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Abstract	

Omics technologies offer unprecedented perspectives for the rational investigation of complex systems. Indeed, omics present 
the capability of providing a profound insight into the biochemistry and physiology of the cell and any perturbing effects of 
xenobiotics through the joint investigation of thousands of molecular responses simultaneously; then it has led to an enthusiastic 
adoption by research ecotoxicologists. Beyond the presentation of recent advances, we have recently performed on the omics 
investigation of cyanobacterial deleterious effects on various fishes from both microcosm, mesocosm and field sampling 
experiments using transcriptomics, proteomics, metabolomics, multivariable statistic, and system biology tools and pipelines, 
the present prospective paper re-explores the promising perspectives and also the pitfalls of such holistic investigations of the 
ecotoxicological response of organisms for environmental assessment.  
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1.	Introduction	

1.1	Context	of	the	omics	area	for	ecotoxicology	

Different end-point techniques, ranging from toxicology to 
molecular tools (antioxidant enzymes, stress proteins, DNA 
damages, physiological impairs or neuroendocrine 
parameters), have been classically used attempting to provide 
early warnings of phenotypic alterations of organisms exposed 
to environmental stress or contaminants (Hook et al., 2014). 
However, during the last 20 years, the field of aquatic 
ecotoxicology has progressively integrated various emerging 
omics techniques including transcriptomics, proteomics, and 
metabolomics, in order to enlarge the investigation range of 
potential molecular biomarkers (Mezhoud & Edery, 2005). To 
this end, the use of model organisms appears first as a good 
strategy that can address some of the challenges associated 
with biological variation because their genomes are well 
characterized, supporting proteomics and transcriptomics 
investigations, and these organisms can be easily manipulated 
and tested within a controlled laboratory environment 
(Malécot et al., 2008).  

However, despite the high potential of omics for the 
understanding of the molecular mechanisms implicated in the 
ecotoxicological responses of organisms, the investigation of 
new qualitative and quantitative biomarkers characterizing the 
interactions between natural populations and their biotopes in 
various ecological context remains still rare and difficult to 
achieve (Cappello et al., 2016). After an initial descriptive 
period of their technical skills and capabilities, and of proof-
of-concept announcements (Ankley et al., 2010), 
ecotoxicological omics now gain at rationally integrate tool in 
a systemic approach addressing appropriately all conceptual 
and statistical constraints in order to hopefully reach their 
promising potential (Sauer et al., 2017; Martynuik 2018; Kim 
et al., 2017).  

1.2	The	ecotoxicological	problematic	of	cyanobacterial	
proliferations	

The joint effects of eutrophication and climate change 
promote cyanobacterial blooms in continental aquatic 
ecosystems, which pose potential risks to ecosystem 
sustainability (O’Niel et al., 2012). Besides, bloom-forming 
freshwater cyanobacteria produce a wide range of secondary 
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metabolites potentially toxic, so-called cyanotoxins. These 
metabolic by-products are mainly stored intracellularly and 
can be released into the water notably after bloom collapses, 
leading to potential toxic effects to exposed Human 
populations as well as on aquatic organisms (Janssen 2019). 
Microcystis, Aphanizomenon, Anabaena, 
Cylindrospermopsis, and Planktothrix are the main bloom-
forming freshwater cyanobacterial genera found during 
summers in lentic water bodies, and all have been often 
reported to produce potent toxic compounds (Codd et al., 
2015). Among them, the microcystins (MCs), a family of 
hepatotoxins consisting of more than 230 variants, are the 
most studied due to their high biological activity and their 
wide occurrence during freshwater cyanobacterial blooms 
(Catherine et al., 2017). The effects of freshwater 
cyanobacteria and their respective cyanotoxins, notably the 
MCs, have been widely studied on fish maintained in 
microcosm or mesocosm conditions, and fish have been 
proposed as valuable indicators of environmental disturbances 
associated to cyanobacteria proliferation (Malbrouck and 
Kestemont 2006; Le Manach et al., 2018).  

However, the actual knowledge on the genuine 
cyanobacteria bloom impairs for natural populations of fishes 
is mainly deduced from short-time experimentation generally 
performed in micro- or mesocosms with high concentrations 
of purified toxins (Sotton et al., 2017; Malbrouck & 
Kestemont 2006; Pavagadhi & Balasubramanian 2013). 
Furthermore, most of these studies were focused on the 
mechanisms involved in the dynamic of the MC 
accumulation-detoxification. It appears that there is still a lack 
in our understanding of the real ecotoxicological effects of 
cyanobacterial biomass, particularly on the natural 
ichtyofauna population. Indeed, cyanobacterial blooms are 
producing at the same time a “cocktail” of potentially 
bioactive compounds, among them some cyanotoxins (Le 
Manach et al., 2018), and are also potentially modifying other 
important ecological parameters of the water bodies (Sotton et 
al., 2019). The main challenge that now face the ecotoxicology 
community that tries to investigate and to propose 
management strategies of such complex natural proliferation 
of cyanobacteria and various metabolite production is to be 
able to distinguish from individual variability of its various 
biological traits the subtle contribution of low stressor 
deleterious effects on its phenotypic expression.  

For this purpose, omics technologies offer promising 
perspectives for rational investigation of complex systems. 
Indeed, omics technologies present the capability of providing 
a profound insight into the biochemistry and physiology of the 
cell and any perturbing effects of xenobiotics. They have 
recently led to an enthusiastic adoption by research 
ecotoxicologists (Gonzalez & Pierron, 2015). 

2.	The	benefits	of	the	global	picture	for	
ecotoxicological	investigation	

By assimilating concepts from toxicology and ecology, 
ecotoxicology aims at investigating the environmental effects 
of toxic substances, such as microbial toxins, on the health of 
ecosystems and their respective populations, species, and 
individuals. Many toxic substances can generate adverse 
effects at all levels of biological organization ranging from the 
molecular level to the communities and the ecosystems. To 
support the operational chemical toxicological assessment for 
contaminated environments, analytical supports such as those 
provide by approaches using either direct (source-to-outcome 
pathway) or indirect (adverse outcome pathway) 
methodologies have been developed; They allow describing 
cascade chains of causal events occurring at the different 
levels of biological organization inducing objective 
ecotoxicological effect. Perhaps the greatest challenge facing 
nowadays ecotoxicology is to determine how to reliably assess 
community and ecosystem impacts of chemical pollutants 
taking supported of the detailed individual investigation that 
can now be performed thank to the various omics and system 
biology tools that are currently been developed (Sauer et al., 
2017). 

Omics technologies have the potential to enable qualitative 
and quantitative measurement of early changes from the 
molecular levels that precede following changes at latter 
cellular, tissular, individual to community levels. It is because 
omics analyses present the ability to provide a global view of 
the cellular processes of an individual in response to an 
environmental change, that they are believed to represent 
promising opportunity to challenge the complexity of the 
various molecular variation occurring in an organism in 
response to a specific but sub-acute if not faint toxicant-
associated stressor, in order to extract specific signature of the 
deleterious processes (Martynuik 2017).  

Classical toxicology or ecotoxicology approaches usually 
focus on the alteration of a restricted number of pertinent 
biomarkers by histology, protein quantification or gene 
expression studies (Hook et al., 2014). However, these 
analytical strategies do not allow to either investigate or to 
globally characterize the toxicity of emergent pollutants such 
as a complex mixture of compounds produced by 
cyanobacteria. Nowadays, with the advances in high-
throughput analytical methods, the complexity of such 
toxicant interactive effects could be further described without 
a priori hypothesis. The omics tools allow a rapid 
identification of potential effects through modification on gene 
or protein expression and regulation. The major advantage of 
using omics methods in a systemic approach is that one can 
assess hundreds to thousands of molecular responses 
simultaneously within an organism, facilitating a more holistic 
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understanding of the organism’s physiological and 
toxicological status (Biales et al., 2016). 

2.1	New	hypothesis	generation	

In principle, omics are ideal tools for discovering key 
events within adverse outcome pathways (Ankley et al., 
2010). The high dimensionality of omics data sets suggests the 
possibility of developing omics-based fingerprints for a 
chemical or activated biological pathway. These high-
throughput high-output fingerprints have the potential to be 
applied to both exposure and hazard assessment in an 
unsupervised or non-targeted manner to simultaneously 
screen de novo all activated biological pathways, requiring no 
a priori information regarding the mode of action (Biales et 
al., 2016). Such a holistic approach is believed to be 
specifically appropriate in order to investigate the subtle 
biological signal induced by low/environmental conditions 
that could statistically be supported by the replication of the 
characterized variables. Then, it may represent a valuable tool 
for the proposition of new hypotheses and the generation of 

either an environmental diagnosis of stressing environmental 
conditions or the deconvolution of the organism responses to 
identified stressors for mechanistic toxicological purposes.  

To this end, we investigate the global proteomic effect 
induced by environmental/low dose exposure to 
cyanobacterial extracts by 28-days balneation on the liver of 
adult medaka fish, in association with anatomopathological 
observation (Le Manach et al., 2016). This analysis clearly 
revealed a distinguishable sex-dependent response of medaka 
fish to the various hepatotoxic Microcystis treatments 
according to the group clustering, which was based on the 
pattern of relative abundance of up-regulated (blue) and down-
regulated (yellow) proteins (Figure 13A). Metabolism and 
homeostasis appeared to be the two most modified protein 
categories in both male and female medaka livers. Primarily, 
these observations support the idea that chronic exposure to 
MC-containing extracts induced a very different molecular 
response in medaka than the response induced by acute and 
short term treatments (Marie et al., 2012), and now need to be 
judiciously decorticated and interpreted.

 
Figure 13. The quantitative proteomic analysis of liver of the medaka exposed to different chronic exposure to hepatotoxic microcystins. 
Protein quantifications in male and female livers exposed to different cyanobacterial hepatotoxic treatments (CHT1-3) represented in a 
heatmap with hierarchical clustering (adapted from Qiao et al., 2016a) (A). Comparison of the lists of dysregulated proteins in male and 
female livers from two similar analysis performed using identical protocols and pipelines (Le Manach et al., 2016; Qiao et al., 2016a) (B).  

Function Name
Qiao	et	al.,	2016 Le	Manach et	al.,	2016

Female Male Female Male
MC5 EXT5 MC5 EXT5 MC5 EXT5 MC5 EXT5

Amino	acid	metabolism
betaine-homocysteine	S-methyltransferase	1 0.4 -0.3 0.4 0.5 0.3 -0.1 -0.7
glutathione	S-transferase	zeta	1 0.9 0.4 0.2 0.5
cathepsin	D 1.1 0.9 0.2 0.5

Cell	redox	homeostasis/detoxification glutathione	S-transferase	A-like 0.7 0.8 0.3 0.5 0.2 -0.4
complement	component	C3-1 0.6 0.6 0 0.3 0.4 1.1

Nuclear	receptor	signaling
aldehyde	dehydrogenase	1,	L1 0.9 0.7 0.1 0.1 0.1 0.1
transferrin-a 0.5 0.6 0.1 0.1 0.2 0.3
cytochrome	P450	8,	B1 0.2 0.2 0.3 0 0.6 0.1

Translation ribosomal	protein	SB 0.1 0.5 0.3 0.2 0.6 -0.1
ribosomal	protein	SA 0.5 0.2 0.4 0.5 0.2 0.7

Transport
hemoglobin	embryonic,	alpha 0.4 1.1 0.3 0.1 0.5
hemoglobin,	alpha-1-like -0.2 0.4 1 0.1 0.2 0.5
hemoglobin,	beta-1-like 0.4 0.8 1.4 0.4 -0.5 -0.6 0.3 0.5

Oxidation-reduction	process dihydropyrimidine	dehydrogenase	b 0.3 0.4 0.3 0.7

Fatty	 acids	and	lipids	metabolism
fatty	 acid	binding	protein	10a,	liver	basic 0.2 0.4 0.3 0.4 0.4 -0.1
fatty	 acid	amide	hydrolase 0.2 0.1 -0.1 -0.4 0.7 0.7
fatty	 acid	binding	protein	7,	brain,	a -0.2 -0.1 -3.3 -3.8 -0.4 -0.6

Protein	modification
acyl-CoA	oxidase	3,	pristanoyl 1 0.5 0.5 0.1
calreticulin	3b -0.5 -0.4 -0.3 -0.6 0.1
ribosome	binding	protein	1 -0.6 0.2 -0.6 -0.4 -0.2 0.6

Nucleotide	metabolism cytidine	deaminase -0.6 -0.4 0.2 0.2 0.6 0.6
nucleolin -0.2 -0.8 -0.4 -0.2 -0.6

Oviparous	specific	proteins
L-SF	precursor -0.8 -0.4 -0.6 -0.2
vitellogenin	1	precursor -0.1 -0.1 -1.9 -2.7 -0.6 -0.5
vitellogenin	II	precursor -0.7 -0.5 -0.3 -0.3

Extracellular	region Zona	pellucida	glycoprotein	2,	like	2 -0.4 -0.3 -0.6 -0.2

Figure	13
A

B



More in detail, the cyanobacterial hepatotoxic treatments 
(comprising microcystins) dysregulate various proteins of 
various molecular function categories comprising lipid, amino 
acid, carbohydrate and TCA metabolisms and detoxification 
processes. The sex-specificity of the liver molecular response 
suggests that identical hepatic stress could impact these 
various molecular processes differently, potentially inducing 
dissimilar biological repercussions in the organisms of two 
sexes. In our example, male-enriched protein dysregulations 
concern rather TCA, steroid, fatty acid, amino acid, and 
vitamin B6-7 metabolism pathway categories, whereas 
female-enriched protein dysregulations are rather related to 
tRNA biosynthesis, amino acid, glutathione, xenobiotic and 
drug metabolism pathways. This example demonstrates the 
importance of sub-classifying and distinguishing results based 
on sex prior to interpretation of omics data on ecotoxicological 
issues induced by sub-acute and chronical contaminant 
exposures. Furthermore, recent reviews also confirm that sex-
specific molecular responses are the norm with chemical 
exposures (Liang et al., 2017). It was reported that there was 
approximately less than 20% congruence between male and 
female proteomes following a chemical challenge; however, 
with increased sensitivity in omics technologies, there could 
likely be higher congruency in omics responses between the 
two sexes. 

Also, measuring variability in molecular responses is 
necessary for identifying strong endpoints that one can 
measure confidently and consistently, notably across 
replicated experimentations and analyses performed within 
the same and also within other laboratories. Considering 
omics analyses, focussed investigations are still needed to 
address intra- and inter-laboratory reproducibility within the 
context of ecotoxicology before any robust implementation 
can occur. To this end, we undergo to compare proteomic 
results replicated from identical exposure protocol and 
analytical procedure generated in the same lab, with fishes for 
the respective parent and descendant generations (Le Manach 
et al., 2016; Qiao et al., 2016b). The comparison between the 
two studies of the dysregulated proteins (Figure 13B) reveals 
a similar hepatic alteration pattern under the same cyanotoxin 
treatments (namely, MC5 and Ext5). The proteins associated 
with amino acid metabolism, detoxification, nuclear receptor 
signaling, translation and transport being globally up-
regulated in both genders. Particularly, these data suggest that 
the cellular defense against oxidative stress and the immune 
response are activated by the MC containing treatments. On 
the other hand, the proteins involved in lipids and nucleotides 
metabolisms, protein modification and oviparous specific 
proteins appear similarly down-regulated within the two 
analysis. 

However, in order to be able to generate a valuable 
interpretation of mechanistic toxicology from omics dataset, 

specific attention should now be attempted on the 
representativeness of the differential picture of molecular 
dysregulation. Additionally, one should keep in mind that for 
technical and financial reasons of experimental design 
sustainability, such proteomic investigations are often 
performed on a limited set of samples that can also result of 
the pooling of different individuals from the same categories, 
that could distort and homogenate the accurate toxicological 
response experienced by the different individuals. 

2.2	Mode	of	action	and	general	ecotoxicological	
mechanisms	

One of the main objectives for omics applied to 
environmental science is to identify biologically meaningful 
molecular features that describe the toxicological mode of 
action leading to negative impacts on individual fitness, and 
that can be used for the description of specific molecular 
signatures. Moreover, omics data can be specially used to 
refine potential adverse outcome pathways, and to unveil 
novel molecular events that potential can initiate 
undetermined outcomes linkable to ecologically relevant 
adverse phenotypes (e.g. reproduction, growth, energy, 
development, behavior). It is important to recognize that these 
molecular pathways are not linear, but are rather integrated 
and complex - perturbations at one point being potentially 
inducing collateral consequences for other integrated 
pathways (Conolly et al., 2017). 

However, one should consider when observing the 
biological response of an organism to a stressor that it results 
from the combined action of adaptive processes, the organism 
modulating its physiology to better cope with environmental 
variation, and also the potential molecular dysregulation that 
have been induced by the direct toxicologic action of the 
toxicant itself. In order to be able to disentangle the joint 
effects of these two different processes, it is crucial to 
basically take into account the temporal dimension of the 
biological response. 

One other key question in environmental monitoring 
concerns the recovery following mitigation of a chemical 
stressor. Recovery is defined as a return to a normal state of 
health. This underscores the necessity of first quantifying what 
is normal (often defined from an initial state, observed just 
preceding a specific stress occurrence) in the context of an 
omics profile before we can discuss how to use molecular 
profiles to measure a return to an initial state. In a recent study, 
we have investigated by LC-MS based untargeted 
metabolomics approach the molecular effects occurring on the 
liver of medaka fish exposed to sub-acute dose of anatoxin-a 
(Colas & Marie, in prep.). This analysis reveals that this 
molecule was rapidly excreted by the organisms and that the 
molecular dysregulation of the liver metabolite content also 
rapidly rescues to its initial state, as the level of all 
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dysregulated metabolites recover their respective initial levels, 
whatever they were up- or down-regulated (Figure 14). The 
question remains to know to which extent it can be considered 

as a full “recovery” and returned to the initial un-stressed 
states (Marjan et al., 2017b). 

	
Figure 14. Monitoring of global effects induced by a single sub-lethal dose of anatoxin-a on the medaka fish liver investigated by non-targeted 
metabolomics. Principal component analysis individual plot representation according to components 1-2 (A) and 1-3 (B). Heatmap and 
hierarchical clustering of significantly dysregulated metabolites (ANOVA P<0.01) and representative blox-plots of metabolite variation and 
recovery after the first post-exposure hours (adapted Colas & Marie in prep.). 

A take-home lesson of these considerations could be that 
toxicological baseline (using classical cellular markers of 
toxic evidence) and time-series dataset (to discriminate direct, 
indirect or collateral effects) should be required prior to 
determining whether a molecular response is adaptive, 
compensatory, homeostatic or toxicologic. Although there are 
no specific guidelines concerning the appropriate duration of 
exposure to measure a specific omics response, it is also 
critical to match the exposure time to the question or 
hypothesis that is most relevant in the environment. For 
example, some long-term exposures to low dose of 
contaminant cocktails, expected to be most relevant for 
environmental and realistic exposure that occurs in natural 
environments, have shown that it can be then very difficult to 

predict effects of chronic exposure from mechanistic 
knowledge on contaminant toxicological mechanisms because 
of the dynamic and the complexity of the organism 
toxicological response (Hamilton et al., 2016). On the 
contrary, chronic exposures at low concentrations experienced 
by wild fish to some chemicals, such as the hepatotoxin 
microcystins, have been found to adversely impact secondary 
toxicological targets such as reproductive output, suggesting 
harmful effects on wild fish populations may then occurs 
(Qiao et al., 2016b), when higher and shorter-term exposure 
could only describe more direct effects on liver (Marie et al., 
2012). 

 

Figure	14 A B

C D
685.9643 1097.5678 674.5398

297.1220 326.2455 840.4485
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3.	Integration	of	system	biology	into	the	
ecotoxicological	view		

3.1	 Multi-omics	 integration	 using	 system	 biology	
concepts	

On one hand, transcriptomics analyses using 
RNASeq in ecotoxicology have raised nearly as many 
questions as they have answered, not only due to the 
complexity of the aquatic animals analyzed but also to the 
complexity of the chemicals and mixtures to which they are 
exposed (Bertucci et al., 2018). On the other hand, due to their 
high technical complexity, proteomics-based studies remain 
still restrained in the ecotoxicological field, even if some 
studies have demonstrated the utility of proteomics in 
ecological species (Degli-Esposti et al., 2019). Proteins can 
also undergo post-translational modifications, complexifying, 
even more, the functional interpretation of the proteomic 
results. In theory, the joint use of transcriptomics and 
proteomics might provide information that supported and 
strengthened each approach, in addition to identifying effects 
that each technique used in isolation may not detect. 

However, the comparison of the molecular picture that 
they both provide, respectively, at the mRNA and protein level 
might also highlight the difference that can be observed 
between these two biological compartments (the second 
resulting from the translation of the first one), especially when 
observed from a single instantaneous picture. Indeed, in a 
previous analysis, we had investigated the hepatic effects 
induced by microcystin balneation of adult medaka fish (Qiao 
et al., 2016b). When analyzing the global pictures obtained 
from transcriptomic and proteomic investigations, we used the 
Ingenuity Pathway Analysis tools in order to globally 
integrate and compare these two large data sources (Figure 
15). Surprisingly, the comparison of the dysregulated gene 
and protein entries display a limited overlap between these 
two analyses (only 13 out of a total of 225 proteins or 654 
genes are in common). However, noticeable compatibility has 
been observed between the transcriptome analysis and the 
proteome investigation at this molecular and cellular function 
level. Furthermore, transcriptome data even shows a clearer 
and more notable cellular response than that depicted by 
proteomes, which is highlighted by a clear up and down-
regulation between some opposing function aspects, such as 
cell death and cell survival, illustrating the difference depicted 
with these two molecular levels of analysis. 

 
Figure 15. Heatmap representation of the overall alteration of the hepatic transcriptomes with gene ontology classification (A), of the 
hepatic proteomes with gene ontology classification (B) and of the significantly affected cellular and molecular functions determined with 
transcriptome and proteome data through IPA (adapted from Qiao et al., 2016b). 

One of the current limitations in transcriptomics studies is 
the extrapolation of the results to the higher levels ranging 
from proteins to the individual. Some studies reported a 
positive correlation between gene expression and cellular 
modifications (Ortega et al., 2015), but no correspondence on 
gene versus individual levels could have been found. In 

addition, gene expression may not always reflect a 
physiological or morphological effect (Grifftt et al., 2012). 

Nowadays, metabolomics studies have become a relevant 
approach to describe and analyze the integrated response of 
the organisms under specific environmental context and 

A B C

Figure	3
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scenario (Capello et al., 2016; Gil-Solsona et al., 2017; Tang 
et al., 2017; Reverter et al., 2017). Also, metabolomics 
directly addresses the terminal molecular level of the central 
concept of cellular biology, the substrate. Then, the changes 
in the primary metabolite concentrations help to provide 
valuable and direct information concerning the physiological 
processes involved in the homeostatic or dysregulated 
responses of the organisms encountering environmental 
stresses from potential multiple origins. For those reasons, 
various ecotoxicological studies now integrate metabolomics 
analyses in their standard omics pipelines, as it appears 
remarkably relevant to address molecular and functional 
impairs induced by stressors (Wei et al. 2018). 

One way to address biological response to 
ecotoxicological pressures is to focus on molecular functions 
related to the observed system changes. Functional datasets 

tend to be based on qualitative observation and usually contain 
discrete values and count of a significantly discriminated 
dataset. The fluctuations in the expression and the presence of 
non-detects become less relevant and do not drastically affect 
the interpretation of data using a function dependent approach 
of system biology. One of the powerful principles of systems 
biology is that the presence of a disease or a chemical 
exposure is considered in an organism as a perturbation that 
affects the molecular network of the functional interaction 
protein/genes and metabolites within relevant pathways. The 
comparison of the condition of a normal and a perturbed 
network provides better molecular knowledge on the 
physiological condition of an organism and on the 
toxicological and homeostatic processes induced by the 
stressor. While systems biology is being broadly used in the 
human health field, ecotoxicologists are just beginning to use 
such an approach. 

 
Figure	16.	Example	of	Ingenuity	Pathway	Analysis	performed	on	female	medaka	fish	exposed	to	microcystin-producing	strain	conditions	
(Mcy)	using	both	proteomics	and	metabolomics	data.	Heatmap	(A)	and	top	dysregulated	molecular	pathways,	bar	chart	(B)	and	significantly	
dysregulated	molecular	networks	(C).	Molecular	functions	that	are	specifically	down-	and	up-regulated	are	indicated	in	blue	and	orange,	
respectively	(adapted	from	Le	Manach	et	al.,	2018).	

Indeed, different bioinformatic tools, such as Ingenuity 
Pathway Analysis (Qiagen®), have been developed in order 

to over-pass the difficulty of integrating and be able to 
visualize and to analyse the complex dataset generated from 

Figure	4 A

B C
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(multi-)omics approaches. These solutions based on the 
interrogation of a large, if not exhaustive, corpus of genetic, 
protein and molecular pathways generated from all available 
scientific/biomedical knowledge from Human, rat and mouse 
models, can be attemptedly used for other non-model 
organisms, such as fishes, considering that most of the 
homologous proteins may have similar function and 
relationship between those organisms. This approach proposes 
a functional integration of genes/proteins and molecules that 
have been determined in parallel to be significantly 
dysregulated between tested conditions but does not allow 
statistical investigation of big data set from a large cohort of 
organisms (together with its microbiote) considered 
individually. However, once these characteristics are well 
defined computationally, they still require experimental 
validation. 

Recently, we performed an integrative ecotoxicological 
approach on chronic effect induced by various cyanobacteria 
strain exposures to adult medaka fish using combined 
anatomopathology, proteomics and metabolomics analyses 
(Le Manach et al., 2018). To investigate and visualize the 
biological connectivity of the cyanobacteria stress-enriched 
metabolites and proteins, the network-generating algorithm of 
ingenuity pathway analysis (IPA) was used to maximize the 
interconnectedness of molecules based on all known 
connectivity in the database developed from Human 
molecular knowledge in the liver. The results of the IPA 
biological function analysis for female medaka exposed to 
Mcy conditions (microcystin-producing strain), represented as 
a heatmap and a bar chart (Figure 16 A-B, respectively). The 
IPA network search shows within the top networks 
predominantly regulated the respective interaction of related 
proteins and metabolites (Figure 16C). 

Ultimately, a system toxicology approach that has 
functional perspective gains in biological relevance and 
meaning. Although it is based on functional analogy deduced 
from molecular similarities with model organism from which 
derived molecular pathway corpus, most omics datasets 
obtained from non-model organism aim at being investigated 
using system biology tools for putative functional information 
and explicative molecular scenario, that will remain to be 
further explored. 

However, one should also keep in mind that the 
demonstration of genuine toxicologic effects ultimately can 
not rely on the sole observation of molecular dysregulation of 
molecules or genes, even if they are numerous and known to 
be potentially involved in classical toxicologic response, and 
that obvious evidence of cellular or characteristic endpoints 
may support the ultimate toxicological diagnostic. Thus, 
phenotypic anchoring demonstrates that changes in molecular 
response highlighted by omics aim at being correlated with 
physiological outcomes characterized by orthogonal analyses. 

3.2	Experiment,	field	sampling	and	batch	integration	

One shortfall of various omics studies, in general, has been 
the lack of consideration of statistical power in the analysis 
design in order to ensure appropriate statistical power to test 
hypotheses. Although proteomics and transciptomics can 
generate quantitative observations on a very large set of 
variables (protein quantity or gene expression levels), their 
application remains relatively complicated and expensive, that 
concretely limited the number of replicates of 
ecotoxicological analyses. Oberg and Vitek (2009) address the 
various statistical issues encountered with the principal 
designs of quantitative omics experiments. They discuss the 
benefits and the drawback of each scenario, including 
effective, randomization, replication, or pooling, and the 
appropriate statistical test that can be performed in each case 
to identify differences between samples. For example, a 
statistical power analysis performed on data obtained from 
label-free proteomics determined that sample size should be 
of a minimum of 9-12 individuals in order to ensure to detect 
25% changes in protein quantity (Simmons & Sherry 2013). 
This observation demonstrates that a trade-off must occur if 
the number of experimental groups is increased, such as 
multiple doses and time points, and selecting replicate 
numbers so that the experiment remains cost-effective and 
maintains adequate statistical power. 

The large quantity of data produced from omics 
approaches has rapidly necessitated the use of adapted data 
analysis tools for the classification of sample groups. Among 
the most common are multivariate statistical models, such as 
principle component, partial least squares discriminant, 
redundancy or canonical correlation analyses (PCA, PLS-DA, 
RDA, CCA, …) (Hervé et al., 2018). Recent effort has now 
been performed in order to develop new multi-omics tools 
aiming at quantitatively integrating multi-block omics dataset 
from a homogeneous or heterogeneous origin (Liquet et al, 
2012; Gonzalez-Ruiz et al., 2019; Rohart et al., 2017). The 
application of multivariate analysis should be performed after 
that data have been appropriately processed in order to match 
identifiable biological targets as the variable loadings onto the 
components reflect true biological variation and not technical 
artefacts that could, for example, arise from batch-to-batch 
variation. 

Indeed, among the different situation of multi-block 
analyses, the batch comparison is among the most currently 
investigated one (Mehl et al., 2015; Boccard et al., 2019). 
Indeed, because it is difficult to control exposures in the field, 
laboratory experiments under more controlled conditions are 
often developed in ecotoxicology in order to make inferences 
regarding what might happen under similar conditions in the 
field. Most often, laboratory exposures are used to ascribe 
specific chemical exposures with health outcomes to control 
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for confounding factors and provide levels of replication that 
are difficult to obtain with wild fish. This concept relies on the 
postulate that lab experiment performed under controlled 
conditions with well-known organisms might present a very 
low replication variance that ensures the repeatability of the 
observation and its transferability to less constrained systems 
(from mesocosms to natural ecosystems). However, true 
dataset often shows that even very similar analyses present 
remarkably high batch effects and that the use of dedicated 
approach and data treatment is pre-requisite in order to be able 
to distinguish the portion of the variable variance that is 

relative to batch effects or to the specific stressor treatment. In 
pilot analyses on chronic effects on medaka induced by 
Microcystis bloom balneation exposure (Le Manach et al., 
2018; Sotton et al., 2017a), we had explored the liver 
metabolomics variations within these two similar but distinct 
experiments. Now, we attempt to integrate and to compare the 
1H-NMR metabolomics results obtained from each one of 
these two analyses using either the MINT function or 
regularized canonical correlation analysis of the MixOmics R 
package (Lê Cao et al., 2018). 

 
Figure 17. Illustration of MINT analysis performed in mixOmics for the integration of homologous dataset from independent batch 
experiments from Sotton et al. (2017a) (BS) and Le Manach et al. (2018) (SM). A) MINT sPLS-DA graphical outputs using plotIndiv 
function, from SB and SM metabolomics analysis of livers from medaka exposed to similar Microcystis bloom constraints. B) Global sPLS-
DA sample integrating metabolomics data from both analyses. C) Coefficient weight of the features selected on component 1 in each study 
using plotLoadings function. D) Global coefficient weight of the features selected on component 1 integrating metabolomics data from both 
analyses. Colours indicate the class with a maximal mean expression value for each metabolite (adapted from Sotton et al., 2017a; Le Manach 
et al., 2018). 

MINT is an extension of the multi-group PLS framework 
(Rohart et al., 2016a), where ‘groups’ represent the two 
independent studies in a supervised framework with 
variable/feature selection. MINT seeks to identify a common 
projection space for all studies that are defined on a small 
subset of discriminative variables and that display analogous 
discrimination of the samples across the two studies. Alike to 
sPLS-DA, MINT selects a combination of features on each 
PLS-component. The function plotIndiv and its representation 

graphics can act as a quality control step to detect studies that 
cluster outcome classes differently to other studies and the 
plotLoadings graphic display the coefficient weights of the 
features that are co-selected by the model. Figure 17 displays 
some outputs easily obtained by calls to those functions, 
including MINT sPLS-DA sample and variable contribution 
plots for both individual batches and combined dataset, 
highlighting the most discriminant samples and variables, 
respectively, according to the whole dataset series. Such data 
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analysis tool offers integrative approach for disentangling the 
informative variance from the various parameters that may 
influence omics responses of tested organisms. 

Similarly, an alternative approach consists in analyzing 
such multi-batch dataset with regularized canonical 
correlation analysis (rCCA), also available from the 
MixOmics R package (Gonzalez et al., 2008). This 
multivariate exploratory approach aims to highlight 

correlations between two data sets acquired using the same 
experimental pipeline. In the same vein as PCA, CCA seeks 
for linear combinations of the variables (called canonical 
variables) to reduce the dimensions of the data sets, but this 
time while trying to maximize the correlation between the two 
variables (the canonical correlation). One objective of such 
analysis is in a set of experiments to highlight the variables 
that are correlated with specific parameters without interfering 
with experiment reproducibility or batch variation. 

 
Figure 18. 1H-NMR liver metabolomes and discriminant metabolites of fish exposed to MC-producing and non-producing cyanobacterial 
strains from BS and SM experimentations. The individual plot of regularized canonical correlations analysis (rCCA) for dimensions 1–2 (A), 
dimensions 3–4 (B) and dimensions 5–6 (C) are illustrating the individual discrimination according to the experiment (axe 1) and the sex 
(axe 2), the exposure to N-mcy and Mcy strains in BS experiment (axe 3 and 4, respectively), and the exposure to N-mcy and Mcy strains in 
SM experiment (axe 5 and 6, respectively). Relevance networks providing from rCCA analysis on dimension 3 and 5 (D, right and left, 
respectively) show the variables/metabolites that are the most correlated with the Mcy condition (exposure to microcystin producing 
Microcystis strains) in SB and SM experiments, respectively (adapted Sotton et al., 2017a; Le Manach et al., 2018). 

Using the rCCA approach, samples can be neatly separated 
according to the cyanobacteria strains exposure factor, 
avoiding the interference due to the variability between 
different experiments. This approach can serve to extract the 
variables that are the most correlated with the different 
parameters tested and project their respective variances on the 
different components that are the most correlated with latent 
parameters. In our comparison of the metabolomic dataset 
generated from the ecotoxicological investigation of 
Microcystis effects on medaka fish livers from BS and SM 
experiments, we have also experienced rCCA analyses in 
order to extract variables that are the most correlated with 
experimental parameters (cyanobacterial exposure with MC 
producing and non-producing Microcystis strains) within the 

two batches (Figure 18). This analysis allows the specific 
extraction of the variables of the X matrix (comprising the 
metabolite semi-quantification) that present the best 
correlation with interrogated parameters integrated into the Y 
matrix (composed by experimental descriptors and explicative 
metadatasets). 

These two types of multivariable integrative data analyses 
appear to be efficient to simultaneously extract from two joint 
datasets, the variables that are the most correlated with 
toxinogenous cyanobacterial strains, and then allows stress 
signature determination, constituting promising tools for the 
investigation of complex data from environmental omic 
evaluations. 
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4.	 Multi-omics	 stress	 signature	 investigation	 from	
multi-species	analyses	

As ecotoxicology aims at characterizing the toxicological 
condition and processes of organisms within their natural 
environments, most of the ecotoxicological study concerns 
various species of non-model organisms according to the 
authenticity of their natural exposure to environmental 
contaminants. Then, concerning the search for toxicological 
mode of action and for relevant biomarkers, one great 

challenge of ecotoxicology consists to find a relevant 
molecular signature of specific stressors for these non-model, 
but relevant, organisms. To this end, metabolomics appears to 
present all the advantages to reach such objective. Indeed, it is 
a powerful genome independent approach that can generate 
the same quality and quantity of data for all organisms 
(presenting sufficient amount of material to be analysed), that 
can be equally considered as good models for environmental 
metabolomics investigations. 

 
Figure 19. 1H-NMR liver metabolomes and relevance network offish exposed to MC-producing and non-producing cyanobacterial strains. 
The individual plots of regularized canonical correlations analysis (rCCA) for dimensions 1–2 (A), dimensions 2–3 (B) and dimensions 3–4 
(C). Perch-control (green diamond), perch-N-mcy (blue diamond), perch-Mcy (red diamond), crucian carp-control (green triangle), crucian 
carp-N-mcy (blue triangle), crucian carp-Mcy (red triangle), roach-control (green circle), roach-N-mcy (blue circle), roach Mcy (red circle). 
Relevance network providing from rCCA analysis on dimension 3 and 4 (D). Circles indicate metabolites are significantly dysregulated in 
exposed fish according to additional two-ways ANOVAs (adapted from Sotton et al., 2017b). 

In order to investigate the global response of fish to 
punctual cyanobacterial event, three representative fish 
species (the roach, the crucian carp and the common perch) of 
freshwater ponds from the European temperate regions 
(frequently encountering cyanobacterial blooms), were 96-h 
exposed to environmental high concentrations of 
cyanobacteria in the context of an experimental approach in 
mesocosms designed to mimic natural conditions. 
Metabolomic analyses were performed on the fish liver in 
order to investigate the global molecular responses of the 
different fish species, and potentially identify a general 
metabolomic signature of cyanobacterial exposure in fishes 
(Sotton et al., 2017b). All metabolomics data from the three 

species were integrated and investigated together with rCCA 
(Figure 19). When canonical components 1 and 2 clearly 
discriminate the metabolome of the different species whatever 
the treatment considered (the species being the main driver of 
the metabolome difference between the individuals), the 
dimension 3 and 4 firmly discriminate the 3 experimental 
conditions (control, microcystin and non-microcystin 
producing strain exposure). The relevance network based on 
the third and the fourth rCCA dimensions identifies 
metabolites discriminating the different treatment groups 
(Figure 19D). Strong positive correlations of Mcy-treated fish 
group with the relative concentrations of the metabolites 
annotated as hypotaurine, 1-methylhistidine and gamma-
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glutamylcysteine are then highlighted by the relevant network. 
Although this study shows that rapid and significant metabolic 
changes occur in 3 representative fish species exposed 
senescent cyanobacterial strains, it also demonstrates the great 
capability of metabolomics to investigate non-model 
organism metabolome and, when combined with rCCA, 
extracts the metabolite common changes induced by the 
exposure conditions, beyond the large difference of the 
respective metabo-type of each three species. Thus, it appears 
that both cyanobacteria induce molecular changes in a strain-
dependent way. According to the respective difference of 
metabolite production between the two strains (Mcy and N-
Mcy), it is not surprising to observe distinct fish metabo-types 
resulting from the different cyanobacterial treatments. These 
metabolome changes are very likely linked to the stress 
response of fish in order to overcome the negative 
consequences of the different cyanobacterial secondary 
metabolites absorbed by the fish cells, and notably, the potent 
hepatotoxins MCs as the producing strain induces even more 
molecular changes. 

Considering these first observations, one can now suppose 
that in a natural ecosystem, after a bloom exposure, fishes may 

present some characteristic metabolic signatures, which could 
be reversely used as potential bio-indicators of the ecological 
constraints induced by the presence of specific cyanobacterial 
genera and/or secondary metabolites they produce. This 
hypothesis has been recently investigated using the 
metabolomes of fish sentinel species collected from a field 
sampling campaign within a gradient of cyanobacteria 
proliferation (Sotton et al., 2019). In this way, during the 
summer 2015, young fish of two representative and common 
species of freshwater lakes from the European temperate 
regions, the common perch (Perca fluviatilis) and the 
pumpkin-seed sunfish (Lepomis gibbosus), have been sampled 
in eight peri-urban lakes of the Île-de-France region contrasted 
by their phyto-planktonic community composition 
(“presence” or “absence” of cyanobacterial blooms). 1H-NMR 
metabolomics analyses were performed on the fish liver in 
order to investigate the global metabolome local specificities 
of the two fish species collected from a gradient of distinct 
ecological contexts (comprising the cyanobacteria 
dominance) and to further identify the metabolic signatures 
related to these potential specific phenotypic responses using 
joint rCCA, MANOVAs and two-ways ANOVAs, as 
previously described (Figure 20). 

 
Figure 20. 1H-NMR liver metabolomes and relevance network of fish sampled in the different lakes. The individual plots of regularized 
canonical correlations analysis (rCCA) for dimensions 1 and 2 (A). Perch individuals are on the left side and pumpkinseed individuals on the 
right side of the graphic. Lakes are represented by their respective letters that in blue correspond to control lakes and in green to perturbed 
lakes. Relevance network providing from rCCA analysis on the dimension 2 (B). Green edges correspond to negative correlations with the 
discriminant ecological factors (adapted from Sotton et al., 2019). 

A net species effect is observable through the dimension 1 
with Perca and Lepomis clearly separated by the first 
dimension whatever the lake considered. However, on the 
dimension 2, a large effect correlated with cyanobacterial 
biomass is observable, as the metabolomes of fishes coming 
from cyanobacterial dominated lakes (in green) are clearly 
separated by this dimension whatever the fish species 

considered. The relevance network based on the second rCCA 
dimension specifically highlights metabolites discriminating 
the fish from dominated and non-dominated cyanobacteria 
lakes and linking to the correlated environmental factors 
(mainly the cyanobacteria concentration/BBEcya 
concentrations but also the pH) (Figure 20B). Overall, it 
appears that all these metabolites shown by this network 
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exhibit negative correlation with both cyanobacterial 
concentrations and pH values. Globally, it appears that the 
metabolome of livers of fishes sampled in Triel, Fontenay and 
Verneuil lakes, and in Varenne-sur-Seine lake in a lesser 
extent, exhibit the most significant differences in the relative 
concentrations of the highlighted metabolites compared to fish 
coming from other investigated lakes, where cyanobacteria 
are notably in low or not dominant proportions. Further studies 
need now to be performed in order to disentangle the specific 
and/or synergic effects of the various bioactive metabolite 
production together with those of other physicochemical 
parameters associated with cyanobacterial blooms such as the 
pH increased. 

Interestingly, the fish collected from the T lake exhibits 
one of the most divergent global metabo-types, suggesting that 
it could potentially be influenced by the occurrence of multi-
stress conditions, comprising cyanobacteria proliferation 
together with the other heavy metal, hydrocarbon or other 
organic contaminants, that have been observed in this specific 
environments (Catherine et al., 2016). Indeed, T lake was not 
characterized by the highest concentration of cyanobacteria 
observed during this study. However, due to the presence of 
other pollutants already monitored in past studies in this pound 
and not in the other one, this observation suggests that additive 
and/or synergistic effects of multi-pollutants together with 
cyanobacterial bloom seem to be involved in similar metabolic 
variations than those of fish from pounds which are the most 
stressed by cyanobacterial blooms. 

Another question addressed by Sotton et al. (2019) 
consists to determine which descriptive factors are also 
relevant for environmental monitoring and which of these 
variables matter more for the fish metabolome determinism - 
is genetic selection, developmental state, season or 
connectivity other explicative factors also affecting the 
metabolome local signature specificity and patterns observed 
between the different lakes? 

 

5.	The	(metabol)omics	signatures	as	bio-indicator	of	
environmental	conditions?	

Although data obtained from transcriptomics and 
proteomics approaches are still highly comparable, 
metabolomics methods currently appear to be the most 
consistent between laboratories and instruments, and maybe 
gain at being the new standard for environmental omics, 
especially for non-model organisms. Indeed, of all the 
molecular entities (genes, transcripts, proteins, metabolites), 
metabolites have the closest relationship to expressed 
phenotype as they are the final end-points of upstream 
biochemical processing. Although metabolite production is 
the results of genetically controlled processes, the 

metabolomics pipeline is completely independent of a back-
ground genomic dataset, and for this reason, metabolomics 
investigations produce the same quality and quantity of data 
for all organisms, whatever it is a model organism, or not. 
Quantitative analysis of metabolite abundance reflects both 
cellular processes and xenobiotic occurrence, this latter being 
physicochemically distinct from the molecular entities that 
originate in the host. During the last years, various innovative 
metabolomics investigations have been developed in order to 
explore original bio-indicative compartment using both 
invasive and non-invasive analysis of endogenous and 
exogenous chemicals (Bouslimani et al., 2016; Davis et al., 
2016).  

The selection of sites, species, organisms, development 
stages, biofluids or tissue types is a crucial aspect of 
experimental design in ecotoxicology. Further effort is still 
needed to obtain baseline datasets in ecologically relevant 
species and integrative biological compartments: 

- Fishes being widely considered as relevant bioindicators of 
human impact on aquatic ecosystems (Clavel et al. 2013), 
various studies have demonstrated relationships between 
abiotic characteristics and the diversity and abundance of 
fishes assemblages (Zhao et al. 2016). A step further, long-life 
organisms such as fishes exhibit numerous relevant molecular 
characters that could be investigated by omic molecular 
approaches in order to perform more accurate longitudinal 
follow-up. These aspects make that fishes are among the most 
currently monitored organisms for environmental assessment 
and ecotoxicology. 

- Although other tissues or species may respond differently, 
metabolomic-based analyses of livers may provide 
considerable insight into a variety of contaminants and their 
associated impacts on biological processes. During our 
previous analyses on hepatotoxicity of cyanobacterial blooms 
using fish metabolomics, because we focused on endogenous 
metabolites in livers, assessments of the biological importance 
of explicative factors (including cyanobacteria dominance and 
cyanotoxin occurrence) were restricted to those contaminants 
affecting liver processes. Because it is an important site for 
biotransformation of exogenous contaminants, the liver can be 
highly susceptible to various cyanotoxin/contaminant 
exposure; many of those contaminants being hepatotoxins 
(Codd et al., 2005). It also performs essential roles in many 
biological processes (e.g., immune response, energy 
metabolism, and hormone production); thus, perturbations 
affecting other organs can also alter liver structure and 
function, making liver many the most integrative organ of 
ecotoxicological processes. However, application of similar 
approaches to other tissues (e.g., mucus) or biological 
measurements (e.g., transcriptomics) could further highlight 
additional biologically active metabolites and provide a more 
complete assessment of respective potential toxicity 
mechanisms. 
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- Gut microbial communities constitute a compartment of 
crucial importance in the regulation of homeostasis of multiple 
host physiological functions as well as in resistance towards 
environmental pollutants. Many chemical contaminants were 
shown to constitute a major threat to gut bacteria. Changes in 
the gut microbiome could lead to alteration of host health, but 
can also represent indirect evidence of environmental 
dysregulation due to a toxicological pressure increase 
(Evariste et al., 2019). To this end, the democratisation of 
high-throughput sequencing, that permitted a recent great 
expansion of microbiome importance in human health 
research, may now support the development of 
ecotoxicological studies integrating the characterization of the 
free or associated microbial community, that may 
significantly contribute to the better understanding of relevant 
toxicological mechanisms for environmental assessment 
(Astudillo-Garcia et al., 2019). One should estimate that such 
microbiome analysis may rapidly represent the next key 
reference end-point of near-future ecotoxicological studies. 
- On the other side, the relevance and appropriateness of the 
stressor gradient within a larger set of reference sites are of 
critical importance in field-sampling-based omics studies, as 
it directly influence the interpretation of omics data 
specificities observed locally. Indeed, the difficulties in 
selecting a unique set of reference sites stem from the reality 
that virtually all ecosystems are impacted by anthropogenic 
stressors and are part of a stressor gradient that can be 
determined for all potential contaminant (Jarque et al., 2015); 
the identification of such contaminant pressure on respective 
environments and the minimization of other confounding 
chemical influences at the less impacted “reference sites” 
remains primordial in the initial analysis design. Some 
guidance regarding experimental design in field-based omics 
has been published recently (Marjan et al., 2017a) and the 
insight generated from these studies should be considered 
further when designing experiments in the field.  
 

6.		Conceptual	and	technical	challenges	

6.1	Confounding/explicative	factors	

Linking exposure levels to impacts on fish populations and 
biomarker responses require establishing associations with 
health outcomes and all ecologically relevant factors. In 
ecotoxicology the variability that is a result of environmental 
changes can be an important aspect of, or even the focus of, a 
study, the investigated biotic or abiotic factor been then rather 
considered as explicative or confounding: 

- One important consideration was to recognize the role of an 
individual’s sex in omics-based assessments (Le Manach et al. 
2016; Qiao et al., 2016). Pina and Barata (2011) pointed out 
that careful attention was needed in the interpretation of such 
data, and omics profiles at different developmental and 
reproductive stages needed to be further elucidated and 
defined for ecologically-relevant non-model species. As we 

move from chemical toxicity testing in the laboratory into field 
applications, we quickly realize that the complexity and 
diversity of responses increase dramatically. The individual’s 
health status, diet, and reproductive status are important 
biological variables that can influence an omics response.  

- In terms of environmental investigations, there have been 
efforts to characterize the variability of omics in fish, with the 
goal of identifying the influence of age or specific times of the 
year (or specific stages of reproduction) to omics phenotypes 
(Ivanisevic et al., 2016). Dreier et al. (2016) assessed 
transcript variability at different stages maturity in largemouth 
bass and identified the reproductive stage that showed the 
lowest variability in the transcriptome, the highest variability 
being observed when the fish were undergoing atresia. 
Regardless of the biological reason, these types of studies 
demonstrate that an individual’s reproductive statue can 
significantly influence the phenotypic variability, and it may 
be most useful, if not strongly mandatory, to conduct studies 
on fishes of the same age class, of the same sex and that are 
not reproductively active (such as YOY juvenile fish), in order 
to lower the individual phenotypic variability that rises as a 
potential experimental issue. 

- Additionally, if susceptibility to pollutants has a genetic basis 
this could provide the potential for evolutionary adaptation via 
the selection of less susceptible individuals. Indeed, in a 
contaminant-exposed population, fish with a resistance allele 
may have greater reproductive success, increasing within few 
generations the frequency of such allele in that specific allele 
in this population (known as local genetic adaptation). 
Furthermore, chemicals that alter the contributions of 
individual parental fish to subsequent generations could alter 
the genetic composition of a population and/or reduce the 
genetic diversity of populations, without necessarily affecting 
population size. In this context, one should also investigate the 
effect of such a selective process on the metabolome 
determinism using genetic diversity markers as metadata in 
order to test its influence on local phenotypic (metabol)omics 
signatures. In parallel, knowledge of population-genetic 
structure can then inform on how populations are exposed to 
contaminants and at the local scale which changes in 
population genetic diversity are likely to occur. 

- Most, if not all, organisms shelter a large and diverse number 
of micro-organisms that provide them significant benefits 
from symbiotic relationships. Thereby, they can contribute to 
traits that the hosts have not evolved on their own, such as the 
synthesis of essential amino acids and vitamins or process 
otherwise indigestible components in the diet (Gill et al., 
2006). Microbial symbionts, from intestines or other epithelia 
such as epidermis (Reverter et al., 2017b), can also promote 
efficiently the stress resistance mechanisms or contribute to 
detoxification processes (Gressel 2018; Ceja-Navarro et al., 
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2015). However, the taxonomical and functional diversity and 
composition of the microbiome might also critically influence 
the capability and the efficiency of the microbial community 
to positively or aversively contribute to their host resistance to 
environmental stress or toxicity (Evariste et al., 2019; Li et al., 
2019; Rolli et al., 2015). In a pilot experiment, we had 
observed the significant alteration that a balneation exposure 
to Microcystis extracts can induce on the gut microbiome of 
the medaka fish (Duperron et al., 2019). Taken together, these 
considerations suggest that the fish microbiome may 
contribute to the host resistance to cyanobacterial 
proliferation-associated stresses. This contribution may also 
locally vary according to the specificity of the microbiome 
composition, and aim at being judiciously appreciated and 
considered as potential explicative/confounding factor. 

Apart from biology, there also remains a number of abiotic 
factors that can influence the individual omics responses. For 
example, hydraulics, water quality, the physical structure of 
the habitat, water dynamic, and other variables more obvious 
such as temperature and dissolved oxygen are expected to 
affect in some way the physiological and biological 
parameters of organisms. Recognizing that such abiotic 
factors other than investigated contaminants (e.g., 
cyanotoxins) may drive the omics response of individuals 
from natural environments; combining landscape features (as 
metadata) with omics characters may prove useful moving 
forward for the convincing demonstration of explicative 
variables determining local omics signatures. 

6.2	Bringing	multi-omics	at	the	organism	for	the	
development	of	an	individual	(eco)toxicology	approach		

Such as precision medicine and single-cell, two modern 
and disruptive concepts that both take into account individual 
variability and population characteristics to provide efficient 
personalized care and understanding (Collins and Varmus 
2015; Patel et al., 2014), one could expect that a “precision 
ecotoxicology” approach aims at being now undertaken in 
order to widen our ecotoxicological knowledge. It may 
significantly contribute to explore the great diversity of 
individual toxicological response, and making possible to 
better understand their causal consequences at the population 
and community levels. It may rely on both biological 
individuality and population knowledge to provide a 
customized assessment of an ecotoxicological situation.  

One of the goals of such precision ecotoxicology would be 
to use the ever-growing understanding of individual biology 
processes for a representative set of population sentinels to 
provide an accurate and tailored diagnosis. This strategy 
includes the use of decision-making processes supported by 
artificial intelligent tools based on the reductionist 
biomarker/signature extraction from holistic omics-driven 
investigations of the bio-indicative compartments. 

To this end, machine learning and multi-omics 
technologies revolutionize the way we acquire and process 
data. Such artificial intelligence algorithms dissect the big data 
corpus to learn their structure and associations within, often 
without the need of specific knowledge on processes that 
generates them, and allow an unprecedented system-level 
view of any organism. Using pertinent environmental and 
toxicological descriptors integrated as metadata, this 
innovative approach may rapidly support the development of 
operational tools for environmental diagnostic (Kim & 
Tagkopoulos 2018). However, there is also still a clear need 
for methods and disruptive concept for processing, 
normalizing and integrating the volume of heterogeneous 
multi-omics data to a cohesive corpus that can be used as a 
training grounds from further analyses.  

6.3	Recent	expansion	of	epigenomics	for	ecotoxicology	

Epigenomics constitute the next frontier for understanding 
how mechanisms of temporal and spatial control of gene 
activity (through DNA methylation and histone modification 
processes, for example) operate during adaptive responses to 
external stimuli. Most importantly, since epigenetic marks 
constitute dynamic and potentially reversible modifications, 
they represent outstanding candidates for developing fast and 
sensible bio-monitoring programs in a diverse environmental 
field such as ecotoxicology (Asselman et al., 2016). 
Nevertheless, the lack of epigenetic knowledge in ecologically 
and environmentally relevant organisms has hampered the 
application of these tools in a broader range of ecology.	
Fortunately, that scenario is now changing thanks to the 
growing availability of complete reference genome sequences 
along with the development and democratisation of high-
throughput DNA sequencing and adapted bioinformatic 
pipelines. 

6.4	Clonal	and	toxicological	diversity	hidden	in	each	
singular	bloom	

One key specificity of the ecotoxicological investigation 
of cyanobacterial blooms consists in the fact that these 
biological vectors of toxicity can produce a very large set of 
bio-active components, a sort of which being potent toxicants. 
As the second side of the same coin, the ecotoxicological 
evaluation of cyanobacterial proliferation event may basically 
begin by the parallel evaluation of the chemical diversity of 
the produced metabolites (both in term of family of 
components and of chemical variants within the same family), 
in order be able to identify the chemical source of the observed 
adverse effects on exposed organisms. The synthesis of these 
various bio-active components is orchestrated under genomic 
control, and the genotypes of the cyanobacterial cells that 
constitute a natural bloom being often hyper-variable, the 
production of some specific cyanotoxin can not be deduced 
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from a simple taxa identification and require an expert 
characterization by genomics, metabolomics, toxicology or 
both approaches (Kim Tiam et al., 2019). 

So far, the consensual list of potent cyanotoxins (Janssen 
2019) comprises a few molecular families, including 
microcystins, cylindropsermopsins, anatoxins-a, anatoxins-
a(s) and saxitoxins (for freshwater cyanobacteria), but, other 
bio-active compounds families, such as anabaenopeptins or 
cyanopeptolins, are suspected to be also very toxic and 
represent potential emerging toxins, that could soon enrich the 
cyanotoxin list. However, for some technical restrictions (such 
as the availability of reference material and purified 
molecules) the toxicological status of these compounds 
remains an open debate (Schwarzenberger et al., 2010; Lenz 
et al., 2019). In addition, in our hand the toxicological 
investigation of different chemotypes of cyanobacteria clonal 
cultures shows that some strains that do not produce any 
known cyanotoxins, but that produce many other various 
metabolites, can induce as important metabolite dysregulation 
than a microcystin-producing strain on medaka chronically 
exposed by balneation (Le Manach et al. 2018). This 
observation suggests that various still-unidentified 
components produced by cyanobacteria may constitute a 
serious environmental hazard that remains to be characterized. 

6.5	Need	for	technical	platforms	and	operational	
pipelines	for	the	use	of	omics	in	environmental	
monitoring	

The ability to generate high-throughput omics data and to 
build intelligent systems based on large-scale data and 
convoluted knowledge has revolutionized the way we conduct 
modern biology. It has been suggested that the various omics 
modalities, such as transcriptomics, proteomics, 
metabolomics, and epigenomics, may be used to augment 
traditional methods, or may be combined with other next-
generation technologies to address limitations and provide a 
better characterization of the chemical risk (Van Agellen et al., 
2010). However, since then, progresses for the omics in 
environmental risk assessment have been relatively slow 
perhaps compared to other societal applications, but we must 
not forget about the technological advancements performed in 
the recent years and the new knowledge that we have gained. 
Recent prospectives have proposed a general path forward for 
incorporating omics data into an environmental monitoring 
framework (Martynuik 2018; Sauer et al., 2017). To this end, 
the community must first establish Good Laboratory Practices 
(GLPs), Standard Operating Procedures (SOPs), and a 
consensus on how to best process and store data. 
Bioinformatics and statistical tools also need to be 
standardized, and entire pipelines, from the laboratory bench 
to quantitative conclusions, need to be packaged and made 
distributable. But this is no easy task - credible use of these 

technologies will require massive efforts toward validation 
and standardization. 

 

7.	Conclusions	

During the last decade, the proof of principle of omics 
technologies has been performed in terms of potential 
application to environmental toxicology, specifically the 
assessment of environmental pollution impacts in non-model 
organisms. Omics advances in ecotoxicological studies not 
only generate new knowledge regarding mechanisms of 
toxicity and environmental effect, improving the relevance 
and immediacy of laboratory toxicological assessment, but 
can also provide a new paradigm for ecotoxicology by linking 
ecological models to mechanism-based, systems biology 
approaches. 

Increasing the use of omics technology in chemical risk 
assessment and environmental monitoring may now require to 
reconsider the way we generate, collect, organize and treat 
ecotoxicological data, and are set to transform the process of 
decision-making for environmental protection taking 
advances of artificial intelligence technology. 
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