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ABSTRACT

Real-timeMR-imaging has been 
lini
ally adapted for monitoring thermal therapies

sin
e it 
an provide on-the-�y temperature maps simultaneously with anatomi
al

information. However, proton resonan
e frequen
y based thermometry of moving

targets remains 
hallenging sin
e temperature artifa
ts are indu
ed by the respi-

ratory as well as physiologi
al motion. If left un
orre
ted, these artifa
ts lead to

severe errors in temperature estimates and impair therapy guidan
e.

In this study, we evaluated deep learning for on-line 
orre
tion of motion related

errors in abdominal MR-thermometry. For this, a 
onvolutional neural network

(CNN) was designed to learn the apparent temperature perturbation from images

a
quired during a preparative learning stage prior to hyperthermia. The input of

the designed CNN is the most re
ent magnitude image and no surrogate of motion

is needed. During the subsequent hyperthermia pro
edure, the re
ent magnitude

image is used as an input for the CNN-model in order to generate an on-line


orre
tion for the 
urrent temperature map.

The method's artifa
t suppression performan
e was evaluated on 12 free breath-

ing volunteers and was found robust and artifa
t-free in all examined 
ases. Fur-

thermore, thermometri
 pre
ision and a

ura
y was assessed for in vivo ablation

using high intensity fo
used ultrasound. All 
al
ulations involved at the di�erent

stages of the proposed work�ow were designed to be 
ompatible with the 
lini
al

time 
onstraints of a therapeuti
 pro
edure.

1. Introdu
tion

MRI is used for monitoring thermal therapies sin
e it 
an provide on-line anatomi
al informations (given

by the spatial distribution of the magnitude of the MR-signal) together with temperature mapping [10℄ [25℄

[29℄. Many approa
hes have been developed for MR-thermometry and the Proton-Resonan
e-Frequen
y

shift (PRF) te
hnique is widely used [3℄ [6℄ [19℄. In the PRF approa
h, the phase 
omponent ϕ of the MR-

signal, whi
h is a
quired using gradient e
ho sequen
es, is dire
tly used to estimate voxel-wise temperature

variations [3℄ [12℄ [15℄. Due to the spatial phase variations, this signal 
omponent needs to be measured on a

voxel-per-voxel basis. Let ~r = (x, y, z) ∈ Ω be the voxel 
oordinates, Ω being the image 
oordinates domain.

An estimate of the temperature 
hange (noted ∆T ) at a spatial lo
ation ~r and at instant t is obtained by


omparing a baseline phase signal a
quired at a referen
e instant t0 to the phase signal a
quired and at t,

as follows:

∆T (~r, tn) = (ϕ(~r, t0)− ϕ(~r, t))× k (1)

⋆
Experiments presented in this paper were 
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(LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional d'Aquitaine (see https://www.plafrim.fr/).

Computer time for this study was provided by the 
omputing fa
ilities MCIA (Méso
entre de Cal
ul Intensif Aquitain) of the

Université de Bordeaux and of the Université de Pau et des Pays de l'Adour.

∗
Corresponding author

or
id(s):

First Author et al.: Preprint submitted to Elsevier Page 1 of 15



Deep 
orre
tion of breathing-related artifa
ts in MR-thermometry

k is a 
onstant parameter, more details on its determination 
an be found in [18℄. Note that phase wraps need

to be 
ompensated on a voxel-by-voxel basis by adding (resp. substra
ing) 2π when ϕ(~r, t0)− ϕ(~r, t) < −π

(resp. ϕ(~r, t0)− ϕ(~r, t) > π).

While this approa
h works well on stati
 obje
ts, the appli
ation of PRF thermometry to moving targets

remains 
hallenging sin
e additional variations of the phase 
omponent are indu
ed by: (i) moving the

observed tissue through an inhomogeneous magneti
 �eld ; (ii) deforming/
hanging the tissue so that the

demagnitisation �eld of the tissue 
hanges, whi
h are both a 
onsequen
e of the patient's physiologi
al

a
tivity and the asso
iated organ motion [3℄. If left un
orre
ted, these additional phase variations enter

Eq. (1) in full and 
ould lead to severe thermometri
 errors, leading to abolute errors ex
eeding the true

temperature di�eren
e by more than a magnitude.

As a mitigation strategy, one of the �rst proposed approa
hes has been respiratory gating. Respiratory

gating 
onsists of intermittent a
quisitions performed in ea
h exhalation phase of the respiratory 
y
le

[16℄. As a trigger for the gating, several types of respiratory motion des
riptors have been proposed [14℄,

ranging from external pressure sensors [16℄, dedi
ated 1D MR navigator e
hoes [11℄ to self gated sequen
es

based on MR magnitude images [5℄. Although gating is generally a robust solution to avoid motion indu
ed

thermometri
 errors, it is nevertheless hampered by two drawba
ks. First and foremost, the observed motion

pattern must be stri
tly repetitive/periodi
al and se
ondly 
onsidering a good spatial 
overage of the heated

region, the a
hiveable temporal resolution is generally limited to a range of 3 to 6 s [28℄ [17℄ [21℄.

In parti
ular the latter motivated the development of non-gated MR-thermometry 
orre
tion strategies,

whi
h are able to sele
tively remove motion-indu
ed phase 
hanges from the MR-phase and thus to provide

artefa
t-free temperature maps in real-time. However, the required pre
ise modeling of the inhomogeneous

magneti
 �eld in vivo and the motion asso
iated phase variations, in parti
ular under real-time 
onditions

for therapy guidan
e, has been di�
ult to a
hieve. Most of these early 
orre
tion strategies 
an be 
oarsely


lassi�ed into two di�erent types, whi
h are generally referred to as �Referen
eless� and �Multi-baseline�

PRF thermometry. The interested reader is referred to [7℄ for a pragmati
 analysis of inherent advantages

and drawba
ks asso
iated with these two 
orre
tion strategies:

In referen
eless PRF thermometry, the baseline phase signal used to 
ompute the 
urrent temperature

map is dire
tly estimated from the 
urrent MR phase image. To this end, the phase signal of non-heated

surrounding tissues is used to extrapolate a baseline phase signal in the targeted area [20℄ [9℄ [23℄. This

approa
h relies on an a priori 
hoi
e of a region of interest (ROI) and the quality of the thermometry highly

depends on an optimal ROI pla
ement. In pra
ti
e, the �tting ROI has to: (i) en
ompass � at least to

some extent � the ablation area ; (ii) be su�
iently 
lose the target area to allow a pre
ise estimate of the

ba
kground phase there ; (iii) be su�
iently far from the heating zone to be una�e
ted by heat di�usion

and 
ondu
tion ; (iv) not en
ompass areas prone to strong lo
al sus
eptibility variations.

In multi-baseline PRF thermometry (illustrated in �gure 1) a look-up table obtained in absen
e of

temperature variations establishes a relation between the phase variations asso
iated with the patient's

physiologi
al motion and a des
riptor/dete
tor [27℄. The bene�t of this approa
h is evident for appli
ation

s
enarios that do not permit a pla
ement of the �tting ROI ful�lling all above-mentioned four 
onditions

simultaneously. This is generally the 
ase for minimally invasive ablations, or interventions at the boundary

of organs. Both MR images and des
riptors of motion patterns are 
ontinuously and simultaneously a
quired

during a period 
overing several respiratory 
y
les. A look-up table 
an then be used to store ea
h pair

of MR phase image/motion surrogate. During heating, phase artifa
ts due to the periodi
al motion of

the respiration 
y
le are addressed by 
al
ulating a baseline phase image based on a model of the phase

dependen
e of the 
urrent motion des
riptor (red blo
k in �gure 1). Using multi-baseline strategies, the

stability of MR-thermometry largely depends on: (i) the determination of an a

urate and pre
ise motion

surrogate ; (ii) the a

ura
y of the model used to address sus
eptibility related phase 
hanges, espe
ially in

regions with 
omplex sus
eptibility distributions or signal dis
ontinuities.

More re
ent approa
hes proposed to fuse these two largely 
omplementary approa
hes to 
ombined


orre
tion strategies, whi
h 
ompensate the respe
tive weaknesses in order to a
hieve both in
reased a

ura
y

and a less 
onvoluted work-�ow for 
lini
al appli
ations [8℄ [32℄.

The 
ontribution of the 
urrent study is threefold:

1. We introdu
e the use of deep learning for on-line 
orre
tion of motion related errors in abdominal

MR-thermometry. The existing multi-baseline strategy is extended by a 
onvolutional neural net-

First Author et al.: Preprint submitted to Elsevier Page 2 of 15
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work (CNN) whi
h learns the apparent temperature perturbation from images a
quired during the

preparative learning stage. The input of the designed CNN is the 
urrent magnitude image and as a


onsequen
e no surrogate of motion-state is needed. During the hyperthermia pro
edure, the most re-


ent magnitude image is used as an input for the pre-built CNN-model in order to generate a 
orre
tion

for the most re
ent temperature map.

2. Frequently, inherent 
omputational 
osts are a major di�
ulty when dealing with deep learning in

appli
ations requiring adaptive / on-the-�y training. In order to mitigate this problem for 
lini
al

appli
ations of MR-thermometry, a �ne-tuning strategy is proposed to a

elerate 
al
ulations during

the preparative learning stage. Moreover, to meet 
omputational requirements for real-time MR-

thermometry, whi
h requires that all 
al
ulations have to be 
ompleted within the interval between

two su

essive image a
quisitions, we propose to pro
ess all temperature images in a sliding temporal

window within one single CNN-model 
all.

3. The ability of the proposed approa
h to remove thermometry artifa
ts is demonstrated for dynami


MRI datasets of the the liver of 12 healthy volunteers in absen
e of temperature 
hanges. We demon-

strate that the amount of learning images and the CNN training time 
an be optimized to the point

that 
lini
al thermotherapy interventions are feasible. Thermometri
 pre
ision and a

ura
y is demon-

strated with a heating experiment performed on a por
ine liver using high intensity fo
used ultrasound

(HIFU) [1℄. The proposed method is 
ompared to the two most frequently employed multi-baseline

strategies in terms of temperature pre
ision, without penalty in a

ura
y.

2. Materials and Methods

2.1. Method overview

The proposed method is detailed in �gure 2: thermal maps with motion related temperature artifa
ts and

magnitude images (noted M) are 
ombined to establish prior to hyperthermia a CNN-based temperature


orre
tion model (noted g). During hyperthermia, the in
oming magnitude image is used as an input for

the pre-built CNN-model to generate in real time a temperture 
orre
tion for the 
urrent temperature map.

Di�eren
es with existing multi-baseline approa
hes (�gure 1) are: (i) the input of the 
orre
tion model is

the most re
ent magnitude image, whi
h eliminates the need for surrogates/sensors ; (ii) the �tted data is

the apparent (artifa
ted) temperature ; (iii) the model is a CNN. The bene�t of ea
h of these aspe
ts is

dis
ussed later in the manus
ript.

2.2. Datasets

Dynami
 MR-imaging was performed on a Philips A
hieva 1.5 T (Philips Health
are, Best, The Nether-

lands) under real-time 
onditions. The method was evaluated in 2D and the e�e
t of through plane motion

was redu
ed by setting the imaging plane dire
tion parallel to the prin
ipal axis of the organ displa
ement.

2.2.1. Volunteer study.

An imaging frame rate of 10 Hz was maintained during 5 minutes on the abdomen of 12 healthy human

volunteers under free-breathing 
onditions. The MR-proto
ol was 
omposed of a learning step of 20 s dedi-


ated to the a
quisition of the training data, followed by 4 min-40 s devoted to mimi
 an interventional pro-


edure. The MR-sequen
e was a single-shot gradient re
alled e
ho-planar with the following parameters: one


oronal sli
e, repetition time (TR)=100 ms, e
ho time (TE)=26 ms, bandwidth in readout dire
tion=2085

Hz, �ip angle=35

◦
, �eld of view (FOV )=256 × 168 mm

2
, sli
e thi
kness=6 mm, matrix=128 × 84, using

a four element phased array body 
oil. The volunteer studies depi
ted various SNR 
onditions: over the

twelve volunteers, the SNR was evaluated as 7± 3 (min=4, max=14) in the liver.

2.2.2. In vivo heating study in a por
ine liver.

MRI guided HIFU was performed in vivo in the liver of a pig under general anesthesia and arti�-


ial breathing. The MR sequen
e employed the following parameters: single-shot, gradient re
alled, e
ho-

planar imaging, 1000 dynami
 sagittal images, �ve sli
e, TR=250 ms, TE=33 ms, �ip angle=40

◦
, in-plane

FOV=370 × 162 mm

2
, voxel size=2.89 × 2.89 × 7 mm

3
using the integrated three elements phased array


oil of the HIFU system. A MR 
ompatible HIFU ablation system (Sonalleve, Profound Medi
al, Helskinki,

First Author et al.: Preprint submitted to Elsevier Page 3 of 15
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Figure 1: Illustration of a typi
al multi-baseline 
orre
tion s
heme. Both motion surrogate(s) and MR-images are used for

this strategy. Both the motion surrogate S(t) and the MR-images are a
quired simultaneously in a training phase before

the hyperthermia pro
edure. A multi-baseline 
olle
tion is used to store ea
h pair of motion surrogate/phase image. During

hyperthermia, thermometry artifa
ts due to the periodi
al motion of the respiration 
y
le are addressed by 
al
ulating a

baseline phase (noted f(S(t))) based on the 
urrent motion surrogate and the training phase images.

Finland) 
omposed of a table top 
ontaining a 256 elements HIFU transdu
er, integrated in the 1.5 T

A
hieva-Intera MRI was used to perform a temperature elevation. The transdu
er radius and aperture were

120 mm and 126 mm, respe
tively, 
reating an ellipsoid fo
al point (1 × 1 × 7 mm

3
). The animals were

pla
ed in the prone position so that the liver was a

essible through an unobstru
ted beam-path dire
tly

below the rib-
age. MR-guided hyperthermia was performed for a duration of 4 minutes on the liver with

HIFU power of 160 W during 100 s. All animal studies were performed under an approved Animal Care

and Use proto
ol.

2.3. Proposed CNN-based 
orre
tion

2.3.1. Learning motion-related errors in MR-thermometry.

Motion-related errors in MR-thermometry were learned during a preparative learning stage performed

before hyperthermia. This step is based on a training set of N dynami
ally a
quired data (ea
h dynami


data is 
omposed by the magnitude, the phase and the apparent temperature map 
al
ulated with Eq. (1)).

The motion 
y
le has to be sampled with a su�
ient density in order to avoid dis
retization errors. With a

su�
ient imaging frame rate of 5-10 Hz and a respiration frequen
y of 3-6 se
onds this pre-treatment step


an be 
ompleted in a relatively short duration of 15-20 se
onds. For the volunteer study, we tested various

First Author et al.: Preprint submitted to Elsevier Page 4 of 15
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Figure 2: Illustration of the proposed CNN 
orre
tion s
heme. In this approa
h only MR-images are required and no motion

surrogate(s)/sensors are needed. MR-training data are a
quired prior to hyperthermia in a training phase. Subsequently,

the motion-artifa
ted thermal maps and the magnitude images are 
ombined to establish a CNN-based 
orre
tion model

of the temperature (red blo
k). During the hyperthermia pro
edure, the most re
ent magnitude image is used as an input

for the pre-built CNN-model in order to generate a 
orre
tion map (noted g(M)) for the 
urrent temperature map.

(re
onstru
ted) imaging frame rates � ranking from 1 Hz (i.e., N = 20) to 10 Hz (i.e., N = 200) � to

train our CNN-model. For the in vivo heating study, we used N = 200.

2.3.2. Prepro
essing of input images.

During both learning and hyperthermia (thermotherapy) stages, all in
oming images (i,e. anatomi
al

and temperature images) were prepro
essed on-the-�y as follows. First, anatomi
al (magnitude) image

intensities were normalized (z-s
oring) using the mean and standard deviation within the 
omplete image

�eld-of-view. Se
ond, thermal maps were registered onto a 
ommon referen
e position in order to allow

kineti
 analysis. Note that this registration step also allows for 
umulative thermal dose 
al
ulations, whi
h

may be bene�
ial for on-line assessment of the therapy endpoint [24℄ [26℄. In the s
ope of this manus
ript, we

registered all in
oming phase images using motion estimates of a real-time image opti
al-�ow (OF) algorithm

applied to magnitude images. Additional details about the employed image registration algorithm 
an be

found in [30℄. Temperature 
al
ulations were performed using Eq. (1) applied to the registered phase maps.

2.3.3. Implemented deep neural network model.

Figure 3 des
ribes the ar
hite
ture of the proposed deep neural network model (noted g) designed to

learn motion-related artifa
ts in MR-thermometry prior to hyperthermia (red blo
k in �gure 2). The input

of the model is a magnitude image M and the output is a 
orre
tion (noted g(M)) for the 
orresponding

temperature image (i.e., ∆T ). Note that potential mis-
orre
ted phase wraps in Eq. (1) may have a

dire
t negative impa
t on the CNN-model optimization pro
ess. To mitigate this drawba
k, temperature

maps used for training were �ltered using a median �lter (kernel 5 × 5). We used a 
onvolutional en
oder

with 3 layers per resolution level, using a basis of 24 �lters of 3 × 3 (i.e., 24 �lters for the �rst layer, 48

for the se
ond and so on). We empiri
ally optimized this setting for redu
ed memory 
onsumption without

impa
ting performan
e. Ea
h blo
k was 
omposed of bat
h normalization, 
onvolution and ReLU a
tivation.

We employed the following parameters: bat
h size = 1, optimizer = Adam with default parameters, epo
h

= 100, loss = Mean Square Error (MSE) and dropout = 0.5 after ea
h blo
k. We used one single input


hannel (i.e., the a
tual magnitude image). The implemented CNN-model is detailed in the supplementary

material of the manus
ript. The output shape and the number of parameters involved in ea
h layer of the

CNN-model are given.

First Author et al.: Preprint submitted to Elsevier Page 5 of 15
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Figure 3: Ar
hite
ture of the deep neural network proposed for learning motion-related errors in MR-thermometry before

heating (red blo
k in �gure 2). The most re
ent magnitude image (i.e., M) is used as a single input 
hannel. The CNN-

model 
onstru
ts a 
orre
tion map (noted g(M)) for the 
urrent temperature map. Ea
h blo
k of the CNN is 
omposed of

bat
h normalization, 
onvolution and ReLU a
tivation. The number of 3× 3 �lters is indi
ated on the top of ea
h blo
k.

2.3.4. Proposed �ne-tuning strategy.

CNN optimization is a 
omplex iterative pro
ess whi
h is inherently time 
onsuming and depends on

initialization. To redu
e these two issues and to meet 
lini
al 
onstraints of a therapeuti
 work�ow, we

propose a �ne-tuning strategy. To this end, a pre-built CNN model (i.e., a CNN-model trained on several

data sets) � is loaded and used as a starting point for the a
tual model optimization (i.e., the red blo
k in

�gure 2).

2.3.5. On-line CNN-
orre
tion of temperature maps.

At this point we have a model g designed to predi
t the a
tual temperature perturbation g(M) given the


urrent anatomi
al image M . The motion 
ompensated temperature image at instant t 
an be obtained as

follows (see �gure 2):

∆Tcor(~r, t) = ∆T (~r, t)− g (M(~r, t)) (2)

2.3.6. Corre
tion of time-persistent o�sets.

On
e 
orre
ted a

ording to se
tion 2.3.5, the temperature in a voxel at lo
ation ~r is prone to a time

dependent o�set arising from the presen
e of noise in the baseline phase image (i.e., ϕ(~r, t0) in Eq. (1)). To


ompensate for this o�set, we assumed that the temperature 
hange has to be identi
ally equal to 0 during

the learning stage (no hyperthermia). Pra
ti
ally, a pre-built temperature time average map � based on

data a
quired before heating � was subtra
ted from the a
tual motion 
ompensated temperature image

∆Tcor(~r, t).

2.4. Implementation details

We evaluated the 
omputational burden of our proposed method using an Intel Xeon E5-2683 2.4 GHz

(2 Hexade
a-
ore) with 256 GB of RAM equipped by a GPU Nvidia Tesla V100. Our implementation was

performed using Tensor�ow 1.4 and Keras 2.2.4.

Ea
h of the 13 tested data sets � 12 volunteer data sets + 1 in vivo heating data set � were pro
essed

without �ne-tuning (ea
h data set was pro
essed independently of ea
h other) and with �ne-tuning (leave-

one-out strategy).

First Author et al.: Preprint submitted to Elsevier Page 6 of 15
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To redu
e the 
omputation time during the interventional pro
edure, all data in a sliding temporal

window (i.e., a pa
k of most re
ent 
onse
utive dynami
ally a
quired images. We denote by δ the number

of dynami
 images) were pro
essed simultaneously within one single CNN-model 
all. In the s
ope of this

study, we tested δ-values in the following set: {1, 2, 16}.
The usefulness of the two above-mentioned implementation strategies is analyzed in the dis
ussion se
tion.

2.5. Validation framework

2.5.1. Implemented 
ompetitive approa
hes.

The performan
e of two existing multi-baseline solutions � referred to as �look-up-table� approa
h (or

LUT) [27℄ and �linear model� approa
h (or LM) [22℄ throughout the rest of the manus
ript � were also

evaluated on the same data sets. In the learning stage of both LUT and LM, MR-images (magnitude and

phase) were in
luded over several respiratory 
y
les (identi
al number of training data N were employed

for both LUT, LM and the proposed CNN method). The position in the respiration 
y
le (i.e., the motion

surrogate denoted by S(t) in �gure 1) was monitored using a Prin
ipal Component Analysis (PCA) applied

to the above-mentioned OF-motion estimates, as des
ribed in [4℄. The baseline phase image needed for the


al
ulation of the a
tual temperatures maps with Eq. (1) was 
al
ulated in the following two ways:

Look-up-table approa
h (LUT): Ea
h 
olle
ted baseline phase image during the learning stage was indexed

in a look-up-table a

ording to its estimated position within the breathing 
y
le given by S(t). During the

intervention stage, the baseline phase image in Eq. (1) was a linear interpolation between the 
losest two

referen
e phase images allowed for re
onstru
ting a baseline phase image for the 
urrent position in the

respiration 
y
le.

Linear model approa
h (LM): The overall phase variation (denoted by f(S(t)) in �gure 1) was approxi-

mated by linear phase 
hanges of the motion surrogate S(t) on a voxel-by-voxel basis as des
ribed in [4℄.

2.5.2. Statisti
al analysis.

In the volunteer study, it was assumed that the temperature 
hange has to be identi
ally equal to 0

during the testing session (no hyperthermia was performed).

First, the temperature pre
ision was evaluated for ea
h volunteer by 
omputing on a voxel-by-voxel basis

the temporal temperature standard deviation (noted SD) within a manually de�ned mask (noted Γ, Γ ⊂ Ω)
en
ompassing the liver and over the duration of the interventional session (i.e., from the starting instant

ts = 20 s to the �nal instant tf =5 min):

SD(~r) = σ (∆T (~r, t)) t ∈ [ts, tf ], ~r ∈ Γ (3)

Se
ond, the temperature a

ura
y was evaluated for ea
h volunteer by 
omputing on a voxel-by-voxel

basis the mean absolute temperature error (noted MAE) within Γ and over the interventional step:

MAE(~r) =

∣

∣

∣

∣

1

tf − ts

∫ tf

t=ts

∆T (~r, t)dt

∣

∣

∣

∣

~r ∈ Γ (4)

The same analysis was performed for the in vivo heating study to assess the thermometry pre
ision and

the a

ura
y outside the heated region.

For the volunteer study, a paired Wil
oxon test was 
arried out in order to study whether SD and MAE

di�eren
es are statisti
ally signi�
ant between LUT-, LM- and CNN-
orre
ted data sets. A signi�
an
e

threshold of p = 0.025 was used. The power of the statisti
al analysis has been 
arried out, as des
ribed in

[2℄.

3. Results

3.1. Volunteer study

Figure 4 shows an example of MR-thermometry results obtained in one volunteer of the examined group

(volunteer #2). The leftmost image (4a) depi
ts the anatomy. The temperature pre
ision (resp. a

ura
y)
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is reported in the upper row (resp. bottom row) for ea
h tested 
orre
tion solution. Thermometry artifa
ts


aused by motion-related sus
eptibility variations were 
ompensated using LUT (�rst 
olumn), LM (se
ond


olumn) and CNN (third 
olumn). The temperature pre
ision is visually better in the major part of the liver

using LM method as 
ompared to LUT (see arrow#1 in 4b and 4
). The best pre
ision is however observable
using the CNN method. It 
an also be noti
ed that large sus
eptibility artifa
ts render the temperature


orre
tion di�
ult in the upper part of the liver (see arrow #2 in 4b, 4
 and 4d) and in the vi
inity of

hepati
 arteries (see arrow #3 in 4b, 4
 and 4d). In these regions, an improvement of the thermometry

pre
ision by up to 2

◦
C 
ould be obtained using CNN as 
ompared to both LUT and LM. This pre
ision

was a
hieved without negative impa
t on the a

ura
y, from a visual point of view, as shown in 4e-g.

Temperature maps from the individual volunteers were pooled in order to obtain a group set 
ontaining

the temperature pre
ision (resp. a

ura
y) from all volunteers. The distribution of the temperature pre
ision

(resp. a

ura
y) for the group set is reported in �gure 5a (resp. 6a) using LUT, LM and CNN. The

distribution of temperature pre
ision (resp. a

ura
y) is also detailed for ea
h volunteer in 5b (resp. 6b).

The paired Wil
oxon test showed that the temperature pre
ision was signi�
antly better using LM as


ompared to LUT (p<0.001/statisti
al power=1). Furthermore, the temperature pre
ision was signi�
antly

better using CNN as 
ompared to LUT and LM (p<0.001/statisti
al power=1). Besides, the temperature

a

ura
y was signi�
antly better using CNN as 
ompared to LM (p=0.008/statisti
al power=1).

Figure 7 analyzes the impa
t of the amount of learning images: 
ompared to the original 10 Hz imaging

frame rate, a 2 Hz frame rate deteriorated moderately thermometri
 pre
ision and a

ura
y (by less than

30%).

Magnitude

(a)

SD-map (LUT)

(b)

SD-map (LM)

(
)

SD-map (CNN)

(d)

MAE-map (LUT)

(e)

MAE-map (LM)

(f)

MAE-map (CNN)

(g)

Figure 4: Typi
al temperature stability maps obtained in the abdomen of volunteer #2 using two existing multi-baseline

approa
hes (i.e., LUT and LM) and using the CNN approa
h: (a) anatomi
 image, (upper row) the temperature standard

deviation map obtained with the LUT (b), the LM (
) and the CNN method (d), (lower row) the temperature mean

absolute error map obtained with LUT (e), LM (f) and CNN (g). N = 200 images were used for training (an imaging

frame rate of 10 hz was maintained during 20 se
onds)
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(a)

(b)

Figure 5: Comparison of temperature pre
ision obtained using LUT, LM and CNN in the liver of free-breathing healthy

volunteers during 4 minutes and 40 se
onds of MR-thermometry. Similar to �gure 4, N = 200 images were used for

training. Box-and-whisker plots of the temporal temperature standard deviation are shown using LUT (dark gray box),

LM (light gray box) and CNN (white box): (a) group analysis over the 12 volunteers, (b) volunteer-wise analysis. The

median is shown by the 
entral mark, the �rst and the third quartiles are reported by the edges of the box, the whiskers

extend to the most extreme time points that are not 
onsidered as outliers.

3.2. In vivo heating study in a por
ine liver

Figure 8 shows MR thermometry results obtained on a por
ine liver during HIFU heating. Thermal

maps are reported after 80 s of soni
ation using LUT (8a), LM (8b) and CNN (8
). In absen
e of any


orre
tion strategy, apparent temperature �u
tuations of up to 13

◦
C (peak-to-peak) were observed in the

target area. The heated region using the LUT appears slightly elongated as 
ompared to LM and CNN.

Residual thermometry artifa
ts are observable in the upper part of the liver with LUT (see 8a). These

apparent temperature �u
tuations are however greatly redu
ed using LM (8b), and even more using CNN

(8
). This visual observation is 
on�rmed in asso
iated SD-maps: in most of the voxels lo
ated in the upper

part of the liver, a temperature standard deviation higher than 3

◦
C using LUT (8d) de
reased until 2

◦
C using

LM (8e), and rea
hed 1

◦
C using CNN (8f). This pre
ision gain with CNN was a
hieved without 
reating

any additional o�set, as shown by the MAE-maps (see 8h, 8i and 8j). The evolution of the temperature

is shown in a single voxel lo
ated at the fo
al point position using LUT (8k), LM (8l) and CNN (8m).

Higher residual temporal temperature �u
tuations are observable using the LUT 
orre
tion as 
ompared

to the other two 
orre
tion approa
hes. LM and CNN approa
hes lead to a 
omparable observation of the

temperature evolution: a temperature in
rease of 12

◦
C was rea
hed after 80 s of HIFU soni
ation.

3.3. Ben
hmark

During the learning stage, around 1.5 s were required in average for the a

omplishement of one epo
h.

Figure 9 shows the loss metri
 as a fun
tion of the number of epo
hs without and with the proposed �ne-

tuning strategy. It 
an be observed that the use of �ne-tuning stabilized and a

elerated the 
onvergen
e of

the optimization pro
ess, and this for all data sets involved in this study.
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(a)

(b)

Figure 6: Comparison of temperature a

ura
y obtained using LUT, LM and CNN in the liver of free-breathing healthy

volunteers during 4 minutes and 40 se
onds of MR-thermometry. Similar to �gures 4 and 6, N = 200 images were used

for training. Box-and-whisker plots of the temporal temperature mean absolute error are shown using LUT (dark gray

box), LM (light gray box) and CNN (white box): (a) group analysis over the 12 volunteers, (b) volunteer-wise analysis.

Temperature pre
ision

(a)

Temperature a

ura
y

(b)

Figure 7: Analysis of the impa
t of the amount of learning images on the temperature stability. The temperature pre
ision

(a) and a

ura
y (b) were evaluated using various imaging frame rates for training. Box-and-whisker plots of the temporal

temperature standard deviation (a) and mean absolute error (b) obtained over the 12 volunteers are reported for imaging

frame rates ranking between 1 and 10 Hz. Note that the number N of dynami
 images used to train the CNN-model was

equal to 20 (resp. 40, 60, ..., 200) when an imaging frame rate of 1 Hz (resp. 2, 3, ... 10 Hz) was employed.

First Author et al.: Preprint submitted to Elsevier Page 10 of 15



Deep 
orre
tion of breathing-related artifa
ts in MR-thermometry

Thermal-map

t = 100 s

MB

(a)

LM

(b)

CNN

(
)

SD-map

MB

(d)

LM

(e)

CNN

(f)

MAE-map

MB

(h)

LM

(i)

CNN

(j)

MB

0 50 100 150 200

Time [s]

-5

0

5

10

15

T
e
m

p
e
ra

tu
re

 [
°C

]

(k)

LM

0 50 100 150 200

Time [s]

-5

0

5

10

15

T
e
m

p
e
ra

tu
re

 [
°C

]

(l)

CNN

0 50 100 150 200

Time [s]

-5

0

5

10

15

T
e
m

p
e
ra

tu
re

 [
°C

]

(m)

Figure 8: MR thermometry results obtained in a por
ine liver during HIFU heating: (�rst row) Temperature maps obtained

after 80 s of heating (t = 100s) overlaid on the anatomi
 image, (se
ond row) temporal standard deviation map, (third

row) mean absolute error map, and (bottom row) temporal evolution of the temperature in a single voxel lo
ated at the

fo
al point position. Results are reported using LUT (left), LM (middle) and CNN (right).

During the hyperthermia session, 150 ms were required to generate one single motion 
ompensated

temperature map. In su
h a 
ase, the GPU usage was however highly under-exploited: interestingly, the


al
ulation of a pa
k of δ =16 maps 
ould be also a

omplished within 150 ms.
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Figure 9: Loss metri
 as a fun
tion of the number of epo
hs obtained without (a) and with (b) the use of �ne-tuning.

For ea
h number of epo
hs, the mean and standard deviation of 13 MSE values (i.e., 12 values for the volunteer study +

1 value for the heating study) are reported.

4. Dis
ussion

The proposed method is designed to remove motion-related sus
eptibility e�e
ts indu
ed by breathing in

real-time abdominal MR-thermometry. To this end, the existing multi-baseline strategy is extended using

a deep neural network: a CNN learns the apparent temperature perturbation during a preparative learning

stage performed before hyperthermia.

A major di�
ulty when dealing with deep learning is the inherent 
omputational 
ost. One goal of

this study was to investigate if (i) the amount of learning images and (ii) the CNN training time 
an be

optimized to the point that 
lini
al thermotherapy interventions are feasible. For this, all 
al
ulations at

the di�erent stages of the proposed work�ow (i.e., learning stage, CNN model optimization, determination

of an o�set map and interventional session) were designed to be 
ompatible with the 
onstraints of 
lini
al

thermotherapy pro
edures (see se
tion 3.3). With respe
t to the learning stage, 20 epo
hs using �ne-tuning

provide a loss similar to the one a
hieved by 100 epo
hs (see �gure 9). The 
al
ulation of the CNN-model

(red blo
k in �gure 2) 
ould thus be a

omplished within less than 30 s (resp. less than 6 s) using our test

platform with a training frame rate of 10 Hz (resp. 2 Hz). The 
ompensation of the time-persistent o�set

(as des
ribed in se
tion 2.3.6), whi
h relied on a CNN-
orre
tion for ea
h of the N training images, 
ould be

a

omplished within less than a se
ond in all presented experiments. Regarding the interventional session,

it is imperative that all 
al
ulations have to be done within the interval of subsequent image aquisitions in

order to prevent ba
k-log. The use of a sliding temporal window (as introdu
ed in se
tion 2.4) of size δ = 2
dynami
 was mandatory in the volunteer study to 
ope with a 10 Hz imaging frame rate.

A se
ond major 
hallenge is the presen
e of noise and wraps in MR-phase images, whi
h hampers the

CNN optimization pro
ess (red blo
k in �gure 2). This drawba
k was �rst partially addressed by the use of

temperature maps as inputs for the CNN instead of the phase images. However, a voxelwise time-persistent

o�set remained, indu
ed by the the presen
e of noise in the baseline phase image ϕ(~r, t0) in Eq. (1). This

issue was addressed using an o�set 
orre
tion (as des
ribed in se
tion 2.3.6), and no additional penalty in

the a

ura
y was observable using CNN as 
ompared to LUT and LM.

Using LM, a linear phase model is derived from the resolution of an overdetermined system of N ref-

eren
e images. In 
omparison with LUT, noise may be redu
ed on the resynthesized baseline phase image

in Eq. (1). Ideally, a �noise-free� resynthesized baseline phase images is produ
ed, and the noise 
ontri-

bution on temperature un
ertainty is redu
ed by a fa
tor

√
2. Moreover, while LUT intrinsi
ally 
annot


orre
t for motion amplitudes higher than the ones observed in the learning stage, LM 
an still provide an

extrapolation of the referen
e phase. As a 
onsequen
e, regarding the pre
ision of MR-thermometry, LM
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outperformed LUT in all presented experiments. Our �ndings show that the multi-baseline strategy 
an be

further improved using CNN. It must be underlined that an inherent drawba
k with CNN lies in the high


omplexity of the �tted model, whi
h makes it di�
ult to interpret. However, CNN was able to 
ope with


omplex motion-related thermometry artifa
ts (as en
ountered in the upper part of the liver), for whi
h an

expli
it modeling is very 
hallenging on-line.

The CNN method provided a

ura
te temperature measurements for imaging frame rate above 2 Hz.

The proposed CNN method was also demonstrated to be 
ompatible with fast MR a
quisition s
hemes of

up to 10 Hz. Real-time MR-thermometry may thus be advantageously 
ombined with any suitable real-time

temporal �ltering to further improve the measurement pre
ision, as des
ribed in [22℄ or [31℄.

It should be noted that LUT and LM rely on the on-line determination of a motion surrogate, whi
h


an be provided by various types of sensors su
h as breathing belt or MR-/ultrasound-based surrogates.

Using CNN, no motion surrogate is required sin
e motion patterns are impli
itely extra
ted from the a
tual

magnitude image. CNN thereby provides an independent thermal information with that provided by LUT

and LM (among others), whi
h opens great perspe
tives for the use of the method as a �Wat
hdog� for

on-line quality 
ontrol (QC).

Several other ma
hine learning models have been 
onsidered (su
h as Logisti
 Regression, Naïve Bayes,

Random Forest and Support Ma
hine Ve
tor) to learn motion related errors in abdominal MR-thermometry

in the 
urrent study. However, using su
h algorithms, the 
omputation 
ost was 
onsistently mu
h higher

than LM, whi
h relies on a very simple linear model. Moreover, the above-mentioned ma
hine learning mod-

els showed di�
ulties to interpolate/extrapolate positions not observed during training. The LM model, as

implemented in the 
urrent study, appeared more appropriate for this task, sin
e the pixel wise temperature

variation with respiratory motion in the abdomen 
an be e�
iently approximated in �rst order with a linear

term, as shown in [13℄. As a 
onsequen
e, we de
ided to limit the s
ope of this paper to a 
omparison of the

two already published multi-baseline methods: LUT and LM.

The main limitation of the proposed method � as it is 
ommon with multi-baseline strategies � is

its inability to 
ompensate for thermometry artifa
ts related to motion / deformation(s), whi
h has not

been observed during the training period. In pra
ti
e, this 
an be en
ountered due to physiologi
al drift or

spontaneous motion. If during hyperthermia bulk shofts or major drifts from the 
alibration position are

observed, a re
alibration of the 
orre
tion data is then required.

5. Con
lusion

PRF-based MR-thermometry is 
ompli
ated in abdominal organs by displa
ement of the target and

surrounding tissues, whi
h hampers dire
t voxel-by-voxel 
omparisons. Strong temperature artifa
ts are

introdu
ed by motion-indu
ed additional phase variations via an inhomogeneous and time-variant magneti


�eld. The proposed approa
h extends the existing multi-baseline strategy using CNN to address su
h

artifa
ts in abdominal organs due to breathing. A work�ow is proposed to solve inherent issues with CNN

asso
iated to 
omputational burden for training. The proposed method outperformed two existing multi-

baseline strategies in terms of temperature pre
ision, espe
ially in regions prone to strong sus
eptibility

artifa
ts as en
ountered in the upper part of the liver. This was a
hieved without noteworthy additional

penalty in the temperature a

ura
y. Moreover, we have demonstrated that, even under 
lini
al 
onditions,

the method was found robust and artifa
t-free in all examined 
ases and well able to follow the temperature

evolution of an in vivo HIFU ablation.

Referen
es

[1℄ H. Cline, J. S
hen
k, K. Hynynen, R. Watkins, S. Souza, and F. Jolesz. MR-guided fo
used ultrasound surgery. J Comput

Assist Tomogr, 16(6):956�965, 1992.

[2℄ J. Cohen. Statisti
al Power Analysis for the Behavioral S
ien
es. Lawren
e Erlbaum Asso
iates, 1988.

[3℄ J. De Poorter, C. De Wagter, Y. De Deene, C. Thomson, F. Stahlberg, and E. A
hten. The proton resonan
e frequen
y shift

method 
ompared with mole
ular di�usion for quantitative measurement of two dimensional time dependent temperature

distribution in phantom. Journal of Magneti
 Resonan
e Imaging, 103:234�241, 1994.

[4℄ B. Denis de Senneville, A. El Hamidi, and C. T. W. Moonen. A dire
t PCA-based approa
h for real-time des
ription of

physiologi
al organ deformations. IEEE Transa
tions on Medi
al Imaging, 34(4):974�982, 2015.

First Author et al.: Preprint submitted to Elsevier Page 13 of 15



Deep 
orre
tion of breathing-related artifa
ts in MR-thermometry

[5℄ B. Denis de Senneville, C. Mougenot, and C. Moonen. Real time adaptive methods for treatment of mobile organs by

MRI 
ontrolled high intensity fo
used ultrasound. Magneti
 Resonan
e in Medi
ine, 57(2):319�330, 2007.

[6℄ B. Denis de Senneville, B. Quesson, and C. T. W. Moonen. Magneti
 resonan
e temperature imaging. International

Journal of Hyperthermia, 21(6):515�531, 2005.

[7℄ B. Denis de Senneville, S. Roujol, C. T. W. Moonen, and M. Ries. Motion 
orre
tion in MR thermometry of abdominal

organs: A 
omparison of the referen
eless vs. the multibaseline approa
h. Magneti
 Resonan
e in Medi
ine, 64(5):1373�

1381, 2010.

[8℄ W. A. Grissom, V. Rieke, A. B. Holbrook, Y. Medan, M. Lustig, J. Santos, M. V. M
Connell, and P. K. B. Hybrid

referen
eless and multibaseline subtra
tion MR thermometry for monitoring thermal therapies in moving organs. Medi
al

Physi
s, 37(9):5014�5026, 2010.

[9℄ A. B. Holbrook, J. M. Santos, E. Kaye, V. Rieke, and K. Butts Pauly. Real-time MR thermometry for monitoring HIFU

ablations of the liver. Magneti
 Resonan
e in Medi
ine, 63(2):365�373, 2009.

[10℄ F. A. Jolesz and K. Hynynen. Magneti
 resonan
e image-guided fo
used ultrasound surgery. Can
er J, 8(1):100�12, 2002.

[11℄ M. Kohler, B. Denis de Senneville, B. Quesson, C. T. W. Moonen, and M. Ries. Spe
trally sele
tive pen
il-beam navi-

gator for motion 
ompensation of MR-guided high-intensity fo
used ultrasound therapy of abdominal organs. Magneti


Resonan
e in Medi
ine, 66(1):102�111, 2011.

[12℄ K. Kuroda. Non-invasive MR thermography using the water proton 
hemi
al shift. International Journal of Hyperthermia,

21:547�560, 2005.

[13℄ G. Ma
lair, B. Denis de Senneville, M. Ries, B. Quesson, P. Desbarats, J. Benois-Pineau, and C. T. W. Moonen. PCA-based

magneti
 �eld modeling : Appli
ation for on-line MR temperature monitoring. In N. Aya
he, S. Ourselin, and A. Maeder,

editors, Medi
al Image Computing and Computer-Assisted Intervention, MICCAI 2007, pages 411�419. Springer Berlin

Heidelberg, 2007.

[14℄ J. R. M
Clelland, D. J. Hawkes, T. S
hae�ter, and A. P. King. Respiratory motion models: a review. Medi
al Image

Analysis, 17(1):19�42, 2013.

[15℄ N. M
Dannold. Quantitative MRI-based temperature mapping based on the proton resonant frequen
y shift: review of

validation studies. International Journal of Hyperthermia, 21(6):533�546, 2005.

[16℄ S. Mori
awa, T. Inubushi, Y. Kurumi, S. Naka, V. Seshan, and T. Tsukamoto. Feasibility of simple respiratory triggering

in MR-guided interventional pro
edures for liver tumors under general anesthesia. In ISMRM, 10th Annual Meeting,

Hawaï, 2002.

[17℄ A. Okada, T. Murakami, K. Mikami, H. Onishi, N. Tanigawa, T. Marukawa, and H. Nakamura. A 
ase of hepato
ellular


ar
inoma treated by MR-guided fo
used ultrasound ablation with respiratory gating. Magneti
 Resonan
e in Medi
al

S
ien
es, 5(3):167�171, 2006.

[18℄ R. D. Peters, R. Hinks, and R. M. Henkelman. Ex vivo tissue-type independen
e in proton-resonan
e frequen
y shift MR

thermometry. Magneti
 Resonan
e in Medi
ine, 40:454�459, 1998.

[19℄ V. Rieke, K. Pauly, and R. M. Henkelman. MR thermometry. Journal of Magneti
 Resonan
e Imaging, 27(2):376�390,

2008.

[20℄ V. Rieke, K. Vigen, G. Sommer, B. Daniel, J. Pauly, and K. Butts. Referen
eless PRF shift thermometry. Magneti


Resonan
e in Medi
ine, 51(6):1223�31, 2004.

[21℄ E. J. Rijkhorst, D. Heanes, F. Odille, D. Hawkes, and B. D. Simulating dynami
 ultrasound using MR-derived motion

models to assess respiratory syn
hronisation for image-guided liver interventions. Information Pro
essing in Computer-

Assisted Interventions: Springer, pages 113�123, 2010.

[22℄ S. Roujol, M. Ries, B. Quesson, C. T. W. Moonen, and B. Denis de Senneville. Real-time MR-thermometry and dosimetry

for interventional guidan
e on abdominal organs. Magneti
 Resonan
e in Medi
ine, 63(4):1080�7, 2010.

[23℄ R. Salomir, M. Viallon, A. Ki
khefel, J. Roland, D. R. Morel, L. Petrus
a, V. Auboiroux, T. Goget, S. Terraz, C. D.

Be
ker, and P. Gross. Referen
e-free PRFS MR-thermometry using near-harmoni
 2-d re
onstru
tion of the ba
kground

phase. IEEE Transa
tions on Mede
al Imaging, 31(2):287-301, 2012.

[24℄ S. Sapareto and W. Dewey. Thermal dose determination in 
an
er therapy. Int J Radiation On
ology Biol Phys, 10:787�

800, 1964.

[25℄ R. J. Sta�ord and J. Hazle. Magneti
 resonan
e temperature imaging for fo
used ultrasound surgery: a review. Top Magn

Reson Imaging, 17(3):153�63, 2006.

[26℄ S. Toupin, P. Bour, M. Lepetit-Coi�é, V. Ozenne, B. Denis de Senneville, R. S
hneider, A. Vaussy, A. Chaumeil, H. Co
het,

F. Sa
her, P. Jaïs, and B. Quesson. Feasibility of real-time MR thermal dose mapping for predi
ting radiofrequen
y ablation

out
ome in the myo
ardium in vivo. Journal of Cardiovas
ular Magneti
 Resonan
e, 19(14), 2017.

[27℄ K. K. Vigen, B. L. Daniel, J. Pauly, and K. Butts. Triggered, navigated, multi-baseline method for proton resonan
e

frequen
y temperature mapping with respiratory motion. Magneti
 Resonan
e in Medi
ine, 50(5):1003�1010, 2003.

[28℄ C. Weidensteiner, N. Kerioui, B. Quesson, B. Denis de Senneville, H. Trillaud, and C. T. W. Moonen. Stability of real-time

MR temperature mapping in healthy and diseased human liver. Journal of Magneti
 Resonan
e Imaging, 19(4):438�446,

2004.

[29℄ J. Yuan, C. S. Mei, L. P. Pany
h, N. J. M
Dannold, and B. Madore. Towards fast and a

urate temperature mapping with

proton resonan
e frequen
y-based MR thermometry. Quantitative Imaging in Medi
ine and Surgery, 2(1):21�32, 2012.

[30℄ C. Za
hiu, N. Papadakis, M. Ries, C. T. W. Moonen, and B. Denis de Senneville. An improved opti
al �ow tra
king

te
hnique for real-time MR-guided beam therapies in moving organs. Physi
s in Medi
ine and Biology, 60(23):9003, 2015.

[31℄ C. Za
hiu, M. Ries, C. T. W. Moonen, and B. Denis de Senneville. An adaptive non-lo
al-means �lter for real-time

First Author et al.: Preprint submitted to Elsevier Page 14 of 15



Deep 
orre
tion of breathing-related artifa
ts in MR-thermometry

MR-thermometry. IEEE Transa
tions on Medi
al Imaging, 36(4):904�916, 2017.

[32℄ Y. Zhang, S. Chen, K. Deng, B. Chen, X. Wei, J. Yang, S. Wang, and K. Ying. Kalman �ltered bio heat transfer model

based self-adaptive hybrid magneti
 resonan
e thermometry. IEEE Transa
tions on Medi
al Imaging, 36(1):194�202,

2017.

First Author et al.: Preprint submitted to Elsevier Page 15 of 15


