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Letter to the Editor
TABLE I. Characteristic of PIDs cohort included in this study

Characteristic PIDs cohort

No. of patients 129
Improving the diagnostic efficiency of
primary immunodeficiencies with tar-
geted next-generation sequencing
Age (y), median (range) 12.8 (0-72)

Pediatric patients (<18 years old) 64 (83)

Consanguinity 16 (21)

Sex ratio F/M 1:1

Previous unsuccessful genetic explorations 47 (61)

IUIS classification

CID 19 (24)

CID with syndromic features 6 (8)

Primary antibody deficiency 43 (56)

Disease of immune dysregulation 29 (37)

Innate immune deficiency 3 (4)

CID, Combined immunodeficiency; F, female; IUIS, International Union of

Immunological Societies; M, male.

Values are percentage (n) unless otherwise indicated.
To the Editor:
With more than 430 genetic defects, primary immunodefi-

ciencies (PIDs) or inborn errors of immunity are a heterogeneous
group of rare genetic disorders affecting the immune system.1 Un-
raveling the genetic etiology of the disease is crucial as it can
guide the choice of the most appropriate treatment.2 Moreover,
following molecular characterization, families of patients can
benefit from appropriate genetic counseling for screening of rel-
atives and prenatal diagnosis, both of which contribute to early
life-saving treatment and disease prevention. The extreme diver-
sity of clinical phenotypes and genetic defects make diagnosis
challenging, even for experienced clinicians and medical biolo-
gists. In recent years, next-generation sequencing (NGS) has
largely replaced Sanger sequencing in clinical laboratories,
particularly for the diagnosis of highly heterogeneous diseases,
such as PIDs.3 We chose targeted NGS over whole exome
sequencing (WES) because it was still cheaper and has the advan-
tage to focus on a customized set of relevant genes, avoidingmany
ethical issues and ensuring great overall coverage, a prerequisite
in a diagnostic setting. Many studies have proven the efficacy of
NGS as a first-line diagnostic tool in PIDs, but a few have under-
taken a systematic copy number variation (CNV) analysis.4 The
aim of this study was to build and to validate a large customized
NGS panel with a high and uniform coverage for an integrative
CNV analysis that could be used as a first-line tool for the diag-
nosis of PIDs.

We used a customized SureSelectXT Target Enrichment Sys-
tem (Agilent, Santa Clara, Calif) and the Illumina HiSeq 2500
Sequencing System (Illumina, San Diego, Calif). The bait
territory was large, with targeted regions encompassing 300
genes and 1095Mbp (see Table E1 in this article’s Online Repos-
itory at www.jacionline.org). The mean depth of coverage
reached 5393 6 2033 per base and 99% of the targeted bases
had coverage of more than 303. To estimate the sensitivity of
the method, we included 33 individuals (patients with PIDs and
their relatives) with known disease-causing mutations, and we
referred to them as positive controls. Two other relatives who
do not carry the familial disease-causing mutation were included
as negative controls. Wewere able to detect 38 of the 39 expected
mutations (97%), including 1 large heterozygous CNVinDOCK8
(D3-48) and 8 small deletions ranging from 1 to 21 bp (see Table
E2 in this article’s Online Repository at www.jacionline.org).
Due to the presence of pseudogene, additional analysis was
required to detect 1 hemizygous mutation in IKBKG.

Between 2015 and 2018, we recruited prospectively 129
patients with a suspected inherited PIDs of unknown genetic
etiology (Table I). We included patients for which there were
numerous candidate genes or a candidate gene difficult to explore
with conventional methods (see Table E3 in this article’s Online
Repository at www.jacionline.org).1 This targeted NGS strategy
identified 46 different variants worth being reported in 40 of the
129 patients (31%) with no prior genetic diagnosis (Fig 1, A
and B; see Fig E1 in this article’s Online Repository at www.
jacionline.org). Half of these variants have never been reported
in other patients or in the public databases. According to the
American College of Medical Genetics criteria,5 41 were classi-
fied as pathogenic, 3 were likely pathogenic, and 2 were variants
of unknown significance but could account for manifestations
observed in the patients (see Table E4 in this article’s Online Re-
pository at www.jacionline.org). Diagnostic rate decreased with
age but remained above 20% in all but the oldest group (Fig 1,
C). This suggests that adult patients with diagnostic of PIDs
should be genetically investigated especially when disease onset
occurred in childhood. We then investigated the proportion of pa-
tients for which we retained a diagnosis as a function of clinical
manifestations and PID categories (Fig 1,D and E). Some clinical
manifestations had a higher chance of underlying a genetic disor-
der. Nevertheless, given the number of patients, the association
was statistically significant only for mucocutaneous disorders
characterized by infections or immunopathology. In contrast,
the diagnostic rate was under 20% in the patients with neoplasia
or neurological disorders (Fig1, D). As expected, patients classi-
fied in the primary antibody deficiency category was the group
with the least diagnostic rate (18%) (Fig 1, E).6 Patients with or
without previous genetic explorations had similar diagnosis yield
with NGS procedure: 32% (n5 20 of 61) versus 29% (n5 20 of
68), respectively.

Our in-house tool for CNV identification displays a normalized
ratio of coverage, gene-by-gene, for each patient, on a user-
friendly graphic interface.7 This tool rapidly detected CNV in 6
patients (15% of the positive cases) at homozygous state (n 5
1) or heterozygous state (n 5 5) (Table II). The size of the iden-
tified CNVs ranged from heterozygous deletion of 1 99-bp exon in
LYST to a large heterozygous deletion of TBX1 revealing a
22q11.2 deletion syndrome. One of these CNVs was a heterozy-
gous duplication inDOCK8 (duplication of exons 15 to 26) occur-
ring with another heterozygous nonsense mutation (Table II).
Multiplex ligation-dependent probe amplification analysis of
sorted T cells showed that almost all circulating T cells have un-
dergone somatic reversion of the duplication. Nevertheless, we
observed a significantly increased duplication/deletion score
when DNA from whole blood was analyzed. Another patient
with combined immunodeficiency carried a hemizygous
1
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FIG 1. A, Distribution of zygosity for the patients for whommutations were identified in the PIDs cohort (n5 40

patients). B, Distribution of the types of mutation found in the PIDs cohort (n5 46mutations). C, Diagnostic rate

as a function of age.D, Evaluation of the diagnostic rate according to clinical features. Patientswere described as

havingmucocutaneous, hepatic, digestive, pulmonary, or neurological disorders, whatever the type of sign (eg,

infection, lymphoproliferation, atopy, neoplasia). Autoimmune manifestations other than cytopenia (50% of di-

agnoses, n 5 18), mucocutaneous disorders (47% of diagnoses, n 5 46), and clinical lymphoproliferation/orga-

nomegaly (41%of diagnoses, n5 37)weremore frequently associatedwith genetic findings. E,Evaluation of the

diagnostic rate according to PIDs categories. C-E, The curves represent the diagnostic rates. The histograms
represent (C) the age distribution of the PIDs cohort (categories) and (D and E) the numbers of patients within

the PIDs category concerned. CID, Combined immunodeficiency; PAD, primary immunodeficiency.
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TABLE II. CNV analysis in the PIDs cohort

Patient Gene CNV Dup/del score Confirmation

Other mutation

in the gene

PID10 LRBA Homozygous deletion exons 30 to 34 0.01 to 0.02 Absence of PCR products and protein None

PID54 DOCK8 Heterozygous duplication exons 15 to 26 1.28 to 1.52 MLPA p.R1763*

PID74 DOCK8 Heterozygous deletion exons 1 to 26 0.42 to 0.56 MLPA p.R550*

PID125 TBX1 Heterozygous deletion of the entire gene 0.48 to 0.61 FISH 22q11 None

PID126 IGHM Heterozygous deletion of the entire gene 0.49 to 0.55 aCGH (hg37 : 106283841_107258824) p.Q316*

PID127 LYST Heterozygous deletion exon 48 0.51 Not confirmed genetically.

Presence of neutrophil granules

and hair abnormalities.

p.Q1068*

aCGH, Array comparative genomic hybridization; del, deletion; dup, duplication; FISH, fluorescent in situ hybridization; MLPA, multiplex ligation-dependent probe amplification.
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nonsense mutation of IL2RG (c.982C>T; p.R328*). However,
this variant localized in the last exon is predicted to escape
nonsense-mediated mRNA decay. Interestingly, 14% of the reads
detected were wild type (51 of 363), suggesting a somatic rever-
sion event.

Targeted NGS is a cost-effective supervised approach for the
diagnosis of PIDs. Numerous previous studies have proven the
efficacy of both targeted NGS andWES for diagnosis of PIDs (see
Table E5 in this article’s Online Repository at www.jacionline.
org).4 We achieved a rate of diagnosis that is equal to the median
of those previously published (31%). However, this rate is highly
dependent on the population studied and the inclusion criteria.We
chose to reach a relatively high depth of coverage, allowing the
detection of somatic reversion events. These high-quality data,
combined with a robust algorithm comparing coverage between
patients, made it easy to identify CNVs rapidly and correctly.
A few other groups also performed CNV analysis leading to a
mean increase of diagnostic yield by 4.2%, comparable to the
4.6% increase in the current study.4 The ethical concerns raised
by incidental findings could be avoided by sequencing only
PID-related genes.8 Moreover, targeted NGS is easier to
customize, with the possibility of designing probes for highly
conserved intronic regions or untranslated regions. However,
with dozens of new PID genes discovered each year, the targeted
panels will need to be updated regularly. With this caveat, and
given the continually decreasing costs of sequencing, WES or
whole genome sequencing will probably become the new first-
line strategy in a few years’ time.9 In conclusion, this study shows
that using rapid, precise, and wide targeted NGS strategy has a
clear beneficial impact for molecular diagnosis in PID patients.
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