.e., the red blok in

�gure 2).

2.3.5. On-line CNN-orretion of temperature maps.

At this point we have a model g designed to predit the atual temperature perturbation g(M) given the

urrent anatomial image M . The motion ompensated temperature image at instant t an be obtained as

follows (see �gure 2):

∆Tcor(~r, t) = ∆T (~r, t)− g (M(~r, t)) (2)

2.3.6. Corretion of time-persistent o�sets.

One orreted aording to setion 2.3.5, the temperature in a voxel at loation ~r is prone to a time

dependent o�set arising from the presene of noise in the baseline phase image (i.e., ϕ(~r, t0) in Eq. (1)). To

ompensate for this o�set, we assumed that the temperature hange has to be identially equal to 0 during

the learning stage (no hyperthermia). Pratially, a pre-built temperature time average map � based on

data aquired before heating � was subtrated from the atual motion ompensated temperature image

∆Tcor(~r, t).

2.4. Implementation details

We evaluated the omputational burden of our proposed method using an Intel Xeon E5-2683 2.4 GHz

(2 Hexadea-ore) with 256 GB of RAM equipped by a GPU Nvidia Tesla V100. Our implementation was

performed using Tensor�ow 1.4 and Keras 2.2.4.

Eah of the 13 tested data sets � 12 volunteer data sets + 1 in vivo heating data set � were proessed

without �ne-tuning (eah data set was proessed independently of eah other) and with �ne-tuning (leave-

one-out strategy).
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To redue the omputation time during the interventional proedure, all data in a sliding temporal

window (i.e., a pak of most reent onseutive dynamially aquired images. We denote by δ the number

of dynami images) were proessed simultaneously within one single CNN-model all. In the sope of this

study, we tested δ-values in the following set: {1, 2, 16}.
The usefulness of the two above-mentioned implementation strategies is analyzed in the disussion setion.

2.5. Validation framework

2.5.1. Implemented ompetitive approahes.

The performane of two existing multi-baseline solutions � referred to as �look-up-table� approah (or

LUT) [27℄ and �linear model� approah (or LM) [22℄ throughout the rest of the manusript � were also

evaluated on the same data sets. In the learning stage of both LUT and LM, MR-images (magnitude and

phase) were inluded over several respiratory yles (idential number of training data N were employed

for both LUT, LM and the proposed CNN method). The position in the respiration yle (i.e., the motion

surrogate denoted by S(t) in �gure 1) was monitored using a Prinipal Component Analysis (PCA) applied

to the above-mentioned OF-motion estimates, as desribed in [4℄. The baseline phase image needed for the

alulation of the atual temperatures maps with Eq. (1) was alulated in the following two ways:

Look-up-table approah (LUT): Eah olleted baseline phase image during the learning stage was indexed

in a look-up-table aording to its estimated position within the breathing yle given by S(t). During the

intervention stage, the baseline phase image in Eq. (1) was a linear interpolation between the losest two

referene phase images allowed for reonstruting a baseline phase image for the urrent position in the

respiration yle.

Linear model approah (LM): The overall phase variation (denoted by f(S(t)) in �gure 1) was approxi-

mated by linear phase hanges of the motion surrogate S(t) on a voxel-by-voxel basis as desribed in [4℄.

2.5.2. Statistial analysis.

In the volunteer study, it was assumed that the temperature hange has to be identially equal to 0

during the testing session (no hyperthermia was performed).

First, the temperature preision was evaluated for eah volunteer by omputing on a voxel-by-voxel basis

the temporal temperature standard deviation (noted SD) within a manually de�ned mask (noted Γ, Γ ⊂ Ω)
enompassing the liver and over the duration of the interventional session (i.e., from the starting instant

ts = 20 s to the �nal instant tf =5 min):

SD(~r) = σ (∆T (~r, t)) t ∈ [ts, tf ], ~r ∈ Γ (3)

Seond, the temperature auray was evaluated for eah volunteer by omputing on a voxel-by-voxel

basis the mean absolute temperature error (noted MAE) within Γ and over the interventional step:

MAE(~r) =

∣

∣

∣

∣

1

tf − ts

∫ tf

t=ts

∆T (~r, t)dt

∣

∣

∣

∣

~r ∈ Γ (4)

The same analysis was performed for the in vivo heating study to assess the thermometry preision and

the auray outside the heated region.

For the volunteer study, a paired Wiloxon test was arried out in order to study whether SD and MAE

di�erenes are statistially signi�ant between LUT-, LM- and CNN-orreted data sets. A signi�ane

threshold of p = 0.025 was used. The power of the statistial analysis has been arried out, as desribed in

[2℄.

3. Results

3.1. Volunteer study

Figure 4 shows an example of MR-thermometry results obtained in one volunteer of the examined group

(volunteer #2). The leftmost image (4a) depits the anatomy. The temperature preision (resp. auray)
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is reported in the upper row (resp. bottom row) for eah tested orretion solution. Thermometry artifats

aused by motion-related suseptibility variations were ompensated using LUT (�rst olumn), LM (seond

olumn) and CNN (third olumn). The temperature preision is visually better in the major part of the liver

using LM method as ompared to LUT (see arrow#1 in 4b and 4). The best preision is however observable
using the CNN method. It an also be notied that large suseptibility artifats render the temperature

orretion di�ult in the upper part of the liver (see arrow #2 in 4b, 4 and 4d) and in the viinity of

hepati arteries (see arrow #3 in 4b, 4 and 4d). In these regions, an improvement of the thermometry

preision by up to 2

◦
C ould be obtained using CNN as ompared to both LUT and LM. This preision

was ahieved without negative impat on the auray, from a visual point of view, as shown in 4e-g.

Temperature maps from the individual volunteers were pooled in order to obtain a group set ontaining

the temperature preision (resp. auray) from all volunteers. The distribution of the temperature preision

(resp. auray) for the group set is reported in �gure 5a (resp. 6a) using LUT, LM and CNN. The

distribution of temperature preision (resp. auray) is also detailed for eah volunteer in 5b (resp. 6b).

The paired Wiloxon test showed that the temperature preision was signi�antly better using LM as

ompared to LUT (p<0.001/statistial power=1). Furthermore, the temperature preision was signi�antly

better using CNN as ompared to LUT and LM (p<0.001/statistial power=1). Besides, the temperature

auray was signi�antly better using CNN as ompared to LM (p=0.008/statistial power=1).

Figure 7 analyzes the impat of the amount of learning images: ompared to the original 10 Hz imaging

frame rate, a 2 Hz frame rate deteriorated moderately thermometri preision and auray (by less than

30%).

Magnitude

(a)

SD-map (LUT)

(b)

SD-map (LM)

()

SD-map (CNN)

(d)

MAE-map (LUT)

(e)

MAE-map (LM)

(f)

MAE-map (CNN)

(g)

Figure 4: Typial temperature stability maps obtained in the abdomen of volunteer #2 using two existing multi-baseline

approahes (i.e., LUT and LM) and using the CNN approah: (a) anatomi image, (upper row) the temperature standard

deviation map obtained with the LUT (b), the LM () and the CNN method (d), (lower row) the temperature mean

absolute error map obtained with LUT (e), LM (f) and CNN (g). N = 200 images were used for training (an imaging

frame rate of 10 hz was maintained during 20 seonds)
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(a)

(b)

Figure 5: Comparison of temperature preision obtained using LUT, LM and CNN in the liver of free-breathing healthy

volunteers during 4 minutes and 40 seonds of MR-thermometry. Similar to �gure 4, N = 200 images were used for

training. Box-and-whisker plots of the temporal temperature standard deviation are shown using LUT (dark gray box),

LM (light gray box) and CNN (white box): (a) group analysis over the 12 volunteers, (b) volunteer-wise analysis. The

median is shown by the entral mark, the �rst and the third quartiles are reported by the edges of the box, the whiskers

extend to the most extreme time points that are not onsidered as outliers.

3.2. In vivo heating study in a porine liver

Figure 8 shows MR thermometry results obtained on a porine liver during HIFU heating. Thermal

maps are reported after 80 s of soniation using LUT (8a), LM (8b) and CNN (8). In absene of any

orretion strategy, apparent temperature �utuations of up to 13

◦
C (peak-to-peak) were observed in the

target area. The heated region using the LUT appears slightly elongated as ompared to LM and CNN.

Residual thermometry artifats are observable in the upper part of the liver with LUT (see 8a). These

apparent temperature �utuations are however greatly redued using LM (8b), and even more using CNN

(8). This visual observation is on�rmed in assoiated SD-maps: in most of the voxels loated in the upper

part of the liver, a temperature standard deviation higher than 3

◦
C using LUT (8d) dereased until 2

◦
C using

LM (8e), and reahed 1

◦
C using CNN (8f). This preision gain with CNN was ahieved without reating

any additional o�set, as shown by the MAE-maps (see 8h, 8i and 8j). The evolution of the temperature

is shown in a single voxel loated at the foal point position using LUT (8k), LM (8l) and CNN (8m).

Higher residual temporal temperature �utuations are observable using the LUT orretion as ompared

to the other two orretion approahes. LM and CNN approahes lead to a omparable observation of the

temperature evolution: a temperature inrease of 12

◦
C was reahed after 80 s of HIFU soniation.

3.3. Benhmark

During the learning stage, around 1.5 s were required in average for the aomplishement of one epoh.

Figure 9 shows the loss metri as a funtion of the number of epohs without and with the proposed �ne-

tuning strategy. It an be observed that the use of �ne-tuning stabilized and aelerated the onvergene of

the optimization proess, and this for all data sets involved in this study.
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(a)

(b)

Figure 6: Comparison of temperature auray obtained using LUT, LM and CNN in the liver of free-breathing healthy

volunteers during 4 minutes and 40 seonds of MR-thermometry. Similar to �gures 4 and 6, N = 200 images were used

for training. Box-and-whisker plots of the temporal temperature mean absolute error are shown using LUT (dark gray

box), LM (light gray box) and CNN (white box): (a) group analysis over the 12 volunteers, (b) volunteer-wise analysis.

Temperature preision

(a)

Temperature auray

(b)

Figure 7: Analysis of the impat of the amount of learning images on the temperature stability. The temperature preision

(a) and auray (b) were evaluated using various imaging frame rates for training. Box-and-whisker plots of the temporal

temperature standard deviation (a) and mean absolute error (b) obtained over the 12 volunteers are reported for imaging

frame rates ranking between 1 and 10 Hz. Note that the number N of dynami images used to train the CNN-model was

equal to 20 (resp. 40, 60, ..., 200) when an imaging frame rate of 1 Hz (resp. 2, 3, ... 10 Hz) was employed.
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Figure 8: MR thermometry results obtained in a porine liver during HIFU heating: (�rst row) Temperature maps obtained

after 80 s of heating (t = 100s) overlaid on the anatomi image, (seond row) temporal standard deviation map, (third

row) mean absolute error map, and (bottom row) temporal evolution of the temperature in a single voxel loated at the

foal point position. Results are reported using LUT (left), LM (middle) and CNN (right).

During the hyperthermia session, 150 ms were required to generate one single motion ompensated

temperature map. In suh a ase, the GPU usage was however highly under-exploited: interestingly, the

alulation of a pak of δ =16 maps ould be also aomplished within 150 ms.
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Figure 9: Loss metri as a funtion of the number of epohs obtained without (a) and with (b) the use of �ne-tuning.

For eah number of epohs, the mean and standard deviation of 13 MSE values (i.e., 12 values for the volunteer study +

1 value for the heating study) are reported.

4. Disussion

The proposed method is designed to remove motion-related suseptibility e�ets indued by breathing in

real-time abdominal MR-thermometry. To this end, the existing multi-baseline strategy is extended using

a deep neural network: a CNN learns the apparent temperature perturbation during a preparative learning

stage performed before hyperthermia.

A major di�ulty when dealing with deep learning is the inherent omputational ost. One goal of

this study was to investigate if (i) the amount of learning images and (ii) the CNN training time an be

optimized to the point that linial thermotherapy interventions are feasible. For this, all alulations at

the di�erent stages of the proposed work�ow (i.e., learning stage, CNN model optimization, determination

of an o�set map and interventional session) were designed to be ompatible with the onstraints of linial

thermotherapy proedures (see setion 3.3). With respet to the learning stage, 20 epohs using �ne-tuning

provide a loss similar to the one ahieved by 100 epohs (see �gure 9). The alulation of the CNN-model

(red blok in �gure 2) ould thus be aomplished within less than 30 s (resp. less than 6 s) using our test

platform with a training frame rate of 10 Hz (resp. 2 Hz). The ompensation of the time-persistent o�set

(as desribed in setion 2.3.6), whih relied on a CNN-orretion for eah of the N training images, ould be

aomplished within less than a seond in all presented experiments. Regarding the interventional session,

it is imperative that all alulations have to be done within the interval of subsequent image aquisitions in

order to prevent bak-log. The use of a sliding temporal window (as introdued in setion 2.4) of size δ = 2
dynami was mandatory in the volunteer study to ope with a 10 Hz imaging frame rate.

A seond major hallenge is the presene of noise and wraps in MR-phase images, whih hampers the

CNN optimization proess (red blok in �gure 2). This drawbak was �rst partially addressed by the use of

temperature maps as inputs for the CNN instead of the phase images. However, a voxelwise time-persistent

o�set remained, indued by the the presene of noise in the baseline phase image ϕ(~r, t0) in Eq. (1). This

issue was addressed using an o�set orretion (as desribed in setion 2.3.6), and no additional penalty in

the auray was observable using CNN as ompared to LUT and LM.

Using LM, a linear phase model is derived from the resolution of an overdetermined system of N ref-

erene images. In omparison with LUT, noise may be redued on the resynthesized baseline phase image

in Eq. (1). Ideally, a �noise-free� resynthesized baseline phase images is produed, and the noise ontri-

bution on temperature unertainty is redued by a fator

√
2. Moreover, while LUT intrinsially annot

orret for motion amplitudes higher than the ones observed in the learning stage, LM an still provide an

extrapolation of the referene phase. As a onsequene, regarding the preision of MR-thermometry, LM
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outperformed LUT in all presented experiments. Our �ndings show that the multi-baseline strategy an be

further improved using CNN. It must be underlined that an inherent drawbak with CNN lies in the high

omplexity of the �tted model, whih makes it di�ult to interpret. However, CNN was able to ope with

omplex motion-related thermometry artifats (as enountered in the upper part of the liver), for whih an

expliit modeling is very hallenging on-line.

The CNN method provided aurate temperature measurements for imaging frame rate above 2 Hz.

The proposed CNN method was also demonstrated to be ompatible with fast MR aquisition shemes of

up to 10 Hz. Real-time MR-thermometry may thus be advantageously ombined with any suitable real-time

temporal �ltering to further improve the measurement preision, as desribed in [22℄ or [31℄.

It should be noted that LUT and LM rely on the on-line determination of a motion surrogate, whih

an be provided by various types of sensors suh as breathing belt or MR-/ultrasound-based surrogates.

Using CNN, no motion surrogate is required sine motion patterns are impliitely extrated from the atual

magnitude image. CNN thereby provides an independent thermal information with that provided by LUT

and LM (among others), whih opens great perspetives for the use of the method as a �Wathdog� for

on-line quality ontrol (QC).

Several other mahine learning models have been onsidered (suh as Logisti Regression, Naïve Bayes,

Random Forest and Support Mahine Vetor) to learn motion related errors in abdominal MR-thermometry

in the urrent study. However, using suh algorithms, the omputation ost was onsistently muh higher

than LM, whih relies on a very simple linear model. Moreover, the above-mentioned mahine learning mod-

els showed di�ulties to interpolate/extrapolate positions not observed during training. The LM model, as

implemented in the urrent study, appeared more appropriate for this task, sine the pixel wise temperature

variation with respiratory motion in the abdomen an be e�iently approximated in �rst order with a linear

term, as shown in [13℄. As a onsequene, we deided to limit the sope of this paper to a omparison of the

two already published multi-baseline methods: LUT and LM.

The main limitation of the proposed method � as it is ommon with multi-baseline strategies � is

its inability to ompensate for thermometry artifats related to motion / deformation(s), whih has not

been observed during the training period. In pratie, this an be enountered due to physiologial drift or

spontaneous motion. If during hyperthermia bulk shofts or major drifts from the alibration position are

observed, a realibration of the orretion data is then required.

5. Conlusion

PRF-based MR-thermometry is ompliated in abdominal organs by displaement of the target and

surrounding tissues, whih hampers diret voxel-by-voxel omparisons. Strong temperature artifats are

introdued by motion-indued additional phase variations via an inhomogeneous and time-variant magneti

�eld. The proposed approah extends the existing multi-baseline strategy using CNN to address suh

artifats in abdominal organs due to breathing. A work�ow is proposed to solve inherent issues with CNN

assoiated to omputational burden for training. The proposed method outperformed two existing multi-

baseline strategies in terms of temperature preision, espeially in regions prone to strong suseptibility

artifats as enountered in the upper part of the liver. This was ahieved without noteworthy additional

penalty in the temperature auray. Moreover, we have demonstrated that, even under linial onditions,

the method was found robust and artifat-free in all examined ases and well able to follow the temperature

evolution of an in vivo HIFU ablation.
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