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ABSTRACT Microcystis aeruginosa is one of the major species that cause toxic cya-
nobacterial blooms in freshwater systems worldwide. Here, we report the draft ge-
nome sequence of M. aeruginosa PMC 728.11, a microcystin-producing cyanobacte-
rium isolated from the freshwater reservoir of Juanon in Valence, France. The genome
sequence contains 276 contigs, consisting of 5,536,025bp and 5,594 putative protein-
coding genes, among which are several biosynthetic gene clusters encoding enzyme
complexes involved in the production of various bioactive and toxic metabolites.

Microcystis is among the most widespread cyanobacterial genera worldwide and is
frequently reported as responsible for bloom events in freshwater environments.

These blooms generally occur when water temperatures exceed 15°C in water bodies 
enriched by anthropogenic nutrient loading (1). Because members of this genus are 
able to produce diverse toxic compounds, including potent hepatotoxic microcystins, 
Microcystis recurrent blooms pose a risk for populations using impaired water resources 
for drinking water supplies, recreational activities, and fisheries (2). Thus, Microcystis strains 
have become good models for the investigation of ecotoxicological impacts induced by 
Microcystis blooms on aquatic organisms (3, 4).

Microcystis aeruginosa strain PMC 728.11 was isolated in September 2011 from the 
Juanon artificial pond (44°829990N, 5°019550E; Valence, France) during an intense 
bloom event. Briefly, water sample was spread onto BG11 agar plates (12:12 h light/
dark cycle, 20°C), and then individual colonies were picked and grown in liquid BG11 
medium. The production of microcystins was detected by enzyme-linked immunosor-
bent assay (ELISA) (with AD4G2 antibody; Abraxis, USA) and high-resolution mass spec-
trometry, together with the detection of two PCR amplicons that are commonly used 
as markers of its biosynthesis and corresponding to mcyA and mycE genes (5). The 
clonal, but nonaxenic, strain was cultured in BG-11 medium (6) at 25°C in 250-ml 
Erlenmeyer vessels, with a photon flux density of 12mmol · m22 · s21 and a 12:12-h 
light/dark cycle. Total DNA extraction was carried out using a ZymoBIOMICS DNA mini-
kit (Zymo Research, CA), and sequencing was done using 2 � 250-bp reads from both 
an Illumina HiSeq 2500 instrument after an initial preparation of the library (Nextera XT 
sample kit) and a single-molecule real-time PacBio RS II platform after library prepara-
tion with the SMRTbell library using the Express template prep kit (Pacific Biosciences). 
Raw reads were inspected, cut, and filtered using FastQC v0.11.5, Cutadapt v1.15, and 
Prinseq v0.20.4, respectively (7–9) (resulting Illumina reads: 4,948,014 reads, N50 value of 
235 bp, coverage of 97�; resulting PacBio SR2 reads: 86,577 reads, N50 value of 10,986 bp, 
coverage of 63�). Scaffolds were assembled from HiSeq and PacBio reads using a SPAdes-
based Unicycler hybrid assembler with default parameters (10, 11). Nodes from assembly 
graphs were clustered using MyCC (k-mer size, 4; minimal sequence size, 1,000) and taxo-
nomically annotated using the Contig Annotation Tool (12). 16S rRNA-encoding genes 
were also extracted from these nodes using Metaxa 2 and then annotated using ACT (13).
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FIG 1 Microcystis aeruginosa strain PMC 728.11. (A) Transmission electron micrograph displaying ultrastructural details of a Microcystis cell, presently under
division (bar, 500 nm; ca, carboxysome; cy, cyanophycine granule; cw, cell wall; t, thylakoid). (B) Phylogram of available Microcystis genomes based on a
rapid neighbor-joining algorithm (v1.0.4) using default parameters (19) with average nucleotide identity (ANI) distances (PMC 728.11 is indicated in bold).
(C) Biosynthetic gene clusters and their potential products detected by antiSMASH from a PMC 728.11 genome search, comprising gene clusters producing
microcystins, among other bioactive compounds (20).
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All contigs were pairwise aligned using MegaBLAST (E value # 1e-10), and all sequences 
sharing a $98% similarity on the shortest sequence were considered as coming from the 
same genome. Congruent data between these diverse methodologies (binning with MyCC 
and BLAST with CAT) allowed us to characterize the draft genome sequence of Microcystis 
aeruginosa PMC 728.11.

The Microcystis aeruginosa PMC 728.11 genome completeness and contamination 
estimated from the genomes as assessed using CheckM v1.13 with default parameters 
(14) were 98.57% and 1.02%, respectively. Annotation was performed using the 
MicroScope platform (15). The PMC 728.11 genome comprised 276 contigs (maximum 
length, 175,236 bp; N50, 6,601 bp; coding ratio, 78.3%) representing 5.536 Mbp, with a 
GC content of 42.4%. It contains potentially 5,594 gene features, including 40 tRNAs, a 
complete 16S-23S-5S rRNA operon, and 5 CRISPRs according to a CheckM search, these 
features being in perfect agreement with the 22 Microcystis genomes publicly available 
on the MicroScope server (2). Calculation of the average nucleotide identity (ANI) 
based on the BLAST algorithm (16) showed that PMC 728.11 displays 97.95% similarity 
to M. aeruginosa strain PCC 9443, collected in 1994 from a pond in Landjia, Central 
African Republic (Fig. 1B) (2).

Specialized metabolite biosynthetic gene clusters (BGCs) were identified using 
antiSMASH v5.1.2 (17) and MIBiG v1.4 (18). The genome harbors several gene clusters
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involved in the biosynthesis of various cyanopeptides, including the cyanotoxin micro-
cystin, in addition to cyanopeptolins, aeruginosins (encoded by the nonribosomal peptide 
synthetase/polyketide synthase [NRPS/PKS] pathways), and cyanobactins, bacteriocins, and 
lanthipeptides (encoded by ribosome-synthesized posttranslationally modified peptide 
[RiPP] pathways), together with other genes encoding enzymes involved in the biosynthe-
sis of glycolipids, mycosporine-like amino acids, carotenoids, phytoenes, and lipopolysac-
charides (2).

In conclusion, M. aeruginosa strain PMC 728.11 displays features typical of toxin-pro-
ducing Microcystis. This strain represents a promising model for further investigation 
and characterization of bioactive metabolites and their potential impact on organism 
health.

Data availability. The sequence of Microcystis aeruginosa PMC 728.11 has been de-
posited in GenBank under the BioProject accession number PRJNA650216 (GenBank 
accession number JADCRC010000000, BioSample number SAMN15699246, and SRA 
numbers SRR12746604 and SRR12746605). Strain PMC 728.11 is available from the col-
lection of Cyanobacteria and Microalgae (PMC-ALCP) located in the Muséum National 
d’Histoire Naturelle (Paris, France; https://mcam.mnhn.fr/fr/collection-de-cyanobacteries 
-et-microalgues-vivantes-pmc-alcp-470).
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