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Abstract

In this paper, we study the explainability of
automated data cleaning pipelines and propose
CLeanEX, a solution that can generate explana-
tions for the pipelines automatically selected by an
automated cleaning system, given it can provide
its corresponding cleaning pipeline search space.
We propose meaningful explanatory features that
are used to describe the pipelines and generate
predicate-based explanation rules. We compute
quality indicators for these explanations and pro-
pose a multi-objective optimization algorithm to se-
lect the optimal set of explanations for user-defined
objectives. Preliminary experiments show the need
for multi-objective optimization for the generation
of high-quality explanations that can be either in-
trinsic to the single selected cleaning pipeline or
relative to the other pipelines that were not selected
by the automated cleaning system. We also show
that CLeanEX is a promising step towards gener-
ating automatically insightful explanations, while
catering to the needs of the user alike.

1 Introduction
When it comes to real-world data, inaccurate, noisy, uncer-
tain, or incomplete data are the norm rather than the excep-
tion. In many applications of machine learning (ML), the
cost of an error can be high. However, explaining the re-
sults of an ML pipeline is as crucial as reducing the impact
of dirty data input and estimating the uncertainty in the pre-
dictions of a model. Data scientists have to spend consid-
erable time integrating data from multiple sources, manu-
ally curating and preparing the data with their expertise of
the domain. They use various libraries and tools to cor-
rect erroneous values, impute missing ones, eliminate du-
plicate records or disambiguate conflicting data, to prevent
unreliable data being delivered downstream to a machine-
learning model. Although data cleaning in ML pipelines is
still considered to be “intractable” or “AI-hard” –as it is dif-
ficult to fully automate and often requires human expertise–
several solutions of automated data cleaning have been pro-
posed recently [Shang et al., 2019; Krishnan et al., 2017;
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Figure 1: CLeanEx Overview

Krishnan et al., 2015]. While important, however, we ar-
gue that a critical missing piece of this line of work be the
explainability of automated cleaning methods, i.e., why/how
a particular data value is detected as an anomaly, how it is
fixed, and why it is fixed the way it is fixed.

Current automated cleaning methods hardly ever explain
their choice in building automatically data cleaning pipelines.
However, the lack of convincing explanations may severely
limit the scope of an end-to-end ML pipeline (including data
cleaning and data preparation) and the broader adoption of
ML-based Artificial Intelligence for critical decision-making.
In this paper, therefore, we study the explainability of au-
tomated data cleaning pipelines and propose CLeanEX, a
solution that can generate explanations for a pipeline gen-
erated by an automated data cleaning system that can pro-
vide its pipeline search space. CLeanEX extends the auto-
mated cleaning system Learn2Clean1 we proposed in [Berti-
Equille, 2019a; Berti-Équille, 2019b], based on Q-Learning,
a model-free reinforcement learning technique adapted for
automating data cleaning and data preparation.

The paper proceeds as follows. In Section 2, we discuss
related work. Section 3 presents our definitions and describe
how to generate explanations from a sequence of cleaning
tasks. Experiments are reported in Section 4. Section 5 con-
cludes the paper.

1https://github.com/LaureBerti/Learn2Clean

https://github.com/LaureBerti/Learn2Clean


2 Related Work

As illustrated in Fig. 1, data cleaning and preparation re-
quire a sophisticated sequence of tasks Ti for the detection
and elimination of a variety of intricate data quality prob-
lems (e.g., duplicates, inconsistent, missing, and outlying
values). Generally, the users may not know which prepro-
cessing methods can be applied to optimize the final results
downstream. The selection of the optimal sequence of tasks
would require for him/her executing all possible methods for
each potentially relevant preprocessing task, as well as all the
possible combinations of the methods with different order-
ings and configurations (see all the alternative pipelines rep-
resented in grey in the figure). Successfully automating this
daunting manual process would definitively improve data sci-
entists’ every day life. Related to our work, we review recent
advances for scalable and automated data cleaning and ex-
plainable systems.

ML-based data and pipeline curation. A recent line of
work is to use machine learning to improve the efficiency
and reliability of data cleaning and data repairing [Yakout
et al., 2013; Rekatsinas et al., 2017; Krishnan et al., 2017;
Shang et al., 2019]. [Yakout et al., 2013] train ML mod-
els and evaluate the likelihood of recommended replacement
values to fix erroneous and missing ones. [Rekatsinas et al.,
2017] propose a framework for data repairing based on prob-
abilistic inference to handle integrity constraints or external
data sources seamlessly, with quantitative and statistical data
repairing methods. [Krishnan et al., 2017] propose a method
for data cleaning optimization for user-defined ML-based an-
alytics. Their approach selects an ensemble of methods (sta-
tistical and logic rules) and boosting to combine error detec-
tion and repair. AutoML approaches can optimize the hyper-
parameters of a considered ML model, but they support only a
limited number of preprocessing steps with by-default meth-
ods. Recently, Alpine Meadow [Shang et al., 2019] com-
bines an AutoML approach and a cost model to select can-
didate logical ML pipeline plans (as in DB query optimiza-
tion). Multi-armed bandits are used to select promising logi-
cal ML pipeline plans, and Bayesian Optimization is used to
fine-tune the hyper-parameters of the selected models in the
search space. However, these approaches do not provide ex-
planations justifying how the data preparation pipeline search
space is built and pruned. We argue that more efforts should
be devoted to proposing a principled and efficient explainable
automated data cleaning approach to help the user in under-
standing the sequence of data preparation tasks selected by
the automated cleaning system.

Explainable systems for data quality and data pro-
filing. The explanation of predictive models has been an
overgrowing field in the last years [Guidotti et al., 2018;
Pedreschi et al., 2019]. Despite the numerous works on
black box models explanation, few of them address the prob-
lem of explaining the choices performed during data clean-
ing tasks [Bertossi and Geerts, 2020]. [Rammelaere and
Geerts, 2018] proposes to explain repairs performed by the
user over small data sets by extracting the most relevant con-
ditional functional dependencies (CFDs) according to the re-
pairs. However, while this approach can be adapted to explain

the output of an automated data cleaning task, the CFDs can
be hard to understand for the user and they have a limited
expressiveness, which might be detrimental to explain the
result of non rule-based repairing tasks. The T-REx frame-
work [Deutch et al., 2020] provides explanations taking the
form of a ranking of the set of Denial Constraints (DCs) ac-
cording to their influence during the repairing process. This
approach has to provide the same set of DCs that is used as
input of the data repairing task. In the context of Entity Reso-
lution (ER) [Ebaid et al., 2019], local explanations have been
proposed to explain why a tuple pair was predicted to be a
duplicate. In this context, other approaches include identify-
ing a ranked list of features that contribute to the prediction
as a duplicate (such as LIME [Ribeiro et al., 2016]) or as a
rule that holds in the vicinity of the tuple-pair with high pre-
cision (such as Anchor [Ribeiro et al., 2018]). While the cur-
rent approaches explain the effect of a single repairing task,
we choose to address the problem of explaining the full se-
quence of cleaning tasks (the cleaning pipeline). As this se-
quence has been selected and generated by an automated data
cleaning system, we argue that the explanations should also
offer the perspective related to the other candidate pipelines
that were not selected by the system using various indicators
to characterize the quality of an explanation.

3 Our Definitions
In this work, we represent the pipeline exploration space of
the automated cleaning agent A as a tree. Each cleaning task
updates the input data set and the updated version is repre-
sented as a node in a tree structure: the cleaning tree. As il-
lustrated in Fig. 1, the cleaning tree is composed of branches
representing alternative cleaning pipelines among which the
cleaning agent A may select the optimal one with respect to
an ML goal and a quality performance metric. Each pipeline
has features that can be used and exposed to explain the agent
decision independently of the ML quality performance met-
ric optimization. Explanation rules can be generated using
such features. More formally, we define the cleaning tree as
follows.
Definition 1 (Cleaning tree). Let D be a data set,
T = {t1, . . . , tn} be the set of data preprocessing tasks that
can be executed by the automated cleaning agent A using an
ML model M that maximizes the model quality performance
metric q. A cleaning tree for A, M , and q over D is an ori-
ented tree CA,M,q = (V, vr, E) such that:
• V is the set nodes formed by triples vp =

(Dp, q(M,Dp), sp) with:
– Dp, a data set resulting from the application of a clean-

ing task tp to the parent node data set or, for the root
node, the input data set D;

– q(M,Dp), the value of the quality metric of the ML
model M measured over the pre-processed data set Dp;

– sp a vector associating, for each explanatory feature
f ∈ F , its value sp[f ] for the current node;

• vr the root node of the cleaning tree CA,M,q such that
vr ∈ V and vr = (D, q(M,D), sr);

• E is the set of edges in CA,M,q, with each edge e from a
node v = (D, q(M,D), s) to one of its children v′ =



(D′, q(M,D′), s′) being labelled with the task used to
clean and update D as D′. We define the bijection φ :
E → V × V which maps each edge e ∈ E to the pair of
nodes (v, v′) connected by e.

Definition 2 (Cleaning pipeline). Given a cleaning tree
CA,M,q = (V, v0, E) and a node vn ∈ V . A cleaning
pipeline pvn over CA,M,q is a path σE = 〈e1, . . . , en〉 of
edges in E such that there exists a sequence of nodes from
V , σV = 〈v0, v1, . . . , vn−1, vn〉 such that each edges ei ∈ σE
connects the node vi−1 to the node vi ∈ σV : ∀ei ∈ σE ,
φ(ei) = (vi−1, vi).

After the automated cleaning agentA selects the node with
the best quality metric value, the path from the root to this
selected node corresponds to the best pipeline popt(M,q) that
is the optimal sequence of tasks evaluated by A for the ML
model M and quality metric q.

To ground our explanations, we use explanatory features:
the values of the explanatory features changing from one
node to the next in a cleaning pipeline will serve as key el-
ements for generating explanations of an automatically se-
lected cleaning strategy. For each pipeline, we compute the
following explanatory features, denoted sp[f ] in Definition 1:
• cost: The normalized cost of the pipeline;
• data quality improvement: The percentage of

data quality problems solved by the pipeline (e.g., remove
100% of missing values by imputation). Note that quantifi-
able data quality indicators have to be defined beforehand
to characterize the main dimensions of data quality (i.e.,
consistency, accuracy, etc. Please see [Comignani et al.,
2020; Berti-Équille, 2007] for more detail to specify and
compute data quality indicators);

• distortion: The distortion as defined in [Dasu and
Loh, 2012] as the Mahalanobis distance between the origi-
nal and cleaned version of the data set;

• satisfaction: The satisfaction of ML model require-
ments by the pipeline defined as a Boolean: e.g., for regres-
sion, satisfaction equals 1 if linearity, multivariate normal-
ity, no or little multicollinearity, no auto-correlation, and
homoscedasticity constraints are satisfied by the cleaned
data set;

• corr ratio: The fraction of the number of pipelines
sharing the same tasks over the sum of their respective
ranks and the total number of explored pipelines; and

• non corr ratio: The fraction of the number of
pipelines that do not share the same task over the sum
of their respective ranks and the total number of explored
pipelines.

Other features could be added but the ones we consider define
a representative and relevant signature that can be used for
generating meaningful explanations of a cleaning pipeline in-
dependently from the ML model and the model quality metric
used by the automated cleaning system.
Example 1. We illustrate the notations with an example us-
ing the House Price data set from Kaggle2 with 81 vari-
ables and 1.46k observations to predict the SalePrice at-
tribute with regression and MSE as the quality metric. We

2https://www.kaggle.com/datasets

Table 1: Learn2Clean results on House Price data set for
OLS regression over SalePrice attribute.

Rank# Sequence of Actions for Data Preparation MSE Time (ms)
1 KNN → ZSB 2.20E-25 45.1
2 MM → KNN → ZSB 1.44E-12 64.2
3 IQR→MICE → AD 0.231 154.9
4 IQR→MICE 0.236 94.1
5 IQR→ LC →MICE 0.372 141.5

ran Learn2Clean [Berti-Equille, 2019a] as the automated
cleaning agent and reported the top-5 cleaning strategies pre-
sented in Table 1 generated by Learn2Clean for OLS regres-
sion. The best strategy has been selected based on minimal
MSE. The MSE value, execution time (in milliseconds), and
tasks of the explored cleaning pipelines are reported in the
table. Data cleaning strategies include various tasks such
as K-nearest neighbors (KNN) or MICE imputation, outlier
detection/removal using InterQuartile Range (IQR), Z-score-
based (ZSB), or LOF methods, approximate duplicate re-
moval (AD), MinMax normalization (MM), and linearly cor-
related (LC) feature exclusion (see [Berti-Equille, 2019a] for
more details about the preprocessing methods). These strate-
gies can be represented as the cleaning tree of Fig. 2(a) for
which each node vi has explanatory feature signature si pre-
sented in the table of Fig. 2(b). In the table, we observe
cost= 0 for the root and cost= 1 for s9 as the maxi-
mal cost for the leaf node of the pipeline IQR→MICE →
AD. The pipelineKNN → ZSB selected by Learn2Clean
is represented in green. corr ratio of KNN in s1 is

2
5+1+2 = 0.25 as it appears in 2 pipelines out of 5 with rank#
1 and 2 respectively (similarly for ZSB). no corr ratio
of KNN is 3

5+3+4+5 = 0.176 as it does not appear in 3
pipelines ranked #3, 4, and 5 respectively.

3.1 Explaining via Feature Changes and
Comparisons

Next, we define two types of explanation predicates: (1)
Change predicates that characterize the evolution of the
explanatory features, and (2) Comparison predicates that
characterize the relative changes by comparing with other
pipelines in the cleaning tree.
Change Predicates. Given a cleaning tree
CA,M,q = (V, vr, E), a set of features F , two distinct
nodes v, v′ ∈ V and s, s′ their respective vectors of features
values. We define the following set of change predicates:

• succ(v, v′) iff there exists an oriented path from v to v′;
• increase(f, v, v′) iff: s[f ] < s′[f ] ∧ succ(v, v′)
• decrease(f, v, v′) iff: s[f ] > s′[f ] ∧ succ(v, v′)
• stable([f0, . . . , fn], v, v′) iff:

∀fi ∈ [f0, . . . , fn], s[fi] = s′[fi] ∧ succ(v, v′)

• equiv(v, v′) iff: ∀f ∈ F , s[f ] = s′[f ].

Comparison Predicates. We define the following set of
comparison predicates to express that a value of feature f for
node v is respectively: (i) more, less than, or as a% of the fea-
ture f values of the other nodes in the cleaning tree with a, a
decimal constant in [0,1]; (ii) the best value, the worst value,
or (iii) different from another node v′ feature value within a
certain distance d in [0,1]:

https://www.kaggle.com/datasets
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(b) Explanatory Features(a) Cleaning Tree

root

P : su cc(root, v1) ∧ su cc(v1,v4)
S : equ iv(root, v1)

C : δ(cost, root, v4,0.43) ∧ decrease(cost, root, v4)

C : δ(dq_imp, root, v4,0.4) ∧ increase(dq_imp, root, v4)
C : δ(distortion, root, v4,0.17) ∧ increase(distortion, root, v4)
C : δ(satisfaction, root, v4,1) ∧ increase(satisfaction, root, v4)
C : δ(corr_ratio, root, v4,0.55) ∧ decrease(corr_ratio, root, v4)
C : δ(non_corr_ratio, root, v4,0.05) ∧ increase(non_corr_ratio, root, v4)

C : δ(cost, v1,v4,0.43) ∧ decrease(cost, v1,v4)
C : δ(dq_imp, v1,v4,0.4) ∧ increase(dq_imp, v1,v4)
C : δ(distortion, v1,v4,0.17) ∧ increase(distortion, v1,v4)
C : δ(satisfaction, v1,v4,1) ∧ increase(satisfaction, v1,v4)
C : δ(corr_ratio, v1,v4,0.55) ∧ decrease(corr_ratio, v1,v4)
C : δ(non_corr_ratio, v1,v4,0.05) ∧ increase(non_corr_ratio, v1,v4)

(c) Explanations for the selected 
cleaning pipeline KNN-> ZSB

Rroot = {1; 12; 13}

Rv4 = {2; 18; 19; 20; 21}

Rv1 = {14; 15; 16; 17}
Rroot,v1 = {3; 5; 6; 7}

Rv1,v4 = {4; 8; 9; 10; 11}

feature 
 signature #

Figure 2: Example of a selected cleaning tree (in green) in the pipeline space of our illustrative example (a), with its corre-
sponding explanatory features (b), and explanation tree (c) composed of the sets of rule IDs described in Table 2.

• more([f0, . . . , fn], v, a) iff:
∀fi ∈ [f0, . . . , fn], a = |{v′∈V|s[fi]>s′[fi]}|

|V|−1
• less([f0, . . . , fn], v, a) iff:
∀fi ∈ [f0, . . . , fn], a = |{v′∈V|s[fi]<s′[fi]}|

|V|−1
• as([f0, . . . , fn], v, a) iff:
∀fi ∈ [f0, . . . , fn], a = |{v′∈V|s[fi]=s′[fi]}|

|V|−1
• most([f0, . . . , fn], v) iff:
∀fi ∈ [f0, . . . , fn],∀v′ ∈ V s.t. v 6= v′, s[fi] > s′[fi]

• least([f0, . . . , fn], v) iff:
∀fi ∈ [f0, . . . , fn],∀v′ ∈ V s.t. v 6= v′, s[fi] < s′[fi]

• δ(f, v, v′, a) iff: |s′[f ]− s[f ]| = d

Additionally to the axioms of the predicate logic, we define
the following set of axioms for our explanation language:

• ∀p1, p2 ∈ {more, as, less} s.t. p1 6= p2 :
p1(f, v, 1) ≡ p1(f, v, 1) ∧ p2(f, v, 0)

• more(f, v, a) ∧ less(f, v, a′)
≡ more(f, v, a) ∧ as(f, v, 1− (a+ a′))
≡ as(f, v, 1− (a+ a′)) ∧ less(f, v, a′)

• most([f0, . . . , fn], v) ≡
∧

i∈[0,n]
more(fi, v, 1)

• least([f0, . . . , fn], v) ≡
∧

i∈[0,n]
less(fi, v, 1)

• equiv(v1, v2)⇔
∧
f∈F stable(f, v1, v2)

Now, we can define formally the explanation rules that will
be automatically generated.

Definition 3 (Explanation Rule). Given a cleaning tree
CA,M,q = (V, vr, E), a feature f in F , v and v′ two nodes
in V , three decimals constants, a, a′, a′′ ∈ [0, 1], and the ex-
planation predicates:
p0 ∈ {increase; stable; decrease};
p1, p2 ∈ {more; as; less} such that p1 6= p2;
p3 ∈ {most; least}.

We define the following types of explanation rules:

Pv,v′ : ∃v1, . . . , vn ∈ V, succ(v, v1) ∧ . . . ∧ succ(vn, v′)
Bf,v,v′ : p0(f, v, v

′) ∧ δ(f, v, v′, a)
Cf,v : p1(f, v, a

′) ∧ p2(f, v, a′′)
Ef,v : p3(f, v)

Sf,v,v′ : stable(f, v, v′)

Sv,v′ : equiv(v, v′)

Table 2: Explanation rules generated for pipeline#1
KNN → ZSB

Rule# Type Rule
0 P succ(root, n1) ∧ succ(n1, n4)
1 E least([cost, corr ratio, non corr ratio], root)
2 E most([cost, dq imp, distortion, satisfaction], n4)
3 S stable([dq imp, distortion, satisfaction], root, n1)
4 S stable([corr ratio, non corr ratio], n1, n4)
5 B increase(cost, root, v1) ∧ δ(cost, root, v1, 0.36)
6 B increase(corr ratio, root, v1) ∧ δ(corr ratio, root, v1, 0.25)
7 B increase(non corr ratio, root, v1)

∧δ(non corr ratio, root, v1, 0.026)
8 B increase(cost,v1, v4) ∧ δ(cost, v1, v4, 0.3)
9 B increase(dq imp, v1, v4) ∧ δ(dq imp, v1, v4, 0.4)
10 B increase(distortion, v1, v4) ∧ δ(distortion, v1, v4, 0.17)
11 B increase(satisfaction, v1, v4) ∧ δ(satisfaction, v1, v4, 0.2)
12 C as([dq imp, distortion, satisfaction], root, 0.5)
13 less([dq imp, distortion, satisfaction], root, 0.5)
14 C less(cost, v1, 0.5)
15 C more(cost, v1, 0.5)
16 C as([dq imp, distortion, satisfaction, corr ratio,

non corr ratio], v1, 0.5)
17 C less([dq imp, distortion, satisfaction, corr ratio,

non corr ratio], v1, 0.5)
18 C as(corr ratio, v4, 0.5)
19 C more(corr ratio, v4, 0.5)
20 C as(non corr ratio, v4, 0.5)
21 C more(non corr ratio, v4, 0.5)

Type P explanation rules are path explanations between two
nodes v and v′. Type B explanation rules are behavior change
explanations with a constant representing the δ change value
of some feature f between two nodes v and v′. Type C ex-
planations are comparative explanations with respect to the
change of other nodes. Type E explanation rules are related
to extreme value description. Type S explanation rules are
stability explanation rules between v and v′.

These explanation rules can be either focused on one fea-
ture f for the Sf,v,v′ explanation rules, or all the features cov-
ered by CA,M,q for the Sv,v′ explanation rules. Table 2 gives
the explanation rules automatically generated for the cleaning
pipeline KNN → ZSB. Finally, all the generated rules can
be organized into an explanation tree mirroring the cleaning
tree defined earlier, as follows.

Definition 4 (Explanation Tree). Let CA,M,q = (V, vr, E)
be a cleaning tree and R be a set of explanation rules such
that CA,M,q |= R. An explanation tree for R in CA,M,q is an
oriented tree XC = (V, E) such that:

• V is the set nodes such that each node vRi
is formed by the

subset of rules Ri ⊆ R such that each r ∈ Ri is a rule of
type Cf,vi or Ef,vi ;

• E is the set of edges in XC , with each edge e from a node
vRi

to one of its children vRj
being labelled with the set of



rulesRi,j such that each r ∈ Ri,j is a rule of typeBf,vi,vj ,
Sf,vi,vj or Svi,vj .
The branch of the explanation tree corresponding to the

selected pipeline of the example is provided in Fig. 2(c).

3.2 Quality Indicators of Explanations
Given an explanation tree XC , its set of predicates,
denoted PC including the set of predicates Pml of
the form most([f0, . . . , fn], v) or least([f0, . . . , fn], v),
features(p), the function returning the set of features cov-
ered by a predicate p, and delta(r) the function returning the
value a of the delta predicate δ(f, v, v′, a) in a rule r. We
select the best explanations to provide to the user using the
following relevant quality indicators defined as follows.
Definition 5 (Polarity). The polarity of XC is defined as:

polarity(XC) =
∑
∀p∈Pml

|features(p)|∑
∀p′∈PC

|features(p′)|
.

Definition 6 (Distancing). Given the set X of explanation
trees over CA,M,q such that XC 6∈ X. The distancing of XC is
defined as:

distancing(XC) =
∑
∀ delta predicate r in XC

delta(r)∑
∀ delta predicate r in X delta(r)

.

Definition 7 (Surprise). Given a set X of explanation trees
over CA,M,q such that XC 6∈ X. The surprise of XC is defined
as:

surprise(XC) =
∑
∀X∈X

∑
∀ rule r of typeB in X delta(r)∑

∀predicate p in X features(p)
.

Definition 8 (Diversity). Given S the set of all predicates
symbols excepting δ in the rules of XC (defined in Def. 3
for P,B,C,E and S types of explanations), and Ps the set of
all predicates with predicate symbol s in the rules of XC .The
diversity of XC is defined as:

diversity(XC) = −

∑
∀s∈S

ns

N log2
ns

N

|S|
with ns, the number of nodes features over predicates with
symbol s: ns =

∑
∀p∈Ps

|features(p)|, and N , the total num-

ber of nodes features: N =
∑
∀s∈S

∑
∀p∈Ps

|features(p)|.

3.3 Multi-Objective Optimization
Next, we use these quality indicators as optimization objec-
tives to select the optimal explanations of the automated
choice of a cleaning pipeline. When dealing with more than
one dimension to optimize, there may be many incomparable
sets of explanation. Therefore, we adapt the notion of expla-
nation plan and Pareto plan as follows.
Definition 9 (Explanation Plan). Explana-
tion plan πi, associated to xi, a branch of
an explanation tree XC , is a tuple πi =
〈polarity(xi), distancing(xi), surprise(xi), diversity(xi)〉.
Definition 10 (Explanation Sub-Plan). Explanation plan πi
is the sub-plan of another plan πj if their associated expla-
nation sub-trees satisfy xi ⊆ xj .

Algorithm 1 Approximated Pareto-optimal Explanations
Input: The user-defined optimization objective O, the preci-

sion value α, the maximum number of rules of an ex-
planation k, the explanation tree X , and the pipeline
to explain x

Output: The set of explanations Πα for x
1 Πα ←− πx
2 for all explanation branches B of the tree X \ x do
3 πB ←− construct plan(B)
4 if πB is not α-dominated wrt O by any other plan in Πα

5 then Πα.add(πB)
6 for d ∈ [1, k] do
7 for all explanation branches b of d rules in X \ x do
8 πb ←− construct plan(b)
9 if πb is not α-dominated wrt O by any other plan in Πα

10 then Πα.add(πb)
11 return Πα

Definition 11 (Dominance). Plan π1 dominates π2 if π1 has
better or equivalent values than π2 in every quality indica-
tor. The term better is equivalent to greater for maximization
objectives (e.g., diversity or polarity), and lower form in min-
imization ones (e.g., distancing or surprise) depending on the
user’s preferences. Furthermore, plan π1 strictly dominates
π2 if π1 dominates π2 and the values of indicators for π1 and
π2 are not equal.
Definition 12 (Pareto Plan). Plan πi is Pareto if no other
plan strictly dominates πi. The set of all Pareto plans is de-
noted as Π .

Now, we define our problem as a multi-objective optimiza-
tion (MOO) problem as follows: for an explanation tree XC ,
the problem is to find all the explanation branches x, such that
each branch satisfies:
• diversity(x) is maximized;
• surprise(x) is optimized;
• polarity(x) is optimized;
• distancing(x) is optimized;

Note that while we always maximize diversity, we may ei-
ther minimize or maximize the distancing, surprise, and po-
larity based on the user’s needs. The main challenge in de-
signing an algorithm for finding optimal explanations of auto-
mated data cleaning is the multi-objective nature of the prob-
lem. A multi-objective problem can be easily solved if it is
possible to combine all quality indicators into one or if the op-
timization of one indicator leads an optimized value of other
indicators. However, in our problem, the indicators may be
conflicting, i.e., optimizing one does not necessarily lead to
an optimized value for others and they cannot be combined
into one single indicator. Therefore, we propose Algorithm 1
based on approximation to select the Pareto-optimal explana-
tion rules. The algorithm makes less enumerations with a the-
oretical guarantee on the quality of results. Its pruning mech-
anism uses the precision value α. In the special case of α = 1,
the algorithm operates exhaustively. If α > 1, the algorithm
prunes more and hence is faster. In the latter case, a new plan
is only compared with all plans that generate the same result.
But a new plan are only inserted into the buffer if no other



C58 : increase(cost, root, n7) ∧ δ(cost, root, n7,0.332)
C 70 : least ([sat is fact ion], n7)
C59 : d ecrease(d q_imp, root, n7) ∧ δ(d q_imp, root, n7,0.332)

C 72 : less([cost], n7,0.1)
C 71 : more([cost], n7,0.9)

Maximize diversity Maximize surprise 

C85 : most ([d q_imp, corr_rat io], root)
C115 : more([cost], root,0.3)
C105 : less([cost], root,0.7)
C125 : less([d istor t ion], root,0.8)

Minimize all indicators

C34 : increase(cost, root, n7) ∧ δ(cost, root, n7,0.332)
C35 : d ecrease(d q_imp, root, n7) ∧ δ(d q_imp, root, n7,0.332)
C36 : increase(d istor t ion, root, n7) ∧ δ(d istor t ion, root, n7,0.091)
C37 : d ecrease(sat is fact ion, root, n7) ∧ δ(sat is fact ion, root, n7,0.005)

Maximize all indicators Maximize polarity

C58 : increase(cost, root, n7) ∧ δ(cost, root, n7,0.332)
C 71 : most ([corr_rat io, d q_imp], root)
C81 : least ([non_corr_rat io], root)
C160 : least ([sat is fact ion], n7)

Maximize distancing

C 28 : increase(cost, root, n7) ∧ δ(cost, root, n7,0.332)
C 29 : d ecrease(d q_imp, root, n7) ∧ δ(d q_imp, root, n7,0.332)
C30 : increase(d istor t ion, root, n7) ∧ δ(d istor t ion, root, n7,0.091)
C32 : d ecrease(corr_rat io, root, n7) ∧ δ(corr_rat io, root, n7,0.892)
C33 : increase(non_corr_rat io, root, n7) ∧ δ(non_corr_rat io, root, n7,0.686)

C 26 : d ecrease(corr_rat io, root, n7) ∧ δ(corr_rat io, root, n7,0.892)
C 27 : increase(non_corr_rat io, root, n7)
C107 : least ([sat is fact ion], n7)
C145 : most ([d q_imp, corr_rat io], root)
C155 : least ([non_corr_rat io], root)

∧ δ(non_corr_rat io, root, n7,0.686)
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plan approximately dominates it. This means that the algo-
rithm ends to insert fewer plans than the exhaustive variant.
Given a maximization objective O (e.g., diversity, surprise,
distancing, polarity), plan π1 with sub-plans π11 and π12, and
α. Derive π2 from π1 by replacing π11 by π21 and π12 by
π22. Then O(x21) ≥ O(x11)×α and O(x22) ≥ O(x12)×α
together imply O(x2) ≥ O(x1)×α. Similarly, the extension
for a minimization objective is straightforward.

The algorithm 1 exploits a dynamic programming ap-
proach. The algorithm begins by constructing a plan for each
single branch of an explanation tree (lines 2 to 3). It keeps all
non α-dominated plans in a buffer. Then, it examines all the
branches of the explanation tree with depth 1 up to k (lines
6 to 10). After each iteration, it removes α-dominated plans
from the buffer. Finally, it returns the buffer content as result.
4 Preliminary Experiments
Based on our observations from the automated cleaning
pipeline search spaces, we generated two types of clean-
ing tree structures with 10 and 100 nodes respectively and
a maximal depth varying from 1 to 5 levels from root to
leaves. The number of nodes per level follows a Beta dis-
tribution (alpha=2, beta=2.35). The values of the six ex-
planatory features were generated randomly five times. We
ran five trials of picking one cleaning pipeline to explain
among all the candidate ones for each of the 250 configu-
rations (2 × 5 × 5 × 5) and we averaged the results. We
perform all experiments on a laptop Dell XPS machine with
an Intel Core i7-7500U quad-core, 2.8 GHz, 16 GB RAM,
powered by Windows 10 64-bit with Python. CLeanEX,
data sets, and more detailed experiments are available at
https://github.com/ucomignani/cleanex.

Fig. 3 illustrates different Type C explanations for explain-
ing the same cleaning pipeline. Each set of explanations has

been selected as it optimizes specific objectives in terms of
quality indicators. We can observe that in general, no correla-
tion exists between the optimized value of the objectives and
the explanation set can be very different. Thus, each objec-
tive should be optimized independently and according to the
user’s preferences. Fig. 4 shows the result of our algorithm
(with α = 1 exhaustive search) for the top-10 ranked explana-
tions depending on the optimization objectives. The ranking
depends on the explanation size and the maximal depth of the
tree: 2-3 rules for the explanations maximizing all objectives
for depth from 2-3 (Max all). In Fig. 5, we can also exam-
ine the effect of the tree structure (in terms of the number of
nodes and maximal depth) on execution time of CLeanEX
to find the optimal explanations. We observe that the execu-
tion times for trees containing 10 and 100 nodes have similar
values as their respective depth increases. The reason is that
the number of subsets of candidate rules for a given branch
increases quickly when the depth of the tree also increases.
Inversely, reducing the depth of the branches increases the
number of branches to explore, for which the depth generally
decreases, reducing the time complexity for the cases with
few nodes. The execution time of our algorithm is spent on
the computation of the quality indicators, the generation of
the rules, and the exploration of a large number of candidates
rules sets. However, changing α will reduced this last dimen-
sion while providing an approximation guarantee.

5 Conclusions
In this paper, we propose CLeanEX, a framework to gener-
ate explanations for automated data cleaning. The key ad-
vantages of our approach is that our explanation system is:
(1) model-agnostic: it can be applied to any ML model, any
set of data cleaning tasks, and any automated cleaning agent
that can provide its cleaning pipeline search space; (2) logic-
based: explanations are comprehensible to humans with di-
verse expertise and can be extensible to handle causal reason-
ing; (3) both local and global: it can explain both some part or
the whole cleaning pipeline; (4) model quality-independent:
it provides a reliable set of explanations independently from
the ML model quality performance metric that is used by
the automated cleaning agent for the selection of the optimal
cleaning pipeline; and (5) user-defined: optimization is based
on the user’s objectives.

https://github.com/ucomignani/cleanex
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