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LOCAL L p NORMS OF SCHR ÖDINGER EIGENFUNCTIONS ON S 2

On the canonical 2-sphere and for Schrödinger eigenfunctions, we obtain a simple geometric criterion on the potential under which we can improve, near a given point and for every p = 6, Sogge's estimates by a power of the eigenvalue. This criterion can be formulated in terms of the critical points of the Radon transform of the potential and it is independent of the choice of eigenfunctions.

Introduction

The purpose of this work is to study high frequency asymptotics of eigenfunctions to the Schrödinger operator on the 2-sphere (1)

S 2 := (x 1 , x 2 , x 3 ) ∈ R 3 : x 2 1 + x 2 2 + x 2 3 = 1 . We endow S 2 with the Riemannian metric g 0 induced by the Euclidean metric on R 3 . In that geometric context and given an element V ∈ C ∞ (S 2 , R), there exists an orthonormal basis [START_REF] Zworski | Semiclassical analysis[END_REF]Th. 14.7] of L 2 (S 2 , dυ g 0 ) made of solutions to [START_REF] Besse | Manifolds All of Whose Geodesics Are Closed[END_REF] -∆ g 0 ψ λ + V ψ λ = λ 2 ψ λ , λ 2 ∈ R, where ∆ g 0 is the Laplace-Beltrami operator and dυ g 0 is the Riemannian volume, both induced by g 0 . By elliptic regularity, solutions to [START_REF] Besse | Manifolds All of Whose Geodesics Are Closed[END_REF] are smooth [62, § 14.3] and a classical Theorem of Sogge [START_REF] Sogge | Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds[END_REF] states that, for every 2 ≤ p ≤ +∞, there exists C p > 0 such that, for any solution (ψ λ , λ) to (2),

(3)

ψ λ L p (S 2 ) ≤ C p (1 + |λ|) σ 0 (p) ψ λ L 2 (S 2 ) ,
where

1 σ 0 (p) := max 1 4 - 1 2p , 1 2 - 2 p .
The critical exponent for which both quantities in the maximum coincide is given by p c = 6.

Recall that Sogge's result can be extended to O(λ)-quasimodes of -∆ g 0 as solutions to [START_REF] Besse | Manifolds All of Whose Geodesics Are Closed[END_REF] are -see also [START_REF] Koch | Semiclassical L p estimates[END_REF]. In the case where V ≡ 0, these upper bounds are optimal using appropriate sequences of spherical harmonics [START_REF] Sogge | Problems related to the concentration of eigenfunctions, Journés équations aux dérivées partielles[END_REF]. However, for generic sequences [START_REF] Van Der Kam | L ∞ -norms and quantum ergodicity on the sphere[END_REF][START_REF] Zelditch | Local and global analysis of eigenfunctions[END_REF][START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF] or for families satisfying certain extra invariance properties [START_REF] Brooks | L p norms of eigenfunctions on regular graphs and on the sphere[END_REF], these bounds can drastically be improved when V ≡ 0.

Our aim is to show that the presence of a potential allows to improve (3) away from certain critical geodesics and for any sequence of eigenfunctions. In order to state our results, 1 The case p = ∞ is a consequence of the local Weyl law [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF].

1
we introduce the space of oriented closed geodesics G(S 2 ) of the sphere. By identifying each oriented closed geodesic with an oriented plane of R 3 , G(S 2 ) is diffeomorphic to S 2 . Through this identification, G(S 2 ) ≃ S 2 is endowed with the symplectic structure induced by the one on the cotangent bundle T * S 2 [2, p. 58]. We also define the Radon transform of the potential V :

R(V ) : γ ∈ G(S 2 ) → 1 2π 2π 0 V (γ(s))ds ∈ R,
which belongs to C ∞ (G(S 2 )). Thanks to the symplectic structure on G(S 2 ), one can define its Hamiltonian vector field X V . We denote its critical points by

Crit(R(V )) := γ ∈ G(S 2 ) : D γ R(V ) = 0 = γ ∈ G(S 2 ) : X V (γ) = 0 .
Observe that R(V ) is always an even function on G(S 2 ). In particular, it can be identified with a function on RP 2 and it has thus at least 6 critical points on G(S 2 ) by Morse inequalities. In fact, Guillemin showed [START_REF] Guillemin | The Radon transform on Zoll surfaces[END_REF] that

R : C ∞ (S 2 ) → C ∞ even (G(S 2 )) ≃ C ∞ (RP 2
) is a surjective map whose kernel is equal to C ∞ odd (S 2 ). As a corollary, for a generic choice of V in the C ∞ -topology, Crit(R(V )) is a finite set. Finally, given x 0 ∈ S 2 , we set

Γ x 0 := γ ∈ G(S 2 ) : x 0 ∈ γ .
Our main result reads as follows Theorem 1.1. Let x 0 ∈ S 2 such that [START_REF] Blair | Refined and Microlocal Kakeya-Nikodym Bounds of Eigenfunctions in Higher Dimensions[END_REF] Crit(R(V )) ∩ Γ x 0 = ∅, and

(5) R(V )| Γx 0 is a Morse function.

Then, there exists r 0 > 0 such that, for every 2 ≤ p ≤ +∞, one can find C x 0 ,p > 0 so that, for any solution (ψ λ , λ) to (2),

ψ λ L p (Br 0 (x 0 )) ≤ C x 0 ,p (log(2 + |λ|)) ε(p) (1 + |λ|) σ 0 (p)-δ(p) ψ λ L 2 (S 2 ) ,
where B r 0 (x 0 ) is the closed (geodesic) ball of radius r 0 centered at x 0 and where, for Remark 1.2. Given a point x 0 , we note that (4) and ( 5) are satisfied for an open and dense subset U x 0 of potentials in C ∞ (S 2 , R) (endowed with its natural Fréchet topology). Assumption [START_REF] Blair | Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions[END_REF] implies that the Hamiltonian vector field is transverse to Γ x 0 except at finitely many points. Combined with (4), one has that, at the points where X V (γ) is tangent to Γ x 0 , the tangency is of order 1. See Remark 4.9 for an interpretation of these assumptions in terms of Lagrangian tori.

Remark 1.3. A direct Corollary of Theorem 1.1 is that, if K is a compact subset of S2 such that, for every x 0 ∈ K, (4) and ( 5) hold, then, for any solution (ψ λ , λ) to ( 2), ( 6)

ψ λ L p (K) ≤ C K,p log(2 + |λ|) ε(p) (1 + |λ|) σ 0 (p)-δ(p) ψ λ L 2 (S 2
) .

Yet, our main result does not allow to take K = S 2 as Crit(R(V )) cannot be empty.

This Theorem yields a local improvement for p = 6 over Sogge's upper bounds near certain points of S 2 which are independent of the sequence (ψ λ ) λ under consideration. The condition on these points are of purely dynamical nature and they depend on the subprincipal symbol of our operator. It may happen that Sogge's upper bounds are saturated for these operators but this can only occur away from points x 0 verifying (4) and [START_REF] Blair | Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions[END_REF]. The critical case p c = 6 could maybe be treated using similar ideas and the methods of Blair and Sogge to handle this exponent on nonpositively curved surfaces [START_REF] Sogge | Improved critical eigenfunction estimates on manifolds of nonpositive curvature[END_REF][START_REF] Blair | Logarithmic improvements in L p bounds for eigenfunctions at the critical exponent in the presence of nonpositive curvature[END_REF]. Yet, this would probably require a much more delicate analysis than the one presented in this article.

Our hypothesis (4) and ( 5) are reminiscent from assumptions that appear when studying joint eigenfunctions of quantum completely integrable systems -see [48, §1] for a definition. For instance, the critical points involved in hypothesis (4) were used to obtain lower bounds by Toth in [START_REF] Toth | Eigenfunction localization in the quantized rigid body[END_REF] and by Toth-Zelditch in [START_REF] Toth | Riemannian manifolds with uniformly bounded eigenfunctions[END_REF][START_REF] Toth | L p norms of eigenfunctions in the completely integrable case[END_REF]. Similarly, assumption [START_REF] Blair | Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions[END_REF] was recently used by Galkowski-Toth [START_REF] Galkowski | Pointwise bounds for joint eigenfunctions of quantum completely integrable systems[END_REF] and by Tacy [START_REF] Tacy | L p estimates for joint quasimodes of semiclassical pseudodifferential operators whose characteristic sets have kth order contact[END_REF] to study the growth of L ∞ -norms of joint eigenfunctions. The main differences with these last references are that we handle every p = 6 and that we consider here eigenfunctions of the single operator -∆ g 0 + V . In fact recall from [24, Lemma 1] (see also [START_REF] Weinstein | Asymptotics of eigenvalue clusters for the Laplacian plus a potential[END_REF]) that there exists a unitary pseudodifferential operator U of order 0 such that (7)

U -1 (-∆ g 0 + V ) U = -∆ g 0 + V ♯ ,
where [∆ g 0 , V ♯ ] = 0 and where the principal symbol of V ♯ is R(V ). In other words, -∆ g 0 + V is the sum of two commuting pseudodifferential operators H 1 := U∆ g 0 U -1 and H 2 := UV ♯ U -1 . In particular, it is a quantum completely integrable operator in the sense of [48, §1] whenever X V does not vanish on a dense and open subset of finite complexity (say outside finitely many points). Hence, upper bounds on L p norms of solutions to (2) which are joint eigenfunctions of ( H 1 , H 2 ) would follow from the results in [START_REF] Galkowski | Pointwise bounds for joint eigenfunctions of quantum completely integrable systems[END_REF][START_REF] Tacy | L p estimates for joint quasimodes of semiclassical pseudodifferential operators whose characteristic sets have kth order contact[END_REF] in the range p > 6. However, in Theorem 1.1, we only suppose p = 6 and we do not make any assumption on the fact that ψ λ is a joint eigenfunction 2 of ( H 1 , H 2 ) which makes the analysis slightly more delicate. Despite that, Theorem 1.1 shows that there is room for (weaker) polynomial improvements on (3) even for such eigenfunctions and even for p < 6.

In [START_REF] Tacy | L p estimates for joint quasimodes of semiclassical pseudodifferential operators[END_REF], Tacy obtained better estimates up to p = 2 but she made stronger assumptions than ours on the sequence of eigenfunctions. Indeed, when restricted to our framework, the main result from this reference applies to sequences of joint eigenfunctions that concentrate away from the critical points of R(V )| Γx 0 .

1.1. Earlier and related results. The upper bounds (3) are in fact valid in the general framework of compact Riemannian surfaces and, up to modifying the exponent σ 0 (p), they remain true in higher dimensions [START_REF] Sogge | Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds[END_REF]. Trying to improve them using the geometry of the manifold has been a classical topic in global harmonic analysis over the last thirty years.

• Flat tori. In the case of flat tori and where V ≡ 0, this was achieved by Cooke [START_REF] Cooke | A Cantor-Lebesgue Theorem in two dimensions[END_REF] and Zygmund [START_REF] Zygmund | On Fourier coefficients and transforms of functions of two variables[END_REF] in dimension 2 while the higher dimensional case was pursued by Bourgain [START_REF] Bourgain | Eigenfunctions bounds for the Laplacian on the n-torus[END_REF] and by Bourgain-Demeter [START_REF] Bourgain | The proof of the l 2 decoupling conjecture[END_REF]. In that case, one can use the arithmetic structure of the torus to get polynomial improvements over [START_REF] Blair | Refined and microlocal Kakeya-Nikodym bounds for eigenfunctions in two dimensions[END_REF]. See also [START_REF] Wang | Eigenfunction Localization for the 2D Periodic Schrodinger Operator[END_REF] for the case of Schrödinger operators on 2-dimensional tori. To the best of the author's knowledge, flat tori is almost the only geometric framework where one can get global polynomial improvements without any further assumptions on the sequence of eigenfunctions (see below for the case of joint eigenfunctions). We can also mention [START_REF] Zhang | On Fourier restriction type problems on compact Lie groups[END_REF][START_REF] Zhang | Schrödinger equations on compact globally symmetric spaces[END_REF] for recent improvements on compact Lie groups. • Negatively curved manifolds. Another important class of examples where one expects improvements are negatively curved manifolds. For p = ∞, Bérard showed how to get logarithmic improvements [START_REF] Bérard | On the wave equation on a compact Riemannian manifold without conjugate points[END_REF]. This logarithmic gain was extended to the range p > p c by Hassell and Tacy [START_REF] Hassell | Improvement of eigenfunction estimates on manifolds of nonpositive curvature[END_REF] and to manifolds without conjugate points by Bonthonneau [START_REF] Bonthonneau | The θ Function and the Weyl Law on Manifolds Without Conjugate Points[END_REF]. Still on negatively curved manifolds and for p ≤ p c , we obtained together with Hezari a logarithmic gain along generic sequences of eigenfunctions [START_REF] Hezari | L p norms, nodal sets and quantum ergodicity[END_REF]. In a series of works related to Kakeya-Nikodym norms [START_REF] Sogge | Improved critical eigenfunction estimates on manifolds of nonpositive curvature[END_REF][START_REF] Blair | Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions[END_REF][START_REF] Blair | Logarithmic improvements in L p bounds for eigenfunctions at the critical exponent in the presence of nonpositive curvature[END_REF], Blair and Sogge proved logarithmic gains (with a slightly worst exponent) in this geometric context without any restriction on the sequence of eigenfunctions. • Arithmetic eigenfunctions. A natural way to look for improvements over (3) is to consider families of eigenfunctions that verify extra symmetries, for instance joint eigenfunctions of the Laplacian and of a family of commuting operators. In the case of a compact arithmetic surface, Iwaniec and Sarnak considered joint eigenfunctions of the Laplacian and of Hecke operators. For such sequences of eigenfunctions, they proved a polynomial improvement in the case of the L ∞ -norm [START_REF] Iwaniec | L ∞ -norms of eigenfunctions of arithmetic surfaces[END_REF]. In the case of the sphere, Brooks and Le Masson considered the related problem of joint eigenfunctions of ∆ g 0 and the averaging operator for a finitely-generated free algebraic subgroup of SO(3) [START_REF] Brooks | L p norms of eigenfunctions on regular graphs and on the sphere[END_REF]. For such eigenfunctions, they obtained the same logarithmic improvement as Hassell and Tacy in the negatively curved case. On a rank r symmetric space of dimension n, Sarnak improved the bound on the L ∞ -norm by a polynomial factor for eigenfunctions of the full ring of differential operators [START_REF] Sarnak | Letter to Morawetz[END_REF]. This was generalized to the case of L p -norms by Marshall [START_REF] Marshall | L p norms of higher rank eigenfunctions and bounds for spherical functions[END_REF]. • Completely integrable systems. Another context (closely related to ours) is the case of joint eigenfunctions of a quantum completely integrable system. Toth and Zelditch proved that such eigenfunctions cannot have their L p norms uniformly bounded except in the case of flat tori [START_REF] Toth | Riemannian manifolds with uniformly bounded eigenfunctions[END_REF][START_REF] Toth | L p norms of eigenfunctions in the completely integrable case[END_REF]. See [START_REF] Zelditch | Eigenfunctions of the Laplacian on a Riemannian manifold[END_REF]Ch. 11] for a detailed discussion on joint eigenfunctions of quantum completely integrable systems. More recently, Galkowski and Toth obtained polynomial improvements on the L ∞ -bound for joint eigenfunctions of a quantum completely integrable systems [START_REF] Galkowski | Pointwise bounds for joint eigenfunctions of quantum completely integrable systems[END_REF] and Tacy proved improved Sogge's bounds for joint eigenfunctions of general families of semiclassical pseudodifferential operators [START_REF] Tacy | L p estimates for joint quasimodes of semiclassical pseudodifferential operators[END_REF][START_REF] Tacy | L p estimates for joint quasimodes of semiclassical pseudodifferential operators whose characteristic sets have kth order contact[END_REF]. • Local improvements. Sogge and Zelditch considered the problem from a more local perspective as we are doing here. They proved that, if, for a given point x 0 on a Riemannian manifold (M, g), the set of covectors ξ ∈ S * x 0 M that come back to x 0 in finite time has zero measure, then one can improve locally near x 0 the upper bound on the L ∞ -norm by a o(1) term [START_REF] Sogge | Riemannian manifolds with maximal eigenfunction growth[END_REF]. This was based on improvements on the remainder in the local Weyl law. See also [START_REF] Safarov | Asymptotics of a spectral function of a positive elliptic operator without a non trapping condition[END_REF] for earlier related results of Safarov. This result was later extended by Sogge, Toth and Zelditch under the weaker assumptions that the set of recurrent co-vectors at x 0 has 0-measure3 [START_REF] Sogge | About the blowup of quasimodes on Riemannian manifolds[END_REF]. We also refer to [START_REF] Sogge | Focal points and sup-norms of eigenfunctions[END_REF] for further developments of this approach when the metric is analytic and to [START_REF] Zelditch | Eigenfunctions of the Laplacian on a Riemannian manifold[END_REF]Ch. 10] for a detailed review. Related to these works, Galkowski and Toth showed how to relate precisely the growth of the L ∞ -norm near a point x 0 to the semiclassical measure restricted to the (geodesic) flow-out of the fiber S *

x 0 M [START_REF] Galkowski | Eigenfunction scarring and improvements in L ∞ growth[END_REF] -see also [START_REF] Galkowski | Defect measures of eigenfunctions with maximal L ∞ growth[END_REF]. More precisely, they proved that, if the n-dimensional Hausdorff measure of the support of this restriction is 0, then one can get a o(1)improvement on the growth of L ∞ -norm near x 0 .

• Using Gaussian beams. This local approach was further improved by Canzani-Galkowski in a series of work using Gaussian beams [START_REF] Canzani | Eigenfunction concentration via geodesic beams[END_REF][START_REF] Canzani | Growth of high L p norms for eigenfunctions: an application of geodesic beams[END_REF]. In [14, Th. 1], they showed how to use this notion in order to give quantitative and at most logarithmic improvements on the growth of L p -norms near a point x 0 when the conjugate points to x 0 do not pass too close to x 0 . Among other things, they recover in that manner the results of Bérard, Hassell-Tacy and Bonthonneau on manifolds without conjugate points. Besides that, they manage to deduce from their main results local improvements near x 0 on the growth of L p norms (for p > p c ) under quantitative assumptions on the geodesics passing through the point x 0 as in the works of Sogge, Toth and Zelditch. Finally, they also applied their main results to certain integrable (non-periodic) geometries on S 2 and obtain logarithmic improvements away from certain critical points when p = ∞ [13, Th. 5]. As in our framework, their result holds for the eigenfunctions of a single operator.

1.2. Strategy of proof. In the range p > 6, the proof is based on an argument to study the growth of L p norms that was used by Hezari and the author in [START_REF] Hezari | L p norms, nodal sets and quantum ergodicity[END_REF] and further improved by Sogge in [START_REF] Sogge | Localized L p -estimates of eigenfunctions: a note on an article of Hezari and Rivière[END_REF]. It consists in relating the growth of L p -norms to the growth of ( 8)

Br(x)
|ψ λ (y)| 2 dυ g 0 (y) as λ → +∞ and r → 0 + (in a way that depends on λ). For 2 ≤ p < 6, we rather make use of results due to Blair and Sogge [START_REF] Sogge | Kakeya-Nikodym averages and L p -norms of eigenfunctions[END_REF][START_REF] Blair | Refined and microlocal Kakeya-Nikodym bounds for eigenfunctions in two dimensions[END_REF][START_REF] Blair | Refined and Microlocal Kakeya-Nikodym Bounds of Eigenfunctions in Higher Dimensions[END_REF] to control L p -norms in terms of Kakeya-Nikodym averages around closed geodesics. See also [START_REF] Bourgain | Geodesic restrictions and L p -estimates for eigenfunctions of Riemannian surfaces[END_REF] for earlier related results of Bourgain. Then, we obtain rough bounds on these averages in terms of [START_REF] Bourgain | Eigenfunctions bounds for the Laplacian on the n-torus[END_REF]. The results from these references are briefly recalled (and adapted to Schrödinger eigenfunctions) in Sections 2 and 3. Up to smoothing the characteristic function of the balls, these local quantities can be interepreted in terms of Wigner distributions (or microlocal lifts). In particular, as was for instance observed by Shnirelman in his seminal work on quantum ergodicity [START_REF] Shnirelman | Ergodic properties of eigenfunctions[END_REF][START_REF] Shnirelman | Statistical properties of eigenfunctions[END_REF], these distributions verify an almost invariance property by the geodesic flow. See for instance [36, Lemma 2, Eq. ( 10)]. This yields an upper bound of order O(r) on ( 8) at least if r does not go too fast to 0 (say r ≫ λ -1

2 ). This is valid in a quite general framework. Yet, this is not sufficient to get an improvement over Sogge's upper bound. In order to implement this approach, one needs to have upper bounds of order O(r 1+α ) for some α > 0, or at least O(δ(r)r) with δ(r) → 0 as r → 0 + .

As pointed out by Sarnak in [START_REF] Sarnak | Letter to Morawetz[END_REF], a natural manner to look for improvements over Sogge's upper bounds is to consider operators commuting with the Laplacian and to study the L p norm of joint eigenfunctions. These joint eigenfunctions enjoy more symmetries which may lead to improvements. This was for instance the strategy followed in [START_REF] Iwaniec | L ∞ -norms of eigenfunctions of arithmetic surfaces[END_REF][START_REF] Brooks | L p norms of eigenfunctions on regular graphs and on the sphere[END_REF][START_REF] Marshall | L p norms of higher rank eigenfunctions and bounds for spherical functions[END_REF][START_REF] Galkowski | Eigenfunction scarring and improvements in L ∞ growth[END_REF][START_REF] Tacy | L p estimates for joint quasimodes of semiclassical pseudodifferential operators[END_REF][START_REF] Tacy | L p estimates for joint quasimodes of semiclassical pseudodifferential operators whose characteristic sets have kth order contact[END_REF]. Here, we are not a priori in this situation as we consider eigenfunctions of the single operator -∆ g 0 + V -see the discussion following Theorem 1.1. However, the periodicity of the geodesic flow and the presence of the potential imply the existence of an extra invariance property besides the one by the geodesic flow. More precisely, in [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF][START_REF] Macià | Observability and quantum limits for the Schrödinger equation on the sphere[END_REF], together with Macià, we showed that Schrödinger eigenfunctions satisfy an extra invariance property by the Hamiltonian flow of R(V ) which is reminiscent from the properties of joint eigenfunctions. This was achieved using Weinstein averaging method [START_REF] Weinstein | Asymptotics of eigenvalue clusters for the Laplacian plus a potential[END_REF]. Using this extra property, we will be able to get an upper bound of order O(r near points verifying (4) and ( 5). This will be the content of Section 4. This additional invariance will be the reason for the polynomial improvement of Theorem 1.1. As we shall see in our proof 4 , the reason for being limited to p = 6 comes from this exponent 3/2 and, in dimension 2, any bound on (8) of order O(r 1+α ) with α > 1/2 would give a local improvement over Sogge's upper bound (3) even for p = 6 (using the arguments of § 2).

Reduction to L 2 localized estimates for p > 6

In this section, we revisit an argument due to Sogge 5 in order to relate L p estimates to localized L 2 -estimates in small balls. This argument will allow us to get our upper bounds in the range 6 < p ≤ ∞. The proof given in [START_REF] Sogge | Localized L p -estimates of eigenfunctions: a note on an article of Hezari and Rivière[END_REF] was for Laplace eigenfunctions and we verify that it can be adapted to Schrödinger eigenfunctions.

Remark 2.1. Due to our L 2 -localized estimates in Section 4, we could as well work only with p = ∞ and conclude by interpolation with the case p = 6 in ( 3). Yet, we write things down for general p in order to identify the quantitative improvements one would need to reach the case p = 6. See Equation ( 18) below.

Let ψ λ be a solution to (2) that we suppose to be L 2 -normalized. In the following, we suppose that λ 2 is large enough so that we can pick λ > 0. Following [40, §2] and for j ∈ Z + , we denote by E j the spectral projector onto the eigenspace of -∆ g 0 with eigenvalue λ j := j(j + 1). We write

(9) ( -∆ g 0 -λ)ψ λ = -( -∆ g 0 + λ) -1 V ψ λ .
In particular, one has

(10) ( -∆ g 0 -λ)ψ λ L 2 =   j∈Z + 1 (λ + λ j ) 2 E j (V ψ λ ) 2   1 2 ≤ 1 λ V ψ λ L 2 ≤ V L ∞ λ .
We also fix a nonnegative ρ ∈ S(R) satisfying ( 11)

ρ(0) = 1 and supp(ρ) ⊂ [-1, 1],
where ρ is the Fourier transform of ρ. For λ > 0 and 0 < r ≤ 1, setting

T λ,r := 1 π +∞ -∞ r -1 ρ(r -1 t)e itλ cos(t -∆ g 0 )dt, one finds T λ,r = ρ r λ --∆ g 0 + ρ r λ + -∆ g 0 .
The main result of [START_REF] Sogge | Localized L p -estimates of eigenfunctions: a note on an article of Hezari and Rivière[END_REF]Eq. (3.1)] is that, for every p > 2 and for every f ∈ L 2 (S 2 ), ( 12)

T λ,r f L p (S 2 ) ≤ C p r -1 2 λ σ 0 (p) f L 2 (S 2 ) , λ ≥ 1, λ -1 ≤ r ≤ π 2 ,
where the constant C p is uniform for (λ, r) in the above range. Recall now from Huygens principle that the Schwartz kernel cos(t -∆ g 0 )(x, y) vanishes if the geodesic distance between x and y is > t. In particular, the Shwartz kernel T λ,r (x, y) of T λ,r vanishes if d g 0 (x, y) > r thanks to our assumptions [START_REF] Brooks | L p norms of eigenfunctions on regular graphs and on the sphere[END_REF] on the support of ρ. Gathering these informations, Sogge observed that, for every p > 2 and for every f ∈ L 2 (S 2 ), ( 13)

T λ,r f L p (Br (x 0 )) ≤ C p r -1 2 λ σ 0 (p) f L 2 (B 2r (x 0 )) , λ ≥ 1, λ -1 ≤ r ≤ π 2 ,
5 See also [START_REF] Hezari | L p norms, nodal sets and quantum ergodicity[END_REF] for earlier related arguments of Hezari and the author using semiclassical methods [62, §10].

where the constant C p is uniform for (λ, r) in the above range and for x 0 ∈ S 2 . This will be referred as the Sogge's local L p -estimate. Fix now some compact subset K of S 2 . We can cover K by finitely many balls (B r (x l )) l=1,...,N (r) of radius r and centered at points inside K. We require that the number N(r) is of order ∼ r -2 and that each point of K is contained in at most C 0 balls of the covering (B 2r (x l )) l=1,...,N (r) . Here C 0 > 0 is independent of r -see for instance [START_REF] Colding | Lower bounds for nodal sets of eigenfunctions[END_REF]Lemma 2]. Recall that we have in mind to apply this result when K = B r 0 (x 0 ) is a fixed ball. Hence, one has, for 2 < p < ∞ and for f in L 2 (S 2 ),

f p L p (K) ≤ 2 p-1   N (r) l=1 T λ,r f p L p (Br (x l )) + (T λ,r -Id)f p L p (S 2 )   ≤ C p r -p 2 λ σ 0 (p)p N (r) l=1 f p L 2 (B 2r (x l )) + C p (T λ,r -Id)f p L p (S 2 ) ≤ C p C 0 r -p 2 λ σ 0 (p)p max 1≤l≤N (r) f p-2 L 2 (B 2r (x l )) f 2 L 2 (S 2 ) + C p (T λ,r -Id)f p L p (S 2 ) .
Hence, one finds Lemma 2.2. Let K be a compact subset of S 2 and let (B r (x l )) l=1,...,N (r) be a cover of K with the above properties. Then, one has

f L p (K) ≤ C ′ p r -1 2 λ σ 0 (p) max 1≤l≤N (r) f 1-2 p L 2 (B 2r (x l )) f 2 L 2 (S 2 ) + (T λ,r -Id)f L p (S 2 ) . (14) 
This upper bound is valid uniformly in the range λ ≥ 1 and λ -1 ≤ r ≤ π 2 . Similarly, in the case of the L ∞ norm, we would get [START_REF] Colding | Lower bounds for nodal sets of eigenfunctions[END_REF] f

L ∞ (K) ≤ Cr -1 2 λ 1 2 max 1≤l≤N (r) f L 2 (B 2r (x l )) + (T λ,r -Id)f L ∞ (S 2 ) .
Note that so far we did not use the eigenvalue equation ( 9) and this is valid for any f in L 2 (S 2 ). We will now specify these results in the case where f = ψ λ . We begin with the remainder term:

Proposition 2.3. Let 2 < p ≤ ∞ and let 0 < β < 1.
Then, there exists a constant C > 0 such that, for any solution ψ λ to (2) with λ ≥ 1 and for any λ

-β ≤ r ≤ π 2 , one has (T λ,r -Id) ψ λ L p (S 2 ) ≤ C(rλ) σ 0 (p) ψ λ L 2 (S 2 ) ,
Regarding Lemma 2.2 which already used the Sogge's local L p -estimate, this proposition is the additional ingredient we need to take into account the terms coming from the potential V . Gathering this Proposition with our estimates ( 14) and ( 15) on f L p (K) , we find that, for λ ≥ 1, λ -β ≤ r ≤ π 2 (with β < 1), for any 2 < p ≤ +∞ and for any L 2 -normalized solution ψ λ to (2), ( 16)

ψ λ L p (K) ≤ C p r -1 2 λ σ 0 (p) max 1≤l≤N (r) ψ λ 1-2 p L 2 (B 2r (x l )) + (rλ) σ 0 (p) .
The involved constants C p > 0 depend only on V , K, ρ, β and p. Hence, as in [START_REF] Hezari | L p norms, nodal sets and quantum ergodicity[END_REF][START_REF] Sogge | Localized L p -estimates of eigenfunctions: a note on an article of Hezari and Rivière[END_REF], we have reduced the problem of estimating the L p norm of Schrödinger eigenfunctions to determining bounds on L 2 -localized norms,

B 2r (x l ) |ψ λ (x)| 2 dυ g 0 (x), as λ → +∞ with r verifying λ -β ≤ r ≤ π 2 . (17) 
In particular, if, for some 0 < α ≤ 1, we were able to bound [START_REF] Cooke | A Cantor-Lebesgue Theorem in two dimensions[END_REF] uniformly (in terms of λ) by Cr 1+α , then we would be able to get an improved upper bound inside K of the form

ψ λ L p (K) ≤ C p,K r α 2 -1+α p λ σ 0 (p) + (rλ) σ 0 (p) , in the range (18) α 2 - 1 + α p > 0 ⇐⇒ p > 2 1 + 1 α .
However, as explained in [40, §4], one cannot expect such improved bounds on the sphere when V ≡ 0 thanks to the example of the spherical harmonics. In section 4, we shall see how to get locally improved bounds on (17) when V does not identically vanish. Before going to this question, we give the proof of Proposition 2.3.

Proof. The ideas of the proof are standard (see e.g. [START_REF] Sogge | Localized L p -estimates of eigenfunctions: a note on an article of Hezari and Rivière[END_REF]) and we detail them for the sake of completeness. Considering a solution to (9) and letting 2 ≤ p ≤ +∞, one has

(T λ,r -Id) ψ λ L p (S 2 ) ≤ j∈Z + E j (T λ,r -Id) E j ψ λ L p (S 2 ) ≤ j∈Z + (|ρ(r(λ -λ j )) -1| + |ρ(r(λ + λ j ))|) E j (ψ λ ) L p (S 2 ) .
As ρ belongs to the Schwartz class, we find using Sogge's estimate (3) that, for every N ≥ 1, there exists C N > 0 such that, for λ ≥ 1 and r ≥ λ -β ,

j∈Z + |ρ(r(λ + λ j ))| E j (ψ λ ) L p (S 2 ) ≤ C N (1 + rλ) -N ψ λ L 2 (S 2 ) .
Using one more time Sogge's estimate, we deduce that

(19) (T λ,r -Id) ψ λ L p (S 2 ) ≤ j∈Z + |ρ(r(λ -λ j )) -1| λ σ 0 (p) j E j (ψ λ ) L 2 (S 2 ) +C N (1+rλ) -N ψ λ L 2 (S 2 ) .
We now fix some δ ≥ r so that δ ≤ rλ and we split the sum over j ∈ Z + in two parts.

On the one hand, we consider the j such that |λλ j | ≤ δ/r and on the other hand, the integers such that |λλ j | > δ/r. Recall that λ 2 j = j(j + 1). Hence, the number of terms in the first sum is O(δ/r) and one is left with

(T λ,r -Id) ψ λ L p (S 2 ) ≤ j∈Z + :|λ-λ j |>δ/r |ρ(r(λ -λ j )) -1| λ σ 0 (p) j E j (ψ λ ) L 2 (S 2 ) + C δ 2 r λ σ 0 (p) + C N (1 + rλ) -N ψ λ L 2 (S 2 ) .
For the remaining sum, we can finally make use of the eigenvalue equation [START_REF] Bourgain | Geodesic restrictions and L p -estimates for eigenfunctions of Riemannian surfaces[END_REF]. It implies the existence of some constant C ρ,V > 0 depending only on ρ and V such that

j∈Z + :|λ-λ j |>δ/r |ρ(r(λ -λ j )) -1| λ σ 0 (p) j E j (ψ λ ) L 2 (S 2 ) ≤ C ρ,V j∈Z + :|λ-λ j |>δ/r λ σ 0 (p) j |λ 2 -λ 2 j | ψ λ L 2 (S 2 ) .
As σ 0 (p) varies between 0 (for p = 2) and 1/2 (for p = ∞), this last quantity is finite and it remains to evaluate ( 20)

j∈Z + :|λ-λ j |>δ/r λ σ 0 (p) j |λ 2 -λ 2 j |
in terms of δ, r, λ and p. We now recall that, for X > 0, one has (1 + X) σ 0 (p) ≤ 1 + X σ 0 (p) (as σ 0 (p) ≤ 1/2). Hence, one has

j∈Z + :|λ-λ j |>δ/r λ σ 0 (p) j |λ 2 -λ 2 j | ≤ j∈Z + :|λ-λ j |>δ/r |λ -λ j | σ 0 (p) |λ 2 -λ 2 j | + j∈Z + :|λ-λ j |>δ/r λ σ 0 (p) |λ 2 -λ 2 j | ≤ 2 j∈Z + :|λ-λ j |>δ/r λ -1+ 3 2 σ 0 (p) |λ -λ j | 1+ σ 0 (p) 2 ≤ 2λ -1 4 j∈Z + :|λ- √ j(j+1)|>δ/r 1 |λ -j(j + 1)| 1+ σ 0 (p) 2 ≤ Cλ -1 4 j∈Z * + j -1-σ 0 (p) 2 .
In summary, if we suppose that r ≥ λ -β (for some β < 1), we obtain the following upper bound

(T λ,r -Id) ψ λ L p (S 2 ) ≤ C δ 2 r λ σ 0 (p) + λ -1 4 ψ λ L 2 (S 2 ) ,
where C > 0 depends on ρ, V , β and p. Recall that we supposed r ≤ δ ≤ rλ. Hence, as 0

≤ σ(p) ≤ 1 2 , we can set δ = r 1+σ 0 (p) 2 provided r ≥ λ - 2 σ 0 (p)+1
, which is ensured by our assumption r ≥ λ -β . Implementing this, we obtain the existence of a constant C ρ,V,β,p > 0 such that (T λ,r -Id)

ψ λ L p (S 2 ) ≤ C ρ,V,β,p (rλ) σ 0 (p) ψ λ L 2 (S 2 ) ,
as long as r ≥ λ -β .

Remark 2.4. In view of applications of our method to semiclassical problems, it is worth noting that the above arguments work as well for solutions to

(21) -∆ g 0 ψ λ + β λ V ψ λ = λ 2 ψ λ , ψ λ L 2 (S 2 ) = 1,
where (β λ ) λ is a given nonnegative sequence that may tend to +∞. In that case, the upper bound ( 16) becomes, for every ǫ > 0, [START_REF] Guillemin | The Radon transform on Zoll surfaces[END_REF] 

ψ λ L p (K) ≤ C p,ǫ r -1 2 λ σ 0 (p) max 1≤l≤N (r) ψ λ 1-2 p L 2 (B 2r (x l )) + (rλ) σ 0 (p) + β λ λ -1+ǫ λ σ 0 (p) .
The calculation is indeed exactly the same except for the upper bound on the size of the remainder in (20) that we need to improve. Hence, we have potentially improvements as long as6 β λ λ -1+ǫ → 0.

3. Reduction to L 2 localized estimates for p < 6 via Kakeya-Nikodym bounds

We now deal with the range 2 < p < 6 which can also be reduced to estimating similar quantities. For such p, we can make use of the results of Blair and Sogge relating the growth of L p norms for small p to Kakeya-Nikodym averages.

We let 0 ≤ χ ≤ 1 be a smooth cutoff function which is equal to 1 on [-1, 1] and to 0 outside [-2, 2]. Given x ∈ S 2 , we denote by exp x the exponential map induced by the metric g 0 and we set

χ x,r (y) := χ exp -1 x (y) r ∈ C ∞ (S 2 ).
This function is equal to 1 on B r (x) and to 0 outside B 2r (x). We fix some r 0 > 0 and some x 0 ∈ S 2 . For any normalized solution to (2), one has

-λ -2 ∆ g 0 ψ λ -ψ λ = λ -2 V ψ λ .
In particular, one can verify, using commutation rules for semiclassical pseudodifferential operators [62, § 4 and 14],

(-λ -2 ∆ g 0 -1) k (χ x 0 ,r 0 ψ λ ) = O(λ -k ), k = 1, 2. (23) 
These two assumptions are exactly the ones needed to apply [4, Th. 1.1] in dimension 2. In order to formulate this result, we denote by G(S 2 ) the set of unit length geodesic segments in S 2 and, for every r > 0 and for every γ ∈ G(S 2 ),

T r (γ) := x ∈ S 2 : d g 0 (x, γ) ≤ r .
With these conventions, the main result from [START_REF] Blair | Refined and Microlocal Kakeya-Nikodym Bounds of Eigenfunctions in Higher Dimensions[END_REF] applied to χ x 0 ,r 0 ψ λ tells us that, for 4 < p < 6, ( 24)

ψ λ L p (Br 0 (x 0 )) ≤ C p λ σ 0 (p)   sup γ∈ G(S 2 ) B 2r 0 (x 0 )∩T λ - 1 2 
(γ)

|ψ λ (x)| 2 dυ g 0 (x)   1 2 ( 6 p -1)
, and ( 25)

ψ λ L 4 (Br 0 (x 0 )) ≤ C p (log λ)λ 1 8   sup γ∈ G(S 2 ) B 2r 0 (x 0 )∩T λ - 1 2 
(γ)

|ψ λ (x)| 2 dυ g 0 (x)   1 4
, where the constants C p > 0 depend only on p. These kinds of upper bounds are referred to as Kakeya-Nikodym bounds. They were initially introduced by Bourgain [START_REF] Bourgain | Geodesic restrictions and L p -estimates for eigenfunctions of Riemannian surfaces[END_REF] and further developped by Sogge [START_REF] Sogge | Kakeya-Nikodym averages and L p -norms of eigenfunctions[END_REF][START_REF] Sogge | Improved critical eigenfunction estimates on manifolds of nonpositive curvature[END_REF] and Blair-Sogge [START_REF] Blair | Refined and microlocal Kakeya-Nikodym bounds for eigenfunctions in two dimensions[END_REF][START_REF] Blair | Refined and Microlocal Kakeya-Nikodym Bounds of Eigenfunctions in Higher Dimensions[END_REF][START_REF] Blair | Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions[END_REF][START_REF] Blair | Logarithmic improvements in L p bounds for eigenfunctions at the critical exponent in the presence of nonpositive curvature[END_REF]. One of the main objectives is to reduce (at least for small p) improvements on L p -estimates to L 2 -estimates on tubular neighborhoods of geodesics. This strategy culminated in [START_REF] Blair | Logarithmic improvements in L p bounds for eigenfunctions at the critical exponent in the presence of nonpositive curvature[END_REF] where logarithmic improvements on Sogge's L p estimates were obtained on nonpositively curved manifolds for every p ≤ p c . As we shall see below, this strategy remains efficient for integrable geometries where we can also analyze the L 2 -mass near geodesics via averaging methods. Thanks to these results, it is sufficient to derive nontrivial upper bounds on the Kakeya-Nikodym averages

B 2r 0 (x 0 )∩T λ -1 2 (γ) |ψ λ (x)| 2 dυ g 0 (x).
in order to improve locally Sogge's upper bounds [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF] in the range 4 < p < 6. By interpolation, it will automatically yields an improvement for 2 < p < 4. Finally, we can relate these quantities to the ones appearing in [START_REF] Cooke | A Cantor-Lebesgue Theorem in two dimensions[END_REF]. Indeed, we can pick 0 < β < 1/2 and we can cover B 2r 0 (x 0 ) ∩ T λ -1 2 (γ) by a family of 2r 0 r -1 balls of radius r ≥ λ -β centered on a point of γ ∩ B 2r 0 (x 0 ). Hence, one has (26)

B 2r 0 (x 0 )∩T λ -1 2 (γ) |ψ λ (x)| 2 dυ g 0 (x) ≤ 4r 0 r -1 sup x∈γ∩B 2r 0 (x 0 ) Br(x) |ψ λ (y)| 2 dυ g 0 (y) ,
which are exactly the quantities that appeared in Section 2. Hence, in both cases, we are reduced to estimating these localized L 2 -estimates.

Remark 3.1. As in Remark 2.4, we can consider solutions to [START_REF] Galkowski | Pointwise bounds for joint eigenfunctions of quantum completely integrable systems[END_REF]. One can verify that the assumption ( 23) is still verified as long as 0 ≤ β λ ≤ λ. Hence, ( 24) and ( 25) remain true in that generalized framework.

Remark 3.2. As we will only consider balls of radius r ≫ λ -1 2 , the logarithmic factor appearing in [START_REF] Hassell | Improvement of eigenfunction estimates on manifolds of nonpositive curvature[END_REF] could probably be removed following [START_REF] Blair | Refined and microlocal Kakeya-Nikodym bounds for eigenfunctions in two dimensions[END_REF].

L 2 -localized estimates using invariance by the classical flows

Thanks to ( 16), ( 24), ( 25) and ( 26), we know that proving Theorem 1.1 amounts to control uniformly the following quantity

M Br 0 (x 0 ),α,r (ψ λ ) := sup 1 r 1+α Br(x)
|ψ λ (y)| 2 dυ g 0 (y) : x ∈ B r 0 (x 0 ) , with 0 < α ≤ 1 and λ -β ≤ r that goes to 0 as λ → +∞. The following Proposition answers this problem and it is the main new technical result of the article: Proposition 4.1. Let x 0 be a point in S 2 verifying the assumption of Theorem 1.1. Then, there exist r 0 > 0 and C 0 > 0 such that, for any (ψ λ , λ) solution to (2),

λ -2 9 ≤ r ≤ π 2 =⇒ M Br 0 (x 0 ), 1 2 ,r (ψ λ ) ≤ C 0 ψ λ 2 L 2 (S 2 ) .
Remark 4.2. The exponent in λ -2/9 appears as follows in the argument. On the one hand, we use semiclassical arguments for exotic class of symbols (with λ -β loss in the derivatives) and this yields remainder terms of size O(λ -1+3β ). This semiclassical part of the argument is based on Egorov and composition theorems and the remainders cannot be drastically improved. See for instance [START_REF] Sogge | Kakeya-Nikodym averages and L p -norms of eigenfunctions[END_REF]. On the other hand, we need to estimate classical averages by some Hamiltonian flow and this is where we use in an essential way our assumption on the potential V . Without these assumptions, we would get a crude upper bound O(r) and these hypothesis allow to upgrade this bound to O(r 1+ 1 2 ). See for instance [START_REF] Toth | Eigenfunction localization in the quantized rigid body[END_REF]. Here the fact that R(V )| Γx 0 is a Morse function implies that the tangency have order at most 1. For higher order tangencies, we would have probably obtained some slightly worst bound O(r 1+ 1 k ) (for some large enough k) at the expense of some extra tedious work. In the end, we take r such that O(r 1+ 1 2 ) and O(λ -1+3β ) are of the same order which yields the exponent 2/9. Implementing this bound in [START_REF] De Verdière | Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques[END_REF] and in [START_REF] Guillemin | Band asymptotics in two dimensions[END_REF], we find that, for 4 < p ≤ ∞ and for λ > 0,

ψ λ L p (Br 0 (x 0 )) ≤ C p,x 0 λ σ 0 (p)-1 18 |1-6 p | ψ λ L 2 (S 2 ) .
Finally, for p = 4, we derive from (25) that, for λ > 1,

ψ λ L 4 (Br 0 (x 0 )) ≤ C 4,x 0 (log λ)λ 1 8 -1 36 ψ λ L 2 (S 2 ) ,
which also yields the result for 2 < p ≤ 4 by interpolation. Hence, in order to prove Theorem 1.1, we are left with the proof of Proposition 4.1 which will be the object of the rest of the article. Coming back to Proposition 4.1, it is in fact sufficient to get an uniform upper bound on MBr 0 (x 0 ),α,r (ψ λ ) := sup 1 r 1+α

S 2 χ x,r (y)|ψ λ (y)| 2 dυ g 0 (y) : x ∈ B r 0 (x 0 ) ,
where we used the conventions of §3 for the function χ x,r . In order to get this uniform control, we will make use of the invariance properties of semiclassical Wigner distributions that we recently obtained with Macià [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF][START_REF] Macià | Observability and quantum limits for the Schrödinger equation on the sphere[END_REF]. In order to make use of semiclassical methods [START_REF] Zworski | Semiclassical analysis[END_REF], we set h = λ -1 and u h = ψ λ . Hence, one has

(27) -h 2 ∆ g 0 u h + h 2 V u h = u h , u h L 2 (S 2 ) = 1.
Let now x be a point in B r 0 (x 0 ) and h β ≤ r ≤ π 4 . In terms of pseudodifferential operators on S 2 [62, §14.2], the quantity we are interested in can be rewritten as

S 2 χ x,r (y)|u h (y)| 2 dυ g 0 (y) = Op h (χ x,r ) u h , u h L 2 (S 2 ) ,
where Op h is a semiclassical quantization [62, §14.2.3]. Note that, in order to have χ x,r amenable to semiclassical pseudodifferential calculus [62, §4.4.1] (see also [18, §2.2, App.A] for the case of manifolds), we need to impose that [START_REF] Iwaniec | L ∞ -norms of eigenfunctions of arithmetic surfaces[END_REF] r ≥ h β and 0 ≤ β < 1 2 .

We will now revisit the arguments of [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF][START_REF] Macià | Observability and quantum limits for the Schrödinger equation on the sphere[END_REF] in that specific framework and show how they yield the expected result.

4.1. Spectral cutoff. We fix some smooth cutoff function 0 ≤ χ 0 ≤ 1 which is equal to 1 on the interval [1/2, 2] and to 0 outside [1/4, 4]. Thanks to [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF], one has

Op h (χ x,r ) u h , u h L 2 (S 2 ) = Op h (χ x,r ) χ 0 (-h 2 ∆ g 0 + h 2 V )u h , u h L 2 (S 2 ) .
According to [62, Th. 14.9], χ 0 (-h 2 ∆ g 0 +h 2 V ) is a semiclassical pseudodifferential operator in the class Ψ -∞ (S 2 ) with principal symbol equal to χ 0 ( η 2 g * 0 (y) ). Hence, the composition rule for pseudodifferential operators [START_REF] Zworski | Semiclassical analysis[END_REF]Th. 4.18 and 14.1] 

implies that Op h (χ x,r ) u h , u h L 2 (S 2 ) = Op h χ x,r (y)χ 0 ( η 2 ) u h , u h L 2 (S 2 ) + O(h 1-2β ),
where the constant in the remainder is uniform for x ∈ S 2 and r ≥ h β . In the following, we set a x,r (y, η) := χ x,r (y)χ 0 ( η 2 g * 0 (y) ). 4.2. Applying the evolution by the free Schrödinger flow. We write ( 29)

-∆ g 0 = A 2 - 1 4 ,
where A is a selfadjoint pseudodifferential operator of order 1 with principal symbol η g * 0 (y)

and satisfying (30) e 2iπA = -Id.

Equivalently, one has A = 1 4 -∆ g 0 . The eigenvalue equation ( 27) can be rewritten as

A 2 - 1 h 2 u h = 1 4 -V u h =⇒ A - 1 h u h = O L 2 (h).
In particular, one has

(31) e is(A-1 h ) u h = u h + s 0 e iτ (A-1 h ) A - 1 h u h dτ = u h + O L 2 (|s|h).
This leads to (32)

S 2 χ x,r (y)|u h (y)| 2 dυ g 0 (y) = 1 2π 2π 0 e isA Op h (a x,r ) e -isA ds u h , u h L 2 (S 2 ) + O(h 1-2β )
In the following, given a in C ∞ c (T * S 2 \ 0), we set, by analogy with the Radon transfom,

R qu (Op h (a)) := 1 2π
2π 0 e isA Op h (a)e -isA ds.

According to Remark 4.3 below, the Egorov Theorem allows to relate the operator R qu (Op h (a x,r )) to the classical average by the geodesic flow:

(33) R qu (Op h (a x,r )) = Op h 1 2π 2π 0 a x,r • ϕ t 0 dt + O L 2 →L 2 (h 1-2β ),
where the constant in the remainder is uniform for x ∈ S 2 and r ≥ h β and where ϕ t 0 is the Hamiltonian flow associated with the Hamiltonian function 7 

H 0 (y, η) := η g 0 (y) . Given a in C ∞ c (T * S 2 \ 0), we set R cl (a) := 1 2π 2π 0 a • ϕ t 0 dt.
Remark 4.3. Let us briefly remind how to prove [START_REF] Safarov | Asymptotics of a spectral function of a positive elliptic operator without a non trapping condition[END_REF]. This is standard [18, App. A.3] and we just need to pay attention to our class of symbols. First, we write, for every s, t ∈ [0, 2π],

d ds e isA Op h (a x,r • ϕ t-s 0 )e -isA = e isA i h hA, Op h (a x,r • ϕ t-s 0 ) -Op h {H 0 , a x,r • ϕ t-s 0 } e -isA .
We now let χ 1 be a smooth function which is equal to 1 in a neighborhood of [1/4, 4] and to 0 outside [1/8, 8]. In particular, χ 1 (H 2 0 ) is equal to 1 on the support of a x,r . Combining this with the composition rules for pseudodifferential operators with exotic symbols on manifolds [START_REF] Dyatlov | Control of eigenfunctions on surfaces of variable curvature[END_REF]Lemma A.6], we know that, for every τ ∈ [0, 2π],

Op h (a x,r • ϕ τ 0 ) = Op h (a x,r • ϕ τ 0 ) Op h (χ 1 (H 2 0 )) + O L 2 →L 2 (h 2 ) = Op h (χ 1 (H 2 0 )) Op h (a x,r • ϕ τ 0 ) + O L 2 →L 2 (h 2
). We can also remark using the composition rules for pseudodifferential operators that

hA Op h (χ 1 (H 2 0 )) = Op h (χ 1 (H 2 0 ))hA + h Op h (r) + O L 2 →L 2 (h 2 )
, where r is a smooth compactly supported function that depends in a multilinear way of the derivatives of order ≥ 1 of the function χ 1 (H 2 0 ). Thus its support does not intersect the support of a x,r . In particular, using the composition rule [START_REF] Dyatlov | Control of eigenfunctions on surfaces of variable curvature[END_REF]Lemma A.6] one more time and the support properties of a x,r , one has Op h (a x,r ) Op h (r) = O L 2 →L 2 (h 2 ). Hence, after integration over the interval [0, 2π] and applying the Calderón-Vaillancourt Theorem, one finds

R qu (Op h (a x,r )) = Op h 1 2π 2π 0 a x,r • ϕ t 0 dt + O L 2 →L 2 (h) + 1 2π 2π 0 t 0 i h hA Op h (χ 1 (H 2 0 )), Op h (a x,r • ϕ t-s 0 ) dsdt - 1 2π 2π 0 t 0 Op h {H 0 , a x,r • ϕ t-s 0 } dsdt.
As all our pseudodifferential operators are microlocally supported in a compact8 set of T * S 2 , we can again apply the composition rule for exotic symbols on a compact manifold as stated in [START_REF] Dyatlov | Control of eigenfunctions on surfaces of variable curvature[END_REF]Lemma A.6]. Thus, we can conclude that [START_REF] Safarov | Asymptotics of a spectral function of a positive elliptic operator without a non trapping condition[END_REF] 

(34) R qu (Op h (a x,r )) = Op h (ã x,r ) + O L 2 →L 2 (h 2 ),
where the constant in the remainder is uniform for x ∈ S 2 and r ≥ h β . Moreover, ãx,r is

equal to R cl (a x,r ) modulo h 1-2β S comp β (T * S 2
) and its support is contained in the support of R cl (a x,r ).

Remark 4.5. The arguments used from the beginning of this Section would work as well for the following semiclassical problem:

-h 2 ∆ g 0 u h + ε h V u h = u h , u h L 2 (S 2 ) = 1,
where ε h → 0 fast enough. More precisely, the above proofs only require h -1 ε h → 0 in order to have a small remainder in [START_REF] Macià | Observability and quantum limits for the Schrödinger equation on the sphere[END_REF]. In this case, this would yield the bound

S 2 χ x,r (y)|u h (y)| 2 dυ g 0 (y) = 1 2π 2π 0 e -isA Op h (a x,r ) e isA ds u h , u h L 2 (S 2 ) +O(h 1-2β )+O(h -1 ε h ).
The argument from [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF] would allow to remove this extra remainder O(h -1 ε h ) and to handle the case ε h → 0 + . Yet, as this kind of condition on the size of the potential already appeared in Remarks 2.4 and 3.1, we do not pursue this here.

4.3.

Weinstein averaging method. Following Weinstein [START_REF] Weinstein | Asymptotics of eigenvalue clusters for the Laplacian plus a potential[END_REF], one can use [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF] to obtain the following exact commutation relation:

[R qu (Op h (a x,r )), A] = 0.
In particular, thanks to (29), one has [START_REF] Shnirelman | Ergodic properties of eigenfunctions[END_REF] [R qu (Op h (a x,r )), ∆ g 0 ] = 0.

Remark 4.6. Rather than for studying eigenfunctions, Weinstein's argument was initially developed to study the distribution of eigenvalues of -∆ g 0 + V inside each cluster near λ 2 j = j(j + 1) [START_REF] Weinstein | Asymptotics of eigenvalue clusters for the Laplacian plus a potential[END_REF]. This was achieved by showing via this kind of averaging arguments that -∆ g 0 +V is conjugated to -∆ g 0 +R qu (V ) modulo small error terms. See [START_REF] De Verdière | Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques[END_REF][START_REF] Guillemin | Some spectral results for the Laplace operator with potential on the n-sphere[END_REF][START_REF] Guillemin | Band asymptotics in two dimensions[END_REF][START_REF] Zelditch | Maximally degenerate Laplacians[END_REF][START_REF] Zelditch | Fine structure of Zoll spectra[END_REF] for further developments on these eigenvalue problems.

4.4. Applying Calderón-Vaillancourt Theorem. We are now in position to apply the Calderón-Vaillancourt Theorem [62, Th. 5.1] which tells us that

Op h 1 2τ 0 τ 0 -τ 0 R cl (a x,r ) • ϕ τ V dτ L 2 →L 2 ≤ C 1 2τ 0 τ 0 -τ 0 R cl (a x,r ) • ϕ τ V dτ L ∞ (T * S 2 ) +O(h 1-3β ),
where C 0 is some universal constant and where the constant in the remainder is one more time uniform for x in S 2 and r ≥ h β . Together with (37), we finally get

S 2 χ x,r (y)|u h (y)| 2 dυ g 0 (y) ≤ C 1 2τ 0 τ 0 -τ 0 R cl (a x,r ) • ϕ τ V dτ L ∞ (T * S 2 ) + O(h 1-3β ).
From the construction of a x,r , one can in fact reduce to the unit cotangent bundle and conclude that the following key lemma holds Lemma 4.7. With the above conventions, one has

S 2 χ x,r (y)|u h (y)| 2 dυ g 0 (y) ≤ C 1 4πτ 0 τ 0 -τ 0 2π 0 χ x,r • ϕ t 0 • ϕ τ V dtdτ L ∞ (S * S 2 ) + O(h 1-3β ), (38) 
where we identify χ x,r with its pullback on S * S 2 and where the constant in the remainder is uniform for x in S 2 and r ≥ h β .

In order to facilitate the discussion, we shall work on the space of geodesic G(S 2 ) ≃ S 2 . With the induced symplectic form on S 2 , ϕ τ V can be viewed as the Hamiltonian flow of R(V ) on S 2 . Hence, what we are aiming at is an upper bound on

0 ≤ 1 2τ 0 τ 0 -τ 0 R(χ x,r ) • ϕ τ V (γ)dτ,
when γ ∈ G(S 2 ) ≃ S 2 and when r ≪ τ 0 . It is in fact sufficient to find an upper bound on 1 2τ 0

τ 0 -τ 0 R(1 B 2r (x) ) • ϕ τ V (γ)dτ,
where 1 B 2r (x) is the characteristic function of the geodesic ball of radius 2r centered at x.

The function R(1 B 2r (x) ) is supported in a neighborhood of width 4r of Γ x ⊂ G(S 2
) and it is bounded from above by 4r. Hence,

(39) ∀γ ∈ G(S 2 ), 0 ≤ 1 2τ 0 τ 0 -τ 0 R(1 B 2r (x) ) • ϕ τ V (γ)dτ ≤ 4r.
Remark 4.8. In the case of semiclassical Schrödinger operators as in Remark 4.5, the argument would work similarly and we would also obtain the bound [START_REF] Sogge | Kakeya-Nikodym averages and L p -norms of eigenfunctions[END_REF] for this semiclassical problem (up to the already extra remainder O(h -1 ε h ) that apeared in this Remark).

4.5. Flow lines of ϕ t V near Γ x 0 . So far we did not use our assumptions on V or on the point x 0 . They will now be used to get an improvement of order r 1/2 on the upper bound (39) when x ∈ B r 0 (x 0 ). To that aim, we now fix x 0 satisfying the assumption of the Theorem and we will analyze the flow lines of ϕ t V near a given point γ 0 of Γ x 0 . Without loss of generality, we may suppose that x 0 is the north pole, i.e. with coordinates (0, 0, 1) in the representation [START_REF] Bérard | On the wave equation on a compact Riemannian manifold without conjugate points[END_REF]. Then, for every x ∈ B ǫ 0 (x 0 ), Γ x is a great circle of the sphere lying in the annulus

A ǫ 0 := (x 1 , x 2 , x 3 ) ∈ R 3 : x 2 1 + x 2 2 + x 2 3 = 1, |x 3 | ≤ sin ǫ 0 . Similarly, the function R(1 B 2r (x)
) is supported on an annulus of width 2| sin(2r)| around Γ x and it takes the value 4r on this annulus. In particular, if τ 0 > 0 and r 1 > 0 are chosen small enough, then, for every x ∈ B ǫ 0 (x 0 ) and for every 0 < r < r 1 , the support of ( 40)

1 2τ 0 τ 0 -τ 0 R(1 B 2r (x) ) • ϕ τ V dτ
is contained in the annulus A 2ǫ 0 . Hence, once we have fixed x ∈ B ǫ 0 (x 0 ), we just need to study the value of this function inside such an annulus. More precisely, we want to show that this is of order O(r 3/2 ) uniformly for γ in this annulus. Let γ 0 ∈ Γ x 0 and let us prove this uppper bound in a neighborhood of a fixed γ 0 . Without loss of generality, we can suppose that, in spherical coordinates (φ, θ), one has γ 0 = (π/2, 0). The vector field X V can be written in this system of coordinates:

X V (φ, θ) = - 1 sin φ ∂R(V ) ∂θ ∂ φ + ∂R(V ) ∂φ ∂ θ .
We need to distinguish two situations:

(1) X V (γ 0 ) / ∈ T γ 0 Γ x 0 which means that ∂R(V ) ∂θ (π/2, 0) = 0; (2) X V (γ 0 ) ∈ T γ 0 Γ x 0 which means that ∂R(V ) ∂θ (π/2, 0) = 0. In that case, the hypothesis of Theorem 1.1 implies that ∂R(V ) ∂φ (π/2, 0) = 0 and ∂ 2 R(V ) ∂θ 2 (π/2, 0) = 0 The Hamilton-Jacobi equations can be written as [START_REF] Sogge | Improved critical eigenfunction estimates on manifolds of nonpositive curvature[END_REF] φ

′ (τ ) = - 1 sin φ(τ ) ∂R(V ) ∂θ (φ(τ ), θ(τ )), and θ ′ (τ ) = ∂R(V ) ∂φ (φ(τ ), θ(τ )).
4.5.1. The transverse case. Let us begin with the first situation which is slightly easier to handle. Witout loss of generality, we can suppose that ∂R(V ) ∂θ (π/2, 0) > 0 (the negative case is handled similarly). First, using spherical coordinates, we fix an open neighborhood U 2ǫ 0 := (π/2 -4ǫ 0 , π/2 + 4ǫ 0 ) × (-2ǫ 0 , 2ǫ 0 ) so that [START_REF] Sogge | About the blowup of quasimodes on Riemannian manifolds[END_REF] ∀γ

= (φ, θ) ∈ U 2ǫ 0 , ∂R(V ) ∂θ (φ, θ) > 1 2 ∂R(V ) ∂θ (π/2, 0) =: a 0 > 0.
Up to decreasing the value τ 0 , we can suppose without loss of generality that ϕ τ V (γ) belongs to U 2ǫ 0 for every |τ | ≤ τ 0 and for every γ ∈ U ǫ 0 . As already explained, the support of [START_REF] Sogge | Localized L p -estimates of eigenfunctions: a note on an article of Hezari and Rivière[END_REF] is contained in A 2ǫ 0 . For the moment, we will study locally its value inside U ǫ 0 ⊂ A 2ǫ 0 . We now fix some γ in U ǫ 0 . In particular,

∀|τ | ≤ τ 0 , ∂R(V ) ∂θ ϕ τ V (γ) ≥ a 0 ,
which implies thanks to (41) that φ ′ (τ ) < 0 along this piece of trajectory. This yields the following upper bound along the orbit ϕ τ V (γ)

-τ 0 ≤τ ≤τ 0 : (43) φ(τ 2 ) -φ(τ 1 ) ≤ - a 0 cos(4ǫ 0 ) (τ 2 -τ 1 ) ⇐⇒ τ 2 -τ 1 ≤ cos(4ǫ 0 ) a 0 (φ(τ 1 ) -φ(τ 2 )), for every -τ 0 ≤ τ 1 ≤ τ 2 ≤ τ 0 .
Recall now that the function in [START_REF] Sogge | Localized L p -estimates of eigenfunctions: a note on an article of Hezari and Rivière[END_REF] is defined by averaging R(1 B 2r (x) ) for some x ∈ B ǫ 0 (x 0 ) and some 0 < r < r 1 . In spherical coordinates, x can be written (φ x , θ x ) where 0 ≤ φ x ≤ ǫ 0 and 0 ≤ θ x ≤ 2π. Hence, using our identification G(S 2 ) ≃ S 2 , R(1 B 2r (x) ) is 4r times the characteristic function of the annulus of width 4r centered at Γ x ,

A 2r (x) = {(φ, θ) : φ -arccos (-cos(θ -θ x ) sin(φ x )) ∈ [-2r, 2r], 0 ≤ θ ≤ 2π} .
The boundary of this annulus is given by

∂A 2r (x) = {(arccos (-cos(θ -θ x ) sin(φ x )) ± 2r, θ) : 0 ≤ θ ≤ 2π}
and it is oriented thanks to the natural orientation on S 2 . Using now that R(V ) is of class C 1 and (42), we know that, up to decreasing the value of ǫ 0 (and thus of τ 0 and r 1 ), the vector field X V is uniformly (negatively) transverse to ∂A 2r (x)∩U 2ǫ 0 for every x ∈ B ǫ 0 (x 0 ) and for every 0 < r < r 1 . In particular, given γ ∈ U ǫ 0 , the set τ ∈ [-τ 0 , τ 0 ] : ϕ τ V (γ) ∈ A 2r (x) is an interval that we denote by I x,r (γ). Hence,

0 ≤ 1 2τ 0 τ 0 -τ 0 R(1 B 2r (x) ) • ϕ τ V (γ)dτ ≤ 2r|I x,r (γ)| τ 0 ,
and it remains to determine an upper bound on the size of this interval in terms of r.

Thanks to the upper bound [START_REF] Sogge | Riemannian manifolds with maximal eigenfunction growth[END_REF], the length of the interval is bounded by the maximal variation of φ along the orbit of γ inside A 2r (x). If we denote the interval I x,r (γ) by [τ 1 , τ 2 ], then

φ(τ 1 )-φ(τ 2 ) ≤ 4r+|arccos (-cos(θ(τ 1 ) -θ x ) sin(φ x )) -arccos (-cos(θ(τ 2 ) -θ x ) sin(φ x ))| .
As φ x ∈ [-ǫ 0 , ǫ 0 ] (with ǫ 0 > 0 small), this yields an upper bound of the form

φ(τ 1 ) -φ(τ 2 ) ≤ 4r + C sin(ǫ 0 )|τ 2 -τ 1 |,
where C > 0 is some uniform constant. Combined with [START_REF] Sogge | Riemannian manifolds with maximal eigenfunction growth[END_REF], it gives us

0 ≤ |I x,r (γ)| = τ 2 -τ 1 ≤ 4r 1 -C sin(ǫ 0 ) ,
and then, for every x ∈ B ǫ 0 (x 0 ) and every 0 ≤ r ≤ r 1 ,

(44) ∀γ ∈ U ǫ 0 , 0 ≤ 1 2τ 0 τ 0 -τ 0 R(1 B 2r (x) ) • ϕ τ V (γ)dτ ≤ 8r 2 τ 0 (1 -C sin(ǫ 0 ))
.

This shows the expected upper bound in the neighborhood U ǫ (γ 0 ) := U ǫ 0 of γ 0 when X V (γ 0 ) is transverse to Γ x 0 .

4.5.2. The tangent case. We now deal with the slightly more delicate case where X V (γ 0 ) is tangent to Γ x 0 where ∂R(V ) ∂θ (π/2, 0) = 0. Thanks to (4), we can again without loss of generality assume that ∂R(V ) ∂φ (π/2, 0) > 0, and suppose that

(45) ∀γ = (φ, θ) ∈ U 2ǫ 0 , ∂R(V ) ∂φ (φ, θ) > 1 2 ∂R(V ) ∂φ (π/2, 0) =: a 0 > 0.
Moreover, thanks to hypothesis (5), the critical point at 0 of the map θ → R(V )(π/2, θ) is nondegenerate. In particular, without loss of generality and up to decreasing the value of ǫ 0 , there exists b 0 > 0 such that

(46) ∀γ = (φ, θ) ∈ U 2ǫ 0 , ∂ 2 R(V ) ∂θ 2 (φ, θ) > 1 2 ∂ 2 R(V )
∂θ 2 (π/2, 0) =: b 0 > 0. We now fix γ ∈ U ǫ 0 ⊂ A 2ǫ 0 and, as before, we can suppose that, for every |τ | ≤ τ 0 ,

∂R(V ) ∂φ ϕ τ V (γ) ≥ a 0 and ∂ 2 R(V ) ∂θ 2 ϕ τ V (γ) ≥ b 0 .
As in the transverse case, one has

0 ≤ 1 2τ 0 τ 0 -τ 0 R(1 B 2r (x) ) • ϕ τ V (γ)dτ ≤ 2r|I x,r (γ)| τ 0 , where I x,r (γ) := τ ∈ [-τ 0 , τ 0 ] : ϕ τ V (γ) ∈ A 2r (x)
. The main difference with the above case is that this set is not an interval in general. Yet, we can note that, along the trajectory of γ, the vector (φ ′ (τ ), θ ′ (τ )) is nonvanishing thanks to [START_REF] Tacy | L p estimates for joint quasimodes of semiclassical pseudodifferential operators[END_REF]. Moreover, it is tangent to ∂A r ′ (x) (for some r ′ < 2ǫ 0 ) if and only if

F (τ ) := φ ′ (τ ) -θ ′ (t) sin(θ(τ ) -θ x ) sin(φ x ) 1 -cos 2 (θ(τ ) -θ x ) sin 2 φ x = 0.
We can observe that

F ′ (τ ) = - 1 sin φ(τ ) ∂R(V ) ∂θ (φ(τ ), θ(τ )) ∂ 2 R(V ) ∂θ∂φ (φ(τ ), θ(τ )) - 1 sin φ(τ ) ∂R(V ) ∂φ (φ(τ ), θ(τ )) ∂ 2 R(V ) ∂θ 2 (φ(τ ), θ(τ )) + O(ǫ 0 ),
where the constant in the remainder is uniformly bounded for τ ∈ [-τ 0 , τ 0 ] and γ ∈ U ǫ 0 . Thus, as ∂ θ R(V )(π/2, 0) = 0, we can suppose that, up to decreasing the value of ǫ 0 > 0, |F ′ (τ )| ≥ a 0 b 0 /2. In particular, F is monotone and it vanishes at most at one point inside [-τ 0 , τ 0 ]. As a consequence, the set I x,r (γ) is the union of at most two disjoint intervals inside [-τ 0 , τ 0 ] that we denote by [τ 1 , τ 2 ] and [τ

3 , τ 4 ]. Moreover, X V (ϕ τ V (γ)) is tangent to ∂A 2r (x) at most at one point inside [τ 1 , τ 2 ] ∪ [τ 3 , τ 4 ].
It now remains to bound the length of these two intervals in terms of r. To that aim, we observe that, for τ ∈

[τ 1 , τ 2 ] ∪ [τ 3 , τ 4 ], one can find r(τ ) ∈ [-2r, 2r] such that φ(τ ) = r(τ ) + arccos (-cos(θ(τ ) -θ x ) sin φ x ) . Given now τ, τ ′ ∈ [τ 1 , τ 2 ] ∪ [τ 3 , τ 4 ], one finds r(τ ) -r(τ ′ ) = F (τ ′ )(τ -τ ′ ) + F ′ (τ ′ ) 2 (τ -τ ′ ) 2 + O((τ -τ ′ ) 3 ),
where the constant in the remainder can be made uniform in terms of r, γ, τ and τ ′ . We use this equality to find an upper bound on the length of [τ 1 , τ 2 ]. The other interval (if non empty) is handled simlarly. Recall from the above calculation that F ′ (τ ) ≤ -a 0 b 0 /2 for every τ ∈ [-τ 0 , τ 0 ]. We have to distinguish three cases:

• F (τ 1 ) ≤ 0. In that case, we take τ ′ = τ 1 and τ = τ 2 and we find

r(τ 2 ) -r(τ 1 ) ≤ - a 0 b 0 4 (τ 2 -τ 1 ) 2 + O((τ 2 -τ 1 ) 3 ).
From this, we can deduce that |τ 2τ 1 | ≤ 32r 1/2 a 0 b 0 . • F (τ 1 ) ≥ 0 and F (τ 2 ) ≥ 0. In that case, we take τ ′ = τ 2 and τ = τ 1 and we find

r(τ 1 ) -r(τ 2 ) ≤ - a 0 b 0 4 (τ 2 -τ 1 ) 2 + O((τ 2 -τ 1 ) 3 ).
Again, we deduce an upper bound of order O(r

2 ). • F (τ 1 ) > 0 and F (τ 2 ) < 0. In that case, one can find some τ 0 ∈ [τ 1 , τ 2 ] such that F (τ 0 ) = 0. Then, we apply the above inequality twice to get

r(τ 2 )-r(τ 0 ) = F ′ (τ 0 ) 2 (τ 2 -τ 0 ) 2 +O((τ 2 -τ 0 ) 3 ) and r(τ 1 )-r(τ 0 ) = F ′ (τ 0 ) 2 (τ 1 -τ 0 ) 2 +O((τ 1 -τ 0 ) 3 ).
Combining the two equalities, we find that |τ

2 -τ 1 | = O(r 1 
2 ). Gathering these bounds, we find that, for every x ∈ B ǫ 0 (x 0 ) and for every r ≤ r 1 ,

(47) ∀γ ∈ U ǫ 0 , 0 ≤ 1 2τ 0 τ 0 -τ 0 R(1 B 2r (x) ) • ϕ τ V (γ)dτ ≤ Cr 3 2 . 
4.5.3. The conclusion. By compactness, one can find γ 1 , . . . , γ N in Γ x 0 and ǫ 1 , . . . ǫ N > 0 such that ∪ N j=1 U ǫ j (γ j ) covers Γ x 0 . We take ǫ 0 := min{ǫ j : 1 ≤ j ≤ N} so that A 2ǫ 0 ⊂ ∪ N j=1 U ǫ j (γ j ). In particular, given any x ∈ B ǫ 0 (x 0 ) and any r < r 1 (with r 1 chosen small enough to handle each neighborhood U ǫ j (γ j )), the support of the map

γ → 1 2τ 0 τ 0 -τ 0 R(1 B 2r (x) ) • ϕ τ V (γ)dτ is contained in ∪ N j=1 U ǫ j (γ j
). Thus, applying ( 44) and ( 47) to [START_REF] Sogge | Kakeya-Nikodym averages and L p -norms of eigenfunctions[END_REF], we obtain, for any normalized solution u h to (27),

S 2 χ x,r (y)|u h (y)| 2 dυ g 0 (y) = O(r 3 2 ) + O(h 1-3β ),
where the constant can be made uniform for x ∈ B ǫ 0 (x 0 ) and r ≥ h β . Taking β = 2 9 yields Proposition 4.1.

Remark 4.9. The analysis of the vector field performed here is related to the analysis in [30, § 4]. In that reference, we showed with Macià that the semiclassical measures of -∆ g 0 + V can be decomposed as a convex combination of the Haar measures carried by the Lagrangian tori of the completely integrable system (H 0 , R cl (V )). For 2-dimensional tori, the projection of the Haar measure on S 2 is absolutely continuous [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF]Th. 4.3] with some eventual blow-up of the density at some points which are often called caustics [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF]Lemma 4.6]. This regularity of the projection is exactly the property we have been using here in a somewhat refined way to get our bounds O(r 1+α ). The bound (44) (α = 1) corresponds to points of these 2-dimensional Lagrangian tori where the projection is regular while (47) (α = 1/2) corresponds to these caustics.

Final comments

5.1.

Relaxing assumption [START_REF] Blair | Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions[END_REF]. Up to some extra work, assumption (5) could certainly be relaxed. For instance, one could require instead that the critical points are of finite order i.e. the derivative does not vanish at a certain order which may be larger than 2. We would then end up with some upper bound of order O(r 1+α ) for some 0 < α ≤ 1/2 related to the order of vanishing at the critical points of R(V )| Γx 0 . This would give slightly worst upper bound on the growth of L p -norms but it would allow to take larger compact subsets K in (6).

5.2.

Relaxing assumption (4). A priori, it does not seem possible to remove assumption (4) from the hypothesis of Proposition 4.1. Indeed, if there exists γ 0 ∈ Γ x 0 such that X V (γ 0 ) = 0, then the value of (40) at γ 0 will be equal to 4r and it will prevent us from drawing the same conclusion using our argument. 5.3. Sharpness of the exponents. Even if we tried to optimize our arguments, it is not clear if the bounds we obtain on L p -norms are sharp or not. The argument works as well for elements in L 2 (S 2 ) which verify (2) modulo some small remainder (say O(λ -2 )) and it would be interesting (but probably subtle) to construct quasimodes saturating these local L p -estimates. 5.4. The range p > 6. In this range, it is plausible that the methods from [START_REF] Galkowski | Eigenfunction scarring and improvements in L ∞ growth[END_REF][START_REF] Galkowski | Defect measures of eigenfunctions with maximal L ∞ growth[END_REF][START_REF] Canzani | Eigenfunction concentration via geodesic beams[END_REF][START_REF] Canzani | Growth of high L p norms for eigenfunctions: an application of geodesic beams[END_REF] allow to handle these critical geodesics. Indeed, suppose that there exist a point x 0 ∈ S 2 and a sequence (ψ λ k ) k≥1 of normalized solutions to (2) verifying λ k → +∞ and [START_REF] Toth | Riemannian manifolds with uniformly bounded eigenfunctions[END_REF] lim

k→+∞ |ψ λ k (x 0 )|λ -1 2 k = 0.
Up to extracting a subsequence, we can suppose that (ψ λ k ) k≥1 has a single semiclassical measure µ [START_REF] Zworski | Semiclassical analysis[END_REF]Ch. 5]. Recall that it is a probability measure carried by S * S 2 which is invariant by the geodesic flow ϕ t 0 . In particular, it induces a measure μ on G(S 2 ). Then, we can consider μx 0 = μ| Γx 0 . This measure can be decomposed into three parts: the absolutely continuous component, the singular continuous one and the pure point one. According to the results of Galkowski and Toth in [START_REF] Galkowski | Eigenfunction scarring and improvements in L ∞ growth[END_REF], property [START_REF] Toth | Riemannian manifolds with uniformly bounded eigenfunctions[END_REF] implies that the absolutely continuous part is not identically 0. Combined with [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF]Prop. 2.3], this implies that R(V )| Γx 0 has infinitely many critical points. In other words, if R(V )| Γx 0 has finitely many critical points, then, for any sequence (ψ λ k ) k≥1 of normalized solutions to (2), one has

|ψ λ k (x 0 )| = o λ 1 2
k , which improves the remainder from the local Weyl law at x 0 without imposing (4). Compared with Theorem 1.1, this is of course not quantitative. If one is able to combine the quantitative arguments of Canzani and Galkowski [START_REF] Canzani | Eigenfunction concentration via geodesic beams[END_REF][START_REF] Canzani | Growth of high L p norms for eigenfunctions: an application of geodesic beams[END_REF] with the extra invariance by the flow of X V [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF], then this may give rise to improvements on Sogge's upper bounds (3) in the range p > 6 under weaker geometric assumptions than the ones appearing in Theorem 1.1. Recall from the introduction that, thanks to the conjugation formula [START_REF] Bonthonneau | The θ Function and the Weyl Law on Manifolds Without Conjugate Points[END_REF], eigenfunctions of -∆ g 0 + V which are the image under U of joint eigenfunctions for (-∆ g 0 , V ♯ ) enjoy improved L p estimates near x 0 (for p > 6) under appropriate assumptions on the critical points of R(V )| Γx 0 [START_REF] Galkowski | Pointwise bounds for joint eigenfunctions of quantum completely integrable systems[END_REF][START_REF] Tacy | L p estimates for joint quasimodes of semiclassical pseudodifferential operators whose characteristic sets have kth order contact[END_REF]. In particular, if the spectrum of -∆ g 0 + V is simple [START_REF] Uhlenbeck | Generic properties of eigenfunctions[END_REF]Th. 7], then all eigenfunctions of -∆ g 0 + V will be the image of joint eigenfunctions. 5.5. The case of odd potentials. In [START_REF] Macià | Observability and quantum limits for the Schrödinger equation on the sphere[END_REF], it was shown that one can uncover extrainvariance properties of semiclassical measures even if R(V ) identically vanishes (meaning that V is an odd function, e.g. V (x 1 , x 2 , x 3 ) = x 3 ). In principle, the above arguments could be adapted following the lines of this reference, up to some extra technical work. In that case, the role of R(V ) would be played by the function

R (2) (V ) = R(V 2 ) - 1 2π 2π 0 t 0 {V • ϕ t 0 , V • ϕ s 0 }dsdt.
See also [START_REF] Guillemin | Some spectral results for the Laplace operator with potential on the n-sphere[END_REF][START_REF] Uribe | Band invariants and closed trajectories on S n[END_REF] for earlier related results on spectral asymptotics of Schrödinger operators.

5.6. Semiclassical operators. In Remarks 2.4 and 3.1, we observed that our bounds on L p norms are valid more generally for solutions to

-h 2 ∆ g 0 u h + ε h V u h = u h , u h L 2 (S 2 ) = 1.
Even if it was maybe not optimal, for p > 6, we needed to impose ε h ≤ h 1+ǫ for some positive ǫ while for 4 ≤ p < 6, we only required ε h ≤ h. Thanks to Remarks 4.5 and 4.8, this yields the following bounds on L p norms. For p = ∞, one has

u h L ∞ (Br 0 (x 0 )) ≤ C ∞,x 0 h -1 2 h 1 18 + h ǫ 4
,

3 2 )

 2 on (8) up to scales r ≈ λ -2 9

  holds. Inspecting carefully the argument, we can in fact conclude that Lemma 4.4. With the above conventions, one can find ãx,r ∈ S comp

β (T * S 2 ) (as defined in [18, §2.2]) such that

We are not aware of a geometric criterion ensuring that all eigenfunctions are joint eigenfunctions. Yet, this is for instance achieved when the spectrum of -∆ g0 + V is simple, which is the case for a residual set of potentials[START_REF] Uhlenbeck | Generic properties of eigenfunctions[END_REF] Th. 7].

We emphasize that Theorem 1.1 considers the somehow opposite case where the set of recurrent vectors has full measure. Despite that, we are able to get local polynomial improvements using the periodicity of the geodesic flow and the presence of a subprincipal symbol.

See for instance[START_REF] Dyatlov | Control of eigenfunctions on surfaces of variable curvature[END_REF].

This can probably sligthly improved to replace the λ ǫ by some logarithmic factor but we did not try to optimize that.

This is just a reparametrization of the standard geodesic flow.

This was the main reason for inserting the pseudodifferential cutoff Op h (χ 1 (H 2 0 )).
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Using [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF], this implies that [V, R qu (Op h (a x,r ))] u h , u h L 2 (S 2 ) = 0.

Thanks to [START_REF] Sarnak | Letter to Morawetz[END_REF], this can be rewritten as

As in Remark 4.3, we can insert pseudodifferential cutoffs and we find

Hence, thanks to the composition rule for pseudodifferential operators [START_REF] Dyatlov | Control of eigenfunctions on surfaces of variable curvature[END_REF]Lemma A.6] with exotic symbols, we get

where the constant in the remainder is uniform for x ∈ S 2 and r ≥ h β . Observe that the extra loss in O(h 1-3β ) (compared with O(h 1-2β )) comes from the subprincipal term in ãx,r . Applying the argument of paragraph 4.2 one more time, we find that

with the constant in the remainder enjoying the same uniformity property as before. Here V is identified with its pullback on T * S 2 \ 0 via the canonical projection Π(y, η) = y.

Let us now denote by ϕ t V the Hamiltonian flow induced by R cl (V ). As R cl (V ) and H 0 Poisson commute, one has ϕ t 0 • ϕ s V = ϕ s V • ϕ t 0 for every t and s in R. We note that all the above argument would work as well if we replace a x,r by a x,r • ϕ τ V and the remainder would remain uniform in τ (and in (x, r)) provided that τ remains on a bounded interval. Hence, one has, uniformly for τ ∈ [-τ 0 , τ 0 ], x ∈ S 2 and r ≥ h β , [START_REF] Shnirelman | Statistical properties of eigenfunctions[END_REF] Op

We integrate this expression between 0 and τ :

Combining this with (32), we find (37)

where the constant in the remainder is uniform for x in K and r ≥ h β .

which yields a polynomial improvement over the usual bound. In the range 4 < p < 6, we get similarly, for any r ≥ h 2 9 ,

, while for p = 4, we end up with

In these last two cases, it yields improvements over Sogge's upper bound as soon as h -1 ε h → 0. Note that in every cases, ε h may go to 0 very fast. For instance, one may have ε h ≪ h 2 . 5.7. The case of Zoll surfaces. Following the lines of [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF], we could adapt the results to Laplace eigenfunctions,

where g is a C 2π (or Zoll) metric on S 2 , i.e. all of whose geodesics are closed, simple and of length 2π. See [START_REF] Besse | Manifolds All of Whose Geodesics Are Closed[END_REF] for a detailed review on this geometric assumption. In that case, it is known [START_REF] De Verdière | Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques[END_REF] that

where Q is a pseudodifferential operator of order -1, α is the Maslov index of the closed trajectories and Sp(A) ⊂ Z + . Combining the above proof with the arguments from [30, §3.1], we will end up with the same quantities as in [START_REF] Sogge | Kakeya-Nikodym averages and L p -norms of eigenfunctions[END_REF] except that R(V ) will be replaced by some function q 0 (x, ξ) (related to the principal symbol of Q). An exact expression for q 0 was given by Zelditch in [START_REF] Zelditch | Maximally degenerate Laplacians[END_REF][START_REF] Zelditch | Fine structure of Zoll spectra[END_REF] and it involves curvature terms of the metric. Under the geometric assumptions of Theorem 1.1 on the point x 0 but with q 0 replacing R(V ), we could obtain improved L p -bounds near x 0 . Yet, the expression of q 0 being a little bit involved, this condition is harder to verify. 5.8. The higher dimensional case. For the sake of simplicity, we restricted ourselves to the 2-dimensional case but the extra invariance property by the flow of X V remains true in higher dimensions n ≥ 3 [START_REF] Macià | Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds[END_REF]Prop. 2.3]. Thus, modulo some extra work and some appropriate assumptions on X V | Γx 0 , one should be able to obtain localized L 2estimates as in Proposition 4.1 but maybe for smaller values of α. Then, in the range p c = 2(n+1) n-1 < p ≤ +∞, this can be transferred into L p bounds using that ( 16) remains true for p = ∞ in dimension n ≥ 3 [START_REF] Sogge | Localized L p -estimates of eigenfunctions: a note on an article of Hezari and Rivière[END_REF]Eq.(3.3)]. Similarly, for p < p c , the Kakeya-Nikodym bounds of Section 3 remains true up to p > 2(n+2) n and they can again be roughly bounded by the L 2 -localized norms appearing in Proposition 4.1. Yet, we are not aware of an analogue of Guillemin's Theorem [START_REF] Guillemin | The Radon transform on Zoll surfaces[END_REF] showing that R is an isomorphism when restricted to the appropriate spaces of smooth functions on S n and G(S n ) and hence making the condition on x 0 easy to verify.