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• How to create a parsimonious event risk score with ensemble 
methods? 

• How to update an ensemble score in the case of a data stream?
• Tools for generalized linear regression: stochastic approximation processes.
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Summary



• Scores are mainly built using “classic” statistical methods : logistic 
regression, Cox regression…

• Another possibility: use ensemble methods.

• Ensemble method: collection of predictors (with different learning 
rules, samples, selection of variables, etc.) whose predictions are 
then aggregated.

• Often obtain better results than individual predictors.

Parsimonious scores by an ensemble method
Context
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Parsimonious scores by an ensemble method
Batch method – Duarte et al. 2018

Duarte K, Monnez JM, 
Albuisson E. 
Methodology for 
Constructing a Short 
Term Event Risk Score in 
Heart Failure Patients. 
Appl Math. 2018.
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• Common difficulty in the construction of prognostic scores: choose 
the variables to include.

• Balance between better statistical fit and practical application.

• As we want to use an ensemble method, usual selection methods are 
not easily applicable.

→ Methodology for constructing parsimonious event scores combining 
a stepwise preselection of variables and the use of ensemble scores

Parsimonious scores by an ensemble method
Context (2)
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• We proposed several methods and compared them.

• Backward methods (need a score formula):
• Build an ensemble score with a large number of variables

• Backward selection of the variables, based on the coefficients in the score

• Forward methods (do not need a score formula):
• Forward selection of the variables which maximize AUC

• A preselection of variables by classifier can precede the methods

Parsimonious scores by an ensemble method
Selection methods

6



• Data: subsample of the GISSI-HF trial

• Data management: couples patient-visit; winsorized and transformed variables; balancing of 

the sample (duplication of the cases)

• Event: hospitalization for aggravating HF or death from HF within 180 days of a visit

• 3 methods compared: similar selections of variables and performances

• 4 parsimonious scores using the fastest method: 

Parsimonious scores by an ensemble method
Illustration for short-term predictions in chronic HF patients
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Score’s name S3.26 S3.15 S3.8 S3.2

Nb of variables used 26 15 8 2

AUC OOB final score 0.8137 0.8002 0.7835 0.7523



Online logistic regression
Online learning & online standardization

Online learning:
• Analysis of a data stream or of big data.

• Update the results in successive steps, taking into account new data at each step.

• A possibility: use recursive stochastic algorithms.  

Online standardization of the data: 
• Data can be standardized to: avoid a numerical explosion or apply a shrinkage method (e.g. 

LASSO).

• Issue for data streams: means and variances are a priori unknown.

• A possibility: do an online standardization.

• Studied for the linear regression: better performance compared to raw data.

• We used a similar approach for the logistic regression.
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Stochastic approximation processes of this form were tested:
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Different variants exist:
• Classical (𝑋𝑛) or averaged ( ത𝑋𝑛).

• Raw data or online standardized data.

• Different numbers of new observations at each step 𝑚𝑛 . 

• Variable step-size or piecewise constant step-size 𝑎𝑛 .

Online logistic regression
Stochastic gradient processes
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• 24 processes tested on 5 datasets. Data streams simulated by 
randomly drawing successive data batches from the datasets.

• Usual logistic regression used as gold standard.

• Convergence criterion (norms ratio: 
𝜃𝑐− ෡𝜃𝑛+1

𝜃𝑐
) recorded for fixed 

numbers of observations used and for fixed processing times.

• Processes ranked for each dataset and each recording point. Average 
rank across all datasets used to compare processes.

Online logistic regression
Datasets, datastream & comparison
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Online logistic regression
Comparison for a fixed processing time (60s)

* Denotes a criterion value <0.05

EXPL: numerical explosion

• Process type: C for classical SGD, 
A for ASGD

• Data type: R for raw, S for online 
standardized

• 1st number: number of new obs. 
per step

• Step-size: V for variable, P for 
piecewise constant
(2nd number: levels size)
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How to update an ensemble score similar to Duarte et al. in the 
case of a data stream?  

• Choice of classifiers: same as the initial ensemble score.

• Bootstrap samples: use Poisson bootstrap.

• Selection of variables: same as the initial ensemble score.

• Construction of models: use online versions (online linear  regression, online 
logistic regression...).

• Aggregation: same as the initial ensemble score.

Online ensemble score
Online method
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Online ensemble score
Online method (2)
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Online ensemble score
Experiments

• Same datasets than previously. Data streams simulated by randomly 
drawing successive data batches from the datasets.

• A batch score was created as reference for each dataset:
• 100 bootstrap samples.

• 2 classifiers: logistic regression and linear discriminant analysis (linear regression).

• 1 modality with all variables.

• 6 online scores using 100N observations and the same parameters.

• Empirical study of convergence toward the reference score (
𝜃𝑐− ෡𝜃𝑛+1

𝜃𝑐
).



Norms ratio between the batch score coefficients and the online scores coefficients:

Online ensemble score
Comparison with a fixed number of observations (100N)



Parsimonious scores: 
• Methods which build a succession of scores from which the user can choose according to its objectives. 

• In the application: similar or better results than other scores, with less variables.

Online logistic regression:
• Online standardization of the data helps to avoid numerical explosion.

• Interest of averaged processes with piecewise constant step-size and online standardized data.

Online ensemble score:
• Online ensemble scores converge empirically to the batch score (theoretical convergence already 

proven).

Conclusion
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