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LOCAL Lp NORMS OF SCHRÖDINGER EIGENFUNCTIONS ON S2

GABRIEL RIVIÈRE

Abstract. On the canonical 2-sphere and for Schrödinger eigenfunctions, we obtain a
simple geometric criterion on the potential under which we can improve, near a given
point and for every p 6= 6, Sogge’s estimates by a power of the eigenvalue. This criterion
can be formulated in terms of the critical points of the Radon transform of the potential
and it is independent of the choice of eigenfunctions.

1. Introduction

The purpose of this work is to study high frequency asymptotics of eigenfunctions to the
Schrödinger operator on the 2-sphere

(1) S
2 :=

{
(x1, x2, x3) ∈ R

3 : x21 + x22 + x23 = 1
}
.

We endow S2 with the Riemannian metric g0 induced by the Euclidean metric on R3. In
that geometric context and given an element V ∈ C∞(S2,R), there exists an orthonormal
basis [58, Th. 14.7] of L2(S2, dυg0) made of solutions to

(2) −∆g0ψλ + V ψλ = λ2ψλ, λ ∈ C,

where ∆g0 is the Laplace-Beltrami operator and dυg0 is the Riemannian volume, both
induced by g0. By elliptic regularity, solutions to (2) are smooth [58, § 14.3] and a classical
Theorem of Sogge [36] states that, for every 2 ≤ p ≤ +∞, there exists Cp > 0 such that,
for any solution (ψλ, λ) to (2),

(3) ‖ψλ‖Lp(S2) ≤ Cp(1 + |λ|)σ0(p)‖ψλ‖L2(S2),

where1

σ0(p) := max

{
1

4
− 1

2p
,
1

2
− 2

p

}
.

The critical exponent for which both quantities in the maximum coincide is given by
pc = 6. In the case where V ≡ 0, these upper bounds are optimal using appropriate
sequences of spherical harmonics [38]. However, for generic sequences [50, 55, 12] or for
families satisfying certain extra invariance properties [11], these bounds can drastically be
improved when V ≡ 0.

Our aim is to show that the presence of a potential allows to improve (3) away from cer-
tain critical geodesics and for any sequence of eigenfunctions. In order to state our results,
we introduce the space of oriented closed geodesics G(S2) of the sphere. By identifying
each oriented closed geodesic with an oriented plane of R3, G(S2) is diffeomorphic to S

2.

1The case p = ∞ is a consequence of the local Weyl law [27].
1
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Through this identification, G(S2) ≃ S2 is endowed with the symplectic structure induced
by the one on the cotangent bundle T ∗S2 [2, p. 58]. We also define the Radon transform
of the potential V :

R(V ) : γ ∈ G(S2) 7→ 1

2π

∫ 2π

0

V (γ(s))ds ∈ R,

which belongs to C∞(G(S2)). Thanks to the symplectic structure on G(S2), one can define
its Hamiltonian vector field X〈V 〉. We denote its critical points by

Crit(R(V )) :=
{
γ ∈ G(S2) : DγR(V ) = 0

}
=

{
γ ∈ G(S2) : X〈V 〉(γ) = 0

}
.

Observe that R(V ) is always an even function on G(S2). In particular, it can be identified
with a function on RP 2 and it has thus at least 6 critical points on G(S2) by Morse
inequalities. In fact, Guillemin showed [22] that

R : C∞
even(S

2) → C∞
even(G(S

2))

is an isomorphism. As a corollary, for a generic choice of V in the C∞-topology, Crit(R(V ))
is a finite set. Finally, given x0 ∈ S2, we set

Γx0 :=
{
γ ∈ G(S2) : x0 ∈ γ

}
.

Our main result reads as follows

Theorem 1.1. Let x0 ∈ S
2 such that

(4) Crit(R(V )) ∩ Γx0 = ∅,
and

(5) R(V )|Γx0
is a Morse function.

Then, there exists r0 > 0 such that, for every 2 ≤ p ≤ +∞, one can find Cx0,p > 0 so that,
for any solution (ψλ, λ) to (2),

‖ψλ‖Lp(Br0 (x0)) ≤ Cx0,p(log(2 + |λ|))ε(p)(1 + |λ|)σ0(p)−δ(p)‖ψλ‖L2(S2),

where Br0(x0) is the closed (geodesic) ball of radius r0 centered at x0 and where, for 4 <
p ≤ ∞,

δ(p) :=
1

18

∣∣∣∣1−
6

p

∣∣∣∣ , ε(p) = 0

and, for 2 ≤ p ≤ 4

δ(p) :=
1

18

(
1− 2

p

)
, ε(p) := 2

(
1− 2

p

)
.

Remark 1.2. Given a point x0, we note that (4) and (5) are satisfied for an open and
dense subset Ux0 of potentials in C∞(S2,R) (endowed with its natural Fréchet topology).
Assumption (5) implies that the Hamiltonian vector field is transverse to Γx0 except at
finitely many points. Combined with (4), one has that, at the points where X〈V 〉(γ) is
tangent to Γx0 , the tangency is of order 1. See Remark 4.5 for an interpretation of these
assumptions in terms of Lagrangian tori.
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Remark 1.3. A direct Corollary of Theorem 1.1 is that, if K is a compact subset of S2 such
that, for every x0 ∈ K, (4) and (5) hold, then, for any solution (ψλ, λ) to (2),

(6) ‖ψλ‖Lp(K) ≤ CK,p log(2 + |λ|)ε(p)(1 + |λ|)σ0(p)−δ(p)‖ψλ‖L2(S2).

Yet, our main result does not allow to take K = S2 as Crit(R(V )) cannot be empty.

This Theorem yields a local improvement for p 6= 6 over Sogge’s upper bounds near
certain points of S2 which are independent of the sequence (ψλ)λ under consideration. The
condition on these points are of purely dynamical nature and they depend on the subprin-
cipal symbol of our operator. It may happen that Sogge’s upper bounds are saturated for
these operators but this can only occur away from points x0 verifying (4) and (5). The
critical case pc = 6 could maybe be treated using similar ideas and the methods of Blair
and Sogge to handle this exponent on nonpositively curved surfaces [40, 6]. Yet, this would
probably require a much more delicate analysis than the one presented in this article.

Our hypothesis (4) and (5) are reminiscent from assumptions that appear when studying
joint eigenfunctions of quantum completely integrable systems – see [47, §1] for a definition.
For instance, the critical points involved in hypothesis (4) were used to obtain lower bounds
by Toth in [46] and by Toth-Zelditch in [47, 48]. Similarly, assumption (5) was recently
used by Galkowski–Toth [21] and by Tacy [45] to study the growth of L∞-norms of joint
eigenfunctions. The main differences with these last references are that we handle every
p 6= 6 and that we consider here eigenfunctions of the single operator −∆g0 + V . In fact
recall from [24, Lemma 1] (see also [52]) that there exists a unitary pseudodifferential
operator U of order 0 such that

(7) U−1 (−∆g0 + V )U = −∆g0 + V ♯,

where [∆g0 , V
♯] = 0 and where the principal symbol of V ♯ is R(V ). In other words,

−∆g0 + V is the sum of two commuting pseudodifferential operators Ĥ1 := U∆g0U−1 and

Ĥ2 := UV ♯U−1. In particular, it is a quantum completely integrable operator in the sense
of [47, §1] whenever X〈V 〉 does not vanish on a dense and open subset of finite complexity
(say outside finitely many points). Hence, upper bounds on Lp norms of solutions to (2)

which are joint eigenfunctions of (Ĥ1, Ĥ2) would follow from the results in [21, 45] in the
range p > 6. However, in Theorem 1.1, we only suppose p 6= 6 and we do not make
any assumption on the fact that ψλ is a joint eigenfunction2 of (Ĥ1, Ĥ2) which makes the
analysis slightly more delicate. Despite that, Theorem 1.1 shows that there is room for
(weaker) polynomial improvements on (3) even for such eigenfunctions and even for p < 6.
In [44], Tacy obtained better estimates up to p = 2 but she made stronger assumptions
than ours on the sequence of eigenfunctions. Indeed, when restricted to our framework, the
main result from this reference applies to sequences of joint eigenfunctions that concentrate
away from the critical points of R(V )|Γx0

.

2We are not aware of a geometric criterion ensuring that all eigenfunctions are joint eigenfunctions.
This could also be achieved by showing the simplicity of the spectrum of −∆g0 + V but we could not find
in the literature a reference showing this (at least for a generic V ).
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1.1. Earlier and related results. The upper bounds (3) are in fact valid in the general
framework of compact Riemannian surfaces and, up to modifying the exponent σ0(p), they
remain true in higher dimensions [36]. Trying to improve them using the geometry of the
manifold has been a classical topic in global harmonic analysis over the last thirty years.

• Flat tori. In the case of flat tori and where V ≡ 0, this was achieved by Cooke [17]
and Zygmund [57] in dimension 2 while the higher dimensional case was pursued
by Bourgain [8] and by Bourgain-Demeter [10]. In that case, one can use the
arithmetic structure of the torus to get polynomial improvements over (3). See
also [51] for the case of Schrödinger operators on 2-dimensional tori. To the best
of the author’s knowledge, flat tori are the only geometric framework where one
can get global polynomial improvements without any further assumptions on the
sequence of eigenfunctions (see below for the case of joint eigenfunctions).

• Negatively curved manifolds. Another important class of examples where one
expects improvements are negatively curved manifolds. For p = ∞, Bérard showed
how to get logarithmic improvements [1]. This logarithmic gain was extended to
the range p > pc by Hassell and Tacy [25] and to manifolds without conjugate
points by Bonthonneau [7]. Still on negatively curved manifolds and for p ≤ pc,
we obtained together with Hezari a logarithmic gain along generic sequences of
eigenfunctions [26]. In a series of works related to Kakeya-Nikodym norms [40, 5, 6],
Blair and Sogge proved logarithmic gains (with a slightly worst exponent) in this
geometric context without any restriction on the sequence of eigenfunctions.

• Arithmetic eigenfunctions. A natural way to look for improvements over (3) is
to consider families of eigenfunctions that verify extra symmetries, for instance joint
eigenfunctions of the Laplacian and of a family of commuting operators. In the case
of a compact arithmetic surface, Iwaniec and Sarnak considered joint eigenfunctions
of the Laplacian and of Hecke operators. For such sequences of eigenfunctions, they
proved a polynomial improvement in the case of the L∞-norm [28]. In the case of
the sphere, Brooks and Le Masson considered the related problem of joint eigen-
functions of ∆g0 and the averaging operator for a finitely-generated free algebraic
subgroup of SO(3) [11]. For such eigenfunctions, they obtained the same logarith-
mic improvement as Hassell and Tacy in the negatively curved case. On a rank r
symmetric space of dimension n, Sarnak improved the bound on the L∞-norm by
a polynomial factor for eigenfunctions of the full ring of differential operators [33].
This was generalized to the case of Lp-norms by Marshall [31].

• Completely integrable systems. Another context (closely related to ours) is
the case of joint eigenfunctions of a quantum completely integrable system. Toth
and Zelditch proved that such eigenfunctions cannot have their Lp norms uniformly
bounded except in the case of flat tori [47, 48]. See [56, Ch. 11] for a detailed dis-
cussion on joint eigenfunctions of quantum completely integrable systems. More
recently, Galkowski and Toth obtained polynomial improvements on the L∞-bound
for joint eigenfunctions of a quantum completely integrable systems [21] and Tacy
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proved improved Sogge’s bounds for joint eigenfunctions of general families of semi-
classical pseudodifferential operators [44, 45].

• Local improvements. Sogge and Zelditch considered the problem from a more
local perspective as we are doing here. They proved that, if, for a given point x0
on a Riemannian manifold (M, g), the set of covectors ξ ∈ S∗

x0
M that come back to

x0 in finite time has zero measure, then one can improve locally near x0 the upper
bound on the L∞-norm by a o(1) term [42]. This was based on improvements on
the remainder in the local Weyl law. See also [32] for earlier related results of
Safarov. This result was later extended by Sogge, Toth and Zelditch under the
weaker assumptions that the set of recurrent co-vectors at x0 has 0-measure3 [41].
We also refer to [43] for further developments of this approach when the metric is
analytic and to [56, Ch. 10] for a detailed review. Related to these works, Galkowski
and Toth showed how to relate precisely the growth of the L∞-norm near a point
x0 to the semiclassical measure restricted to the (geodesic) flow-out of the fiber
S∗
x0
M [20] – see also [19]. More precisely, they proved that, if the n-dimensional

Hausdorff measure of the support of this restriction is 0, then one can get a o(1)-
improvement on the growth of L∞-norm near x0.

• Using Gaussian beams. This local approach was further improved by Canzani-
Galkowski in a series of work using Gaussian beams [13, 14]. In [14, Th. 1], they
showed how to use this notion in order to give quantitative and at most logarith-
mic improvements on the growth of Lp-norms near a point x0 when the conjugate
points to x0 do not pass too close to x0. Among other things, they recover in that
manner the results of Bérard, Hassell-Tacy and Bonthonneau on manifolds without
conjugate points. Besides that, they manage to deduce from their main results
local improvements near x0 on the growth of Lp norms (for p > pc) under quantita-
tive assumptions on the geodesics passing through the point x0 as in the works of
Sogge, Toth and Zelditch. Finally, they also applied their main results to certain
integrable (non-periodic) geometries on S

2 and obtain logarithmic improvements
away from certain critical points when p = ∞ [13, Th. 5]. As in our framework,
their result holds for the eigenfunctions of a single operator.

1.2. Strategy of proof. In the range p > 6, the proof is based on an argument to study
the growth of Lp norms that was used by Hezari and the author in [26] and further improved
by Sogge in [39]. It consists in relating the growth of Lp-norms to the growth of

(8)

∫

Br(x)

|ψλ(y)|2dυg0(y)

as λ→ +∞ and r → 0+ (in a way that depends on λ). For 2 ≤ p < 6, we rather make use
of results due to Blair and Sogge [37, 3, 4] to control Lp-norms in terms of Kakeya-Nikodym
averages around closed geodesics. See also [9] for earlier related results of Bourgain. Then,

3We emphasize that Theorem 1.1 considers the somehow opposite case where the set of recurrent vectors
has full measure. Despite that, we are able to get local polynomial improvements using the periodicity of
the geodesic flow and the presence of a subprincipal symbol.
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we obtain rough bounds on these averages in terms of (8). The results from these references
are briefly recalled (and adapted to Schrödinger eigenfunctions) in Sections 2 and 3.

Up to smoothing the characteristic function of the balls, these local quantities can be
interepreted in terms of Wigner distributions (or microlocal lifts). In particular, as was for
instance observed by Shnirelman in his seminal work on quantum ergodicity [34, 35], these
distributions verify an almost invariance property by the geodesic flow. See for instance [35,
Lemma 2, Eq. (10)]. This yields an upper bound of order O(r) on (8) at least if r does

not go too fast to 0 (say r ≫ λ−
1
2 ). This is valid in a quite general framework. Yet, this

is not sufficient to get an improvement over Sogge’s upper bound. In order to implement
this approach, one needs to have upper bounds of order O(r1+α) for some α > 0, or at
least O(δ(r)r) with δ(r) → 0 as r → 0+.

As pointed out by Sarnak in [33], a natural manner to look for improvements over Sogge’s
upper bounds is to consider operators commuting with the Laplacian and to study the Lp

norm of joint eigenfunctions. These joint eigenfunctions enjoy more symmetries which may
lead to improvements. This was for instance the strategy followed in [28, 11, 31, 20, 44, 45].
Here, we are not a priori in this situation as we consider eigenfunctions of the single
operator −∆g0 + V – see the discussion following Theorem 1.1. However, the periodicity
of the geodesic flow and the presence of the potential imply the existence of an extra
invariance property besides the one by the geodesic flow. More precisely, in [29, 30],
together with Macià, we showed that Schrödinger eigenfunctions satisfy an extra invariance
property by the Hamiltonian flow of R(V ) which is reminiscent from the properties of joint
eigenfunctions. This was achieved using Weinstein averaging method [52]. Using this extra

property, we will be able to get an upper bound of order O(r
3
2 ) on (8) up to scales r ≈ λ−

2
9

near points verifying (4) and (5). This will be the content of Section 4. This additional
invariance will be the reason for the polynomial improvement of Theorem 1.1. As we shall
see in our proof4, the reason for being limited to p 6= 6 comes from this exponent 3/2
and, in dimension 2, any bound on (8) of order O(r1+α) with α > 1/2 would give a local
improvement over Sogge’s upper bound (3) even for p = 6 (using the arguments of § 2).

Acknowledgements

I would like to address my warmest thanks to Hamid Hezari and Fabricio Macià for my
joint works with them [26, 29, 30] and for their many insights on these topics. This work
was supported by the Institut Universitaire de France and by the Agence Nationale de la
Recherche through the PRC projects ODA (ANR-18-CE40-0020) and ADYCT (ANR-20-
CE40-0017).

2. Reduction to L2 localized estimates for p > 6

In this section, we revisit an argument due to Sogge5 in order to relate Lp estimates to
localized L2-estimates in small balls. This argument will allow us to get our upper bounds

4See for instance (18).
5See also [26] for earlier related arguments of Hezari and the author using semiclassical methods [58,

§10].
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in the range 6 < p ≤ ∞. The proof given in [39] was for Laplace eigenfunctions and we
verify that it can be adapted to Schrödinger eigenfunctions.

Remark 2.1. Due to our L2-localized estimates in Section 4, we could as well work only
with p = ∞ and conclude by interpolation with the case p = 6 in (3). Yet, we write things
down for general p in order to identify the quantitative improvements one would need to
reach the case p = 6. See Equation (18) below.

Let ψλ be a solution to (2) that we suppose to be L2-normalized. In the following, we
suppose that λ2 is large enough so that we can pick λ > 0. We write

(9) (
√

−∆g0 − λ)ψλ = −(
√

−∆g0 + λ)−1V ψλ.

In particular, one has

(10) (
√
−∆g0 − λ)ψλ = OL2(λ−1).

Following [39, §2] and for j ∈ Z+, we denote by Ej the spectral projector onto the

eigenspace of
√
−∆g0 with eigenvalue λj :=

√
j(j + 1). We also fix a nonnegative ρ ∈ S(R)

satisfying

(11) ρ(0) = 1 and supp(ρ̂) ⊂ [−1, 1],

where ρ̂ is the Fourier transform of ρ. For λ > 0 and 0 < r ≤ 1, setting

Tλ,r :=
1

π

∫ +∞

−∞

r−1ρ̂(r−1t)eitλ cos(t
√

−∆g0)dt,

one finds

Tλ,r = ρ
(
r
(
λ−

√
−∆g0

))
+ ρ

(
r
(
λ+

√
−∆g0

))
.

The main result of [39, Eq. (3.1)] is that, for every p > 2 and for every f ∈ L2(S2),

(12) ‖Tλ,rf‖Lp(S2) ≤ Cpr
− 1

2λσ0(p)‖f‖L2(S2), λ ≥ 1, λ−1 ≤ r ≤ π

2
,

where the constant Cp is uniform for (λ, r) in the above range. Recall now from Huygens

principle that the Schwartz kernel cos(t
√

−∆g0)(x, y) vanishes if the geodesic distance
between x and y is > t. In particular, the Shwartz kernel Tλ,r(x, y) of Tλ,r vanishes
if dg0(x, y) > r thanks to our assumptions (11) on the support of ρ. Gathering these
informations, Sogge observed that, for every p > 2 and for every f ∈ L2(S2),

(13) ‖Tλ,rf‖Lp(Br(x0)) ≤ Cpr
− 1

2λσ0(p)‖f‖L2(B2r(x0)), λ ≥ 1, λ−1 ≤ r ≤ π

2
,

where the constant Cp is uniform for (λ, r) in the above range and for x0 ∈ S2. Fix now
some compact subset K of S2. We can cover K by finitely many balls (Br(xl))l=1,...,N(r) of
radius r and centered at points insideK. We require that the number N(r) is of order∼ r−2

and that each point of K is contained in at most C0 balls of the covering (B2r(xl))l=1,...,N(r).
Here C0 > 0 is independent of r – see for instance [15, Lemma 2]. Recall that we have in
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mind to apply this result when K = Br0(x0) is a fixed ball. Hence, one has, for 2 < p <∞
and for f in L2(S2),

‖f‖pLp(K) ≤ 2p−1




N(r)∑

l=1

‖Tλ,rf‖pLp(Br(xl))
+ ‖(Tλ,r − Id)f‖pLp(S2)




≤ Cpr
− p

2λσ0(p)p

N(r)∑

l=1

‖f‖pL2(B2r(xl))
+ Cp‖(Tλ,r − Id)f‖pLp(S2)

≤ CpC0r
− p

2λσ0(p)p

(
max

1≤l≤N(r)

{
‖f‖p−2

L2(B2r(xl))

})
‖f‖2L2(S2) + Cp‖(Tλ,r − Id)f‖pLp(S2).

Hence, one finds
(14)

‖f‖Lp(K) ≤ C ′
p

(
r−

1
2λσ0(p)

(
max

1≤l≤N(r)

{
‖f‖1−

2
p

L2(B2r(xl))

})
‖f‖2L2(S2) + ‖(Tλ,r − Id)f‖Lp(S2)

)
.

This upper bound is valid uniformly in the range λ ≥ 1 and λ−1 ≤ r ≤ π
2
. Similarly, in the

case of the L∞ norm, we would get

(15) ‖f‖L∞(K) ≤ Cr−
1
2λ

1
2

(
max

1≤l≤N(r)

{
‖f‖L2(B2r(xl))

})
+ ‖(Tλ,r − Id)f‖L∞(S2).

Note that so far we did not use the eigenvalue equation (9) and this is valid for any f in
L2(S2). We will now specify these results in the case where f = ψλ. We begin with the
remainder term:

Proposition 2.2. Let 2 < p ≤ ∞ and let 0 < β < 1. Then, there exists a constant C > 0
such that, for any solution ψλ to (2) with λ ≥ 1 and for any λ−β ≤ r ≤ π

2
, one has

‖(Tλ,r − Id)ψλ‖Lp(S2) ≤ C(rλ)σ0(p)‖ψλ‖L2(S2),

Gathering this Proposition with our estimates (14) and (15) on ‖f‖Lp(K), we find that,
for λ ≥ 1, λ−β ≤ r ≤ π

2
(with β < 1), for any 2 < p ≤ +∞ and for any L2-normalized

solution ψλ to (2),

(16) ‖ψλ‖Lp(K) ≤ Cp

(
r−

1
2λσ0(p) max

1≤l≤N(r)

{
‖ψλ‖

1− 2
p

L2(B2r(xl))

}
+ (rλ)σ0(p)

)
.

The involved constants Cp > 0 depend only on V , K, ρ, β and p. Hence, as in [26, 39],
we have reduced the problem of estimating the Lp norm of Schrödinger eigenfunctions to
determining bounds on L2-localized norms,

(17)

∫

B2r(xl)

|ψλ(x)|2dυg0(x),

as λ → +∞ with r verifying λ−β ≤ r ≤ π
2
. In particular, if, for some 0 < α ≤ 1, we were

able to bound (17) uniformly (in terms of λ) by Cr1+α, then we would be able to get an
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improved upper bound inside K of the form

‖ψλ‖Lp(K) ≤ Cp,K

(
r

α
2
− 1+α

p λσ0(p) + (rλ)σ0(p)
)
,

in the range

(18)
α

2
− 1 + α

p
> 0 ⇐⇒ p > 2

(
1 +

1

α

)
.

However, as explained in [39, §4], one cannot expect such improved bounds on the sphere
when V ≡ 0 thanks to the example of the spherical harmonics. In section 4, we shall see
how to get locally improved bounds on (17) when V does not identically vanish. Before
going to this question, we give the proof of Proposition 2.2.

Proof. Considering a solution to (9) and letting 2 ≤ p ≤ +∞, one has

‖(Tλ,r − Id)ψλ‖Lp(S2) ≤
∑

j∈Z+

‖Ej (Tλ,r − Id)Ejψλ‖Lp(S2)

≤
∑

j∈Z+

(|ρ(r(λ− λj))− 1|+ |ρ(r(λ+ λj))|) ‖Ej(ψλ)‖Lp(S2) .

As ρ belongs to the Schwartz class, we find using Sogge’s estimate (3) that, for every
N ≥ 1, there exists CN > 0 such that, for λ ≥ 1 and r ≥ λ−β,

∑

j∈Z+

|ρ(r(λ+ λj))| ‖Ej(ψλ)‖Lp(S2) ≤ CN(1 + rλ)−N‖ψλ‖L2(S2).

Using one more time Sogge’s estimate, we deduce that
(19)

‖(Tλ,r − Id)ψλ‖Lp(S2) ≤
∑

j∈Z+

|ρ(r(λ− λj))− 1|λσ0(p)
j ‖Ej(ψλ)‖L2(S2)+CN(1+rλ)

−N‖ψλ‖L2(S2).

We now fix some δ ≥ r so that δ ≤ rλ and we split the sum over j ∈ Z+ in two parts.
On the one hand, we consider the j such that |λ− λj | ≤ δ/r and on the other hand, the
integers such that |λ− λj | > δ/r. Recall that λ2j = j(j + 1). Hence, the number of terms
in the first sum is O(δ/r) and one is left with

‖(Tλ,r − Id)ψλ‖Lp(S2) ≤
∑

j∈Z+:|λ−λj |>δ/r

|ρ(r(λ− λj))− 1|λσ0(p)
j ‖Ej(ψλ)‖L2(S2)

+

(
C
δ2

r
λσ0(p) + CN(1 + rλ)−N

)
‖ψλ‖L2(S2).

For the remaining sum, we can finally make use of the eigenvalue equation (9). It implies
the existence of some constant Cρ,V > 0 depending only on ρ and V such that

∑

j∈Z+:|λ−λj |>δ/r

|ρ(r(λ− λj))− 1|λσ0(p)
j ‖Ej(ψλ)‖L2(S2) ≤ Cρ,V

∑

j∈Z+:|λ−λj |>δ/r

λ
σ0(p)
j

|λ2 − λ2j |
‖ψλ‖L2(S2).
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As σ0(p) varies between 0 (for p = 2) and 1/2 (for p = ∞), this last quantity is finite and
it remains to evaluate

(20)
∑

j∈Z+:|λ−λj |>δ/r

λ
σ0(p)
j

|λ2 − λ2j |

in terms of δ, r, λ and p. We now recall that, for X > 0, one has (1 +X)σ0(p) ≤ 1+Xσ0(p)

(as σ0(p) ≤ 1/2). Hence, one has

∑

j∈Z+:|λ−λj |>δ/r

λ
σ0(p)
j

|λ2 − λ2j |
≤

∑

j∈Z+:|λ−λj |>δ/r

|λ− λj|σ0(p)

|λ2 − λ2j |
+

∑

j∈Z+:|λ−λj |>δ/r

λσ0(p)

|λ2 − λ2j |

≤ 2
∑

j∈Z+:|λ−λj |>δ/r

λ−1+ 3
2
σ0(p)

|λ− λj |1+
σ0(p)

2

≤ 2λ−
1
4

∑

j∈Z+:|λ−
√

j(j+1)|>δ/r

1

|λ−
√
j(j + 1)|1+σ0(p)

2

≤ Cλ−
1
4

∑

j∈Z∗

+

j−1−
σ0(p)

2 .

In summary, if we suppose that r ≥ λ−β (for some β < 1), we obtain the following upper
bound

‖(Tλ,r − Id)ψλ‖Lp(S2) ≤ C

(
δ2

r
λσ0(p) + λ−

1
4

)
‖ψλ‖L2(S2),

where C > 0 depends on ρ, V , β and p. Recall that we supposed r ≤ δ ≤ rλ. Hence,

as 0 ≤ σ(p) ≤ 1
2
, we can set δ = r

1+σ0(p)
2 provided r ≥ λ

− 2
σ0(p)+1 , which is ensured by our

assumption r ≥ λ−β. Implementing this, we obtain the existence of a constant Cρ,V,β,p > 0
(depending on ρ, V , β and p) such that

‖(Tλ,r − Id)ψλ‖Lp(S2) ≤ Cρ,V,β,p(rλ)
σ0(p)‖ψλ‖L2(S2),

as long as r ≥ λ−β. �

Remark 2.3. In view of applications of our method to semiclassical problems, it is worth
noting that the above arguments work as well for solutions to

(21) −∆g0ψλ + βλV ψλ = λ2ψλ, ‖ψλ‖L2(S2) = 1,

where (βλ)λ is a given nonnegative sequence that may tend to +∞. In that case, the upper
bound (16) becomes, for every ǫ > 0,

(22) ‖ψλ‖Lp(K) ≤ Cp,ǫ

(
r−

1
2λσ0(p) max

1≤l≤N(r)

{
‖ψλ‖

1− 2
p

L2(B2r(xl))

}
+ (rλ)σ0(p) + βλλ

−1+ǫλσ0(p)

)
.
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The calculation is indeed exactly the same except for the upper bound on the size of the
remainder in (20) that we need to improve. Hence, we have potentially improvements as
long as6 βλλ

−1+ǫ → 0.

3. Reduction to L2 localized estimates for p < 6 via Kakeya-Nikodym
bounds

We now deal with the range 2 < p < 6 which can also be reduced to estimating similar
quantities. For such p, we can make use of the results of Blair and Sogge relating the
growth of Lp norms for small p to Kakeya-Nikodym averages.

We let 0 ≤ χ ≤ 1 be a smooth cutoff function which is equal to 1 on [−1, 1] and to
0 outside [−2, 2]. Given x ∈ S2, we denote by expx the exponential map induced by the
metric g0 and we set

χx,r(y) := χ

(‖ exp−1
x (y)‖
r

)
∈ C∞(S2).

This function is equal to 1 on Br(x) and to 0 outside B2r(x). We fix some r0 > 0 and some
x0 ∈ S2. For any normalized solution to (2), one has

−λ−2∆g0ψλ − ψλ = λ−2V ψλ.

In particular, one can verify, using commutation rules for semiclassical pseudodifferential
operators [58, § 4 and 14],

(23) (−λ−2∆g0 − 1)k (χx0,r0ψλ) = O(λ−k), k = 1, 2.

These two assumptions are exactly the ones needed to apply [4, Th. 1.1] in dimension 2. In
order to formulate this result, we denote by G̃(S2) the set of unit length geodesic segments

in S
2 and, for every r > 0 and for every γ ∈ G̃(S2),

Tr(γ) :=
{
x ∈ S

2 : dg0(x, γ) ≤ r
}
.

With these conventions, the main result from [4] applied to χx0,r0ψλ tells us that, for
4 < p < 6,

(24) ‖ψλ‖Lp(Br0 (x0))
≤ Cpλ

σ0(p)


 sup

γ∈G̃(S2)

∫

B2r0 (x0)∩T
λ
−

1
2
(γ)

|ψλ(x)|2dυg0(x)




1
2(

6
p
−1)

,

and

(25) ‖ψλ‖L4(Br0 (x0))
≤ Cp(log λ)λ

1
8


 sup

γ∈G̃(S2)

∫

B2r0 (x0)∩T
λ
−

1
2
(γ)

|ψλ(x)|2dυg0(x)




1
4

,

6This can probably sligthly improved to replace the λǫ by some logarithmic factor but we did not try
to optimize that.



12 GABRIEL RIVIÈRE

where the constants Cp > 0 depend only on p. Thanks to these results, it is sufficient to
derive nontrivial upper bounds on the Kakeya-Nikodym averages

∫

B2r0 (x0)∩T
λ
−

1
2
(γ)

|ψλ(x)|2dυg0(x).

in order to improve locally Sogge’s upper bounds (12) in the range 4 < p < 6. By
interpolation, it will automatically yields an improvement for 2 < p < 4.

Finally, we can relate these quantities to the ones appearing in (17). Indeed, we can
pick 0 < β < 1/2 and we can cover B2r0(x0)∩T

λ−
1
2
(γ) by a family of 2r0r

−1 balls of radius

r ≥ λ−β centered on a point of γ ∩ B2r0(x0). Hence, one has

(26)

∫

B2r0 (x0)∩T
λ
−

1
2
(γ)

|ψλ(x)|2dυg0(x) ≤ 4r0r
−1 sup

x∈γ∩B2r0 (x0)

{∫

Br(x)

|ψλ(y)|2dυg0(y)
}
,

which are exactly the quantities that appeared in Section 2. Hence, in both cases, we are
reduced to estimating these localized L2-estimates.

Remark 3.1. As in Remark 2.3, we can consider solutions to (21). One can verify that the
assumption (23) is still verified as long as 0 ≤ βλ ≤ λ. Hence, (24) and (25) remain true
in that generalized framework.

Remark 3.2. As we will only consider balls of radius r ≫ λ−
1
2 , the logarithmic factor

appearing in (25) could probably be removed following [3].

4. L2-localized estimates using invariance by the classical flows

Thanks to (16), (24), (25) and (26), we know that proving Theorem 1.1 amounts to
control uniformly the following quantity

MBr0 (x0),α,r(ψλ) := sup

{
1

r1+α

∫

Br(x)

|ψλ(y)|2dυg0(y) : x ∈ Br0(x0)

}
,

with 0 < α ≤ 1 and λ−β ≤ r that goes to 0 as λ → +∞. The following Proposition
answers this problem and it is the main new technical result of the article:

Proposition 4.1. Let x0 be a point in S2 verifying the assumption of Theorem 1.1. Then,
there exist r0 > 0 and C0 > 0 such that, for any (ψλ, λ) solution to (2),

λ−
2
9 ≤ r ≤ π

2
=⇒ MBr0 (x0),

1
2
,r (ψλ) ≤ C0‖ψλ‖2L2(S2).

Implementing this bound in (16) and in (24), we find that, for 4 < p ≤ ∞ and for λ > 0,

‖ψλ‖Lp(Br0 (x0))
≤ Cp,x0λ

σ0(p)−
1
18 |1− 6

p |‖ψλ‖L2(S2).

Finally, for p = 4, we derive from (25) that, for λ > 1,

‖ψλ‖L4(Br0 (x0))
≤ C4,x0(log λ)λ

1
8
− 1

36‖ψλ‖L2(S2),
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which also yields the result for 2 < p ≤ 4 by interpolation. Hence, in order to prove
Theorem 1.1, we are left with the proof of Proposition 4.1 which will be the object of the
rest of the article.

Coming back to Proposition 4.1, it is in fact sufficient to get an uniform upper bound
on

M̃Br0 (x0),α,r(ψλ) := sup

{
1

r1+α

∫

S2

χx,r(y)|ψλ(y)|2dυg0(y) : x ∈ Br0(x0)

}
,

where we used the conventions of §3 for the function χx,r. In order to get this uniform
control, we will make use of the invariance properties of semiclassical Wigner distributions
that we recently obtained with Macià [29, 30]. In order to make use of semiclassical
methods [58], we set h = λ−1 and uh = ψλ. Hence, one has

(27) −h2∆g0uh + h2V uh = uh, ‖uh‖L2(S2) = 1.

Let now x be a point in Br0(x0) and h
β ≤ r ≤ π

4
. In terms of pseudodifferential operators

on S2 [58, §14.2], the quantity we are interested in can be rewritten as
∫

S2

χx,r(y)|uh(y)|2dυg0(y) = 〈Oph (χx,r) uh, uh〉L2(S2) ,

where Oph is a semiclassical quantization [58, §14.2.3]. Note that, in order to have χx,r

amenable to semiclassical pseudodifferential calculus [58, §4.4.1] (see also [18, §2.2, App.A]
for the case of manifolds), we need to impose that

(28) r ≥ hβ and 0 ≤ β <
1

2
.

We will now revisit the arguments of [29, 30] in that specific framework and show how they
yield the expected result.

4.1. Spectral cutoff. We fix some smooth cutoff function 0 ≤ χ0 ≤ 1 which is equal to 1
on the interval [1/2, 2] and to 0 outside [1/4, 4]. Thanks to (27), one has

〈Oph (χx,r) uh, uh〉L2(S2) =
〈
Oph (χx,r)χ0(−h2∆g0 + h2V )uh, uh

〉
L2(S2)

.

According to [58, Th. 14.9], χ0(−h2∆g0+h
2V ) is a semiclassical pseudodifferential operator

in the class Ψ−∞(S2) with principal symbol equal to χ0(‖η‖2g∗0(y)). Hence, the composition

rule for pseudodifferential operators [58, Th. 4.18 and 14.1] implies that

〈Oph (χx,r) uh, uh〉L2(S2) =
〈
Oph

(
χx,r(y)χ0(‖η‖2)

)
uh, uh

〉
L2(S2)

+O(h1−2β),

where the constant in the remainder is uniform for x ∈ S2 and r ≥ hβ. In the following,
we set

ax,r(y, η) := χx,r(y)χ0(‖η‖2g∗0(y)).
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4.2. Applying the evolution by the free Schrödinger flow. We write

(29) −∆g0 = A2 − 1

4
,

where A is a selfadjoint pseudodifferential operator of order 1 with principal symbol ‖η‖g∗0(y)
and satisfying

(30) e2iπA = −Id.

Equivalently, one has A =
√

1
4
−∆g0. The eigenvalue equation (27) can be rewritten as

(
A2 − 1

h2

)
uh =

(
1

4
− V

)
uh =⇒

(
A− 1

h

)
uh = OL2(h).

In particular, one has

(31) eis(A− 1
h)uh = uh +

∫ s

0

eiτ(A− 1
h)

(
A− 1

h

)
uhdτ = uh +OL2(|s|h).

This leads to
(32)∫

S2

χx,r(y)|uh(y)|2dυg0(y) =
〈(

1

2π

∫ 2π

0

eisAOph (ax,r) e
−isAds

)
uh, uh

〉

L2(S2)

+O(h1−2β)

In the following, given a in C∞
c (T ∗S2 \ 0), we set, by analogy with the Radon transfom,

Rqu(Oph(a)) :=
1

2π

∫ 2π

0

eisAOph(a)e
−isAds.

According to Remark 4.2 below, the Egorov Theorem allows to relate the operatorRqu(Oph(ax,r))
to the classical average by the geodesic flow:

(33) Rqu(Oph(ax,r)) = Oph

(
1

2π

∫ 2π

0

ax,r ◦ ϕt
0dt

)
+OL2→L2(h1−2β),

where the constant in the remainder is uniform for x ∈ S2 and r ≥ hβ and where ϕt
0 is the

Hamiltonian flow associated with the Hamiltonian function7 H0(y, η) := ‖η‖g0(y). Given a
in C∞

c (T ∗S2 \ 0), we set

Rcl(a) :=
1

2π

∫ 2π

0

a ◦ ϕt
0dt.

Remark 4.2. Let us briefly remind how to prove (33). This is standard [18, App. A.3] and
we just need to pay attention to our class of symbols. First, we write, for every s, t ∈ [0, 2π],

d

ds

(
eisAOph(ax,r ◦ ϕt−s

0 )e−isA
)
= eisA

(
i

h

[
hA,Oph(ax,r ◦ ϕt−s

0 )
]
−Oph

(
{H0, ax,r ◦ ϕt−s

0 }
))

e−isA.

We now let χ1 be a smooth function which is equal to 1 in a neighborhood of [1/4, 4] and
to 0 outside [1/8, 8]. In particular, χ1(H

2
0 ) is equal to 1 on the support of ax,r. Combining

7This is just a reparametrization of the standard geodesic flow.
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this with the composition rules for pseudodifferential operators with exotic symbols on
manifolds [18, Lemma A.6], we know that, for every τ ∈ [0, 2π],

Oph(ax,r ◦ ϕτ
0) = Oph(ax,r ◦ ϕτ

0) Oph(χ1(H
2
0 )) +OL2→L2(h2)

= Oph(χ1(H
2
0 )) Oph(ax,r ◦ ϕτ

0) +OL2→L2(h2).

We can also remark using the composition rules for pseudodifferential operators that

hAOph(χ1(H
2
0 )) = Oph(χ1(H

2
0 ))hA+ hOph(r) +OL2→L2(h2),

where r is a smooth compactly supported function that depends in a multilinear way of
the derivatives of order ≥ 1 of the function χ1(H

2
0 ). Thus its support does not intersect

the support of ax,r. In particular, using the composition rule [18, Lemma A.6] one more
time and the support properties of ax,r, one has Oph(ax,r) Oph(r) = OL2→L2(h2). Hence,
after integration over the interval [0, 2π] and applying the Calderón-Vaillancourt Theorem,
one finds

Rqu(Oph(ax,r)) = Oph

(
1

2π

∫ 2π

0

ax,r ◦ ϕt
0dt

)
+OL2→L2(h)

+
1

2π

∫ 2π

0

∫ t

0

(
i

h

[
hAOph(χ1(H

2
0 )),Oph(ax,r ◦ ϕt−s

0 )
])

dsdt

− 1

2π

∫ 2π

0

∫ t

0

Oph

(
{H0, ax,r ◦ ϕt−s

0 }
)
dsdt.

As all our pseudodifferential operators are microlocally supported in a compact8 set of
T ∗S2, we can again apply the composition rule for exotic symbols on a compact manifold
as stated in [18, Lemma A.6]. Thus, we can conclude that (33) holds. Inspecting carefully
the argument, we can in fact conclude that

(34) Rqu(Oph(ax,r)) = Oph(ãx,r) +OL2→L2(h2),

where the constant in the remainder is uniform for x ∈ S2 and r ≥ hβ and ãx,r is a symbol
in the class Scomp

β (T ∗S2) as defined in [18, §2.2]. This symbol is equal to Rcl(ax,r) modulo

h1−2βScomp
β (T ∗

S
2) and its support is contained in the support of Rcl(ax,r).

Remark 4.3. The arguments used from the beginning of this Section would work as well
for the following semiclassical problem:

−h2∆g0uh + εhV uh = uh, ‖uh‖L2(S2) = 1,

where εh → 0 fast enough. More precisely, the above proofs only require h−1εh → 0 in
order to have a small remainder in (31). In this case, this would yield the bound
∫

S2

χx,r(y)|uh(y)|2dυg0(y) =
〈(

1

2π

∫ 2π

0

e−isAOph (ax,r) e
isAds

)
uh, uh

〉

L2(S2)

+O(h1−2β)+O(h−1εh).

8This was the main reason for inserting the pseudodifferential cutoff Oph(χ1(H
2

0
)).
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The argument from [29] would allow to remove this extra remainder O(h−1εh) and to
handle the case εh → 0+. Yet, as this kind of condition on the size of the potential already
appeared in Remarks 2.3 and 3.1, we do not pursue this here.

4.3. Weinstein averaging method. Following Weinstein [52], one can use (30) to obtain
the following exact commutation relation:

[Rqu(Oph(ax,r)), A] = 0.

In particular, thanks to (29), one has

(35) [Rqu(Oph(ax,r)),∆g0] = 0.

Using (27), this implies that

〈[V,Rqu(Oph(ax,r))] uh, uh〉L2(S2) = 0.

Thanks to (34), this can be rewritten as

〈[V,Oph(ãx,r)] uh, uh〉L2(S2) = O(h2).

As in Remark 4.2, we can insert pseudodifferential cutoffs and we find
〈[
V Oph(χ1(H

2
0 )),Oph(ãx,r)

]
uh, uh

〉
L2(S2)

= O(h2).

Hence, thanks to the composition rule for pseudodifferential operators [18, Lemma A.6]
with exotic symbols, we get

〈Oph ({V,Rcl(ax,r)}) uh, uh〉L2(S2) = O(h1−3β),

where the constant in the remainder is uniform for x ∈ S2 and r ≥ hβ . Observe that the
extra loss in O(h1−3β) (compared with O(h1−2β)) comes from the subprincipal term in ãx,r.
Applying the argument of paragraph 4.2 one more time, we find that

〈
Oph

(
1

2π

∫ 2π

0

{V,Rcl(ax,r)} ◦ ϕt
0dt

)
uh, uh

〉

L2(S2)

= O(h1−3β),

from which we infer

〈Oph ({Rcl(V ),Rcl(ax,r)}) uh, uh〉L2(S2) = O(h1−3β),

with the constant in the remainder enjoying the same uniformity property as before. Here
V is identified with its pullback on T ∗S2 \ 0 via the canonical projection Π(y, η) = y.

Let us now denote by ϕt
〈V 〉 the Hamiltonian flow induced by Rcl(V ). As Rcl(V ) and H0

Poisson commute, one has ϕt
0 ◦ ϕs

〈V 〉 = ϕs
〈V 〉 ◦ ϕt

0 for every t and s in R. We note that all
the above argument would work as well if we replace ax,r by ax,r ◦ ϕτ

〈V 〉 and the remainder

would remain uniform in τ (and in (x, r)) provided that τ remains on a bounded interval.
Hence, one has, uniformly for τ ∈ [−τ0, τ0], x ∈ S2 and r ≥ hβ,

(36)
〈
Oph

({
Rcl(V ),Rcl(ax,r) ◦ ϕτ

〈V 〉

})
uh, uh

〉
L2(S2)

= O(h1−3β).

We integrate this expression between 0 and τ :
〈
Oph

(
Rcl(ax,r) ◦ ϕτ

〈V 〉

)
uh, uh

〉
L2(S2)

= 〈Oph (Rcl(ax,r)) uh, uh〉L2(S2) +O(h1−3β).
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Combining this with (32), we find
(37)∫

S2

χx,r(y)|uh(y)|2dυg0(y) =
〈
Oph

(
1

2τ0

∫ τ0

−τ0

Rcl(ax,r) ◦ ϕτ
〈V 〉dτ

)
uh, uh

〉

L2(S2)

+O(h1−3β),

where the constant in the remainder is uniform for x in K and r ≥ hβ .

4.4. Applying Calderón-Vaillancourt Theorem. We are now in position to apply the
Calderón-Vaillancourt Theorem [58, Th. 5.1] which tells us that
∥∥∥∥Oph

(
1

2τ0

∫ τ0

−τ0

Rcl(ax,r) ◦ ϕτ
〈V 〉dτ

)∥∥∥∥
L2→L2

≤ C

∥∥∥∥
1

2τ0

∫ τ0

−τ0

Rcl(ax,r) ◦ ϕτ
〈V 〉dτ

∥∥∥∥
L∞(T ∗S2)

+O(h1−3β),

where C0 is some universal constant and where the constant in the remainder is one more
time uniform for x in S

2 and r ≥ hβ . Together with (37), we finally get
∫

S2

χx,r(y)|uh(y)|2dυg0(y) ≤ C

∥∥∥∥
1

2τ0

∫ τ0

−τ0

Rcl(ax,r) ◦ ϕτ
〈V 〉dτ

∥∥∥∥
L∞(T ∗S2)

+O(h1−3β).

From the construction of ax,r, one can in fact reduce to the unit cotangent bundle:
(38)∫

S2

χx,r(y)|uh(y)|2dυg0(y) ≤ C

∥∥∥∥
1

4πτ0

∫ τ0

−τ0

∫ 2π

0

χx,r ◦ ϕt
0 ◦ ϕτ

〈V 〉dtdτ

∥∥∥∥
L∞(S∗S2)

+O(h1−3β),

where we identify χx,r with its pullback on S∗S2.
In order to facilitate the discussion, we shall work on the space of geodesic G(S2) ≃ S2.

With the induced symplectic form on S
2, ϕτ

〈V 〉 can be viewed as the Hamiltonian flow of

R(V ) on S2. Hence, what we are aiming at is an upper bound on

0 ≤ 1

2τ0

∫ τ0

−τ0

R(χx,r) ◦ ϕτ
〈V 〉(γ)dτ,

when γ ∈ G(S2) ≃ S2 and when r ≪ τ0. It is in fact sufficient to find an upper bound on

1

2τ0

∫ τ0

−τ0

R(1B2r(x)) ◦ ϕτ
〈V 〉(γ)dτ,

where 1B2r(x) is the characteristic function of the geodesic ball of radius 2r centered at x.
The function R(1B2r(x)) is supported in a neighborhood of width 4r of Γx ⊂ G(S2) and it
is bounded from above by 4r. Hence,

(39) ∀γ ∈ G(S2), 0 ≤ 1

2τ0

∫ τ0

−τ0

R(1B2r(x)) ◦ ϕτ
〈V 〉(γ)dτ ≤ 4r.

Remark 4.4. In the case of semiclassical Schrödinger operators as in Remark 4.3, the argu-
ment would work similarly and we would also obtain the bound (38) for this semiclassical
problem (up to the already extra remainder O(h−1εh) that apeared in this Remark).
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4.5. Flow lines of ϕt
〈V 〉 near Γx0. So far we did not use our assumptions on V or on

the point x0. They will now be used to get an improvement of order r1/2 on the upper
bound (39) when x ∈ Br0(x0). To that aim, we now fix x0 satisfying the assumption of the
Theorem and we will analyze the flow lines of ϕt

〈V 〉 near a given point γ0 of Γx0 .
Without loss of generality, we may suppose that x0 is the north pole, i.e. with coordinates

(0, 0, 1) in the representation (1). Then, for every x ∈ Bǫ0(x0), Γx is a great circle of the
sphere lying in the annulus

Aǫ0 :=
{
(x1, x2, x3) ∈ R

3 : x21 + x22 + x23 = 1, |x3| ≤ sin ǫ0
}
.

Similarly, the function R(1B2r(x)) is supported on an annulus of width 2| sin(2r)| around
Γx and it takes the value 4r on this annulus. In particular, if τ0 > 0 and r1 > 0 are chosen
small enough, then, for every x ∈ Bǫ0(x0) and for every 0 < r < r1, the support of

(40)
1

2τ0

∫ τ0

−τ0

R(1B2r(x)) ◦ ϕτ
〈V 〉dτ

is contained in the annulus A2ǫ0. Hence, once we have fixed x ∈ Bǫ0(x0), we just need to
study the value of this function inside such an annulus. More precisely, we want to show
that this is of order O(r3/2) uniformly for γ in this annulus.

Let γ0 ∈ Γx0 and let us prove this uppper bound in a neighborhood of a fixed γ0.
Without loss of generality, we can suppose that, in spherical coordinates (φ, θ), one has
γ0 = (π/2, 0). The vector field X〈V 〉 can be written in this system of coordinates:

X〈V 〉(φ, θ) = − 1

sin φ

∂R(V )

∂θ
∂φ +

∂R(V )

∂φ
∂θ.

We need to distinguish two situations:

(1) X〈V 〉(γ0) /∈ Tγ0Γx0 which means that ∂R(V )
∂θ

(π/2, 0) 6= 0;

(2) X〈V 〉(γ0) ∈ Tγ0Γx0 which means that ∂R(V )
∂θ

(π/2, 0) = 0. In that case, the hypothesis

of Theorem 1.1 implies that ∂R(V )
∂φ

(π/2, 0) 6= 0 and ∂2R(V )
∂θ2

(π/2, 0) 6= 0

The Hamilton-Jacobi equations can be written as

(41) φ′(τ) = − 1

sin φ(τ)

∂R(V )

∂θ
(φ(τ), θ(τ)), and θ′(τ) =

∂R(V )

∂φ
(φ(τ), θ(τ)).

4.5.1. The transverse case. Let us begin with the first situation which is slightly easier to

handle. Witout loss of generality, we can suppose that ∂R(V )
∂θ

(π/2, 0) > 0 (the negative
case is handled similarly). First, using spherical coordinates, we fix an open neighborhood
U2ǫ0 := (π/2− 4ǫ0, π/2 + 4ǫ0)× (−2ǫ0, 2ǫ0) so that

(42) ∀γ = (φ, θ) ∈ U2ǫ0,
∂R(V )

∂θ
(φ, θ) >

1

2

∂R(V )

∂θ
(π/2, 0) =: a0 > 0.

Up to decreasing the value τ0, we can suppose without loss of generality that ϕτ
〈V 〉(γ) belongs

to U2ǫ0 for every |τ | ≤ τ0 and for every γ ∈ Uǫ0 . As already explained, the support of (40)
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is contained in A2ǫ0. For the moment, we will study locally its value inside Uǫ0 ⊂ A2ǫ0. We
now fix some γ in Uǫ0 . In particular,

∀|τ | ≤ τ0,
∂R(V )

∂θ

(
ϕτ
〈V 〉(γ)

)
≥ a0,

which implies thanks to (41) that φ′(τ) < 0 along this piece of trajectory. This yields the

following upper bound along the orbit
(
ϕτ
〈V 〉(γ)

)
−τ0≤τ≤τ0

:

(43) φ(τ2)− φ(τ1) ≤ − a0
cos(4ǫ0)

(τ2 − τ1) ⇐⇒ τ2 − τ1 ≤
cos(4ǫ0)

a0
(φ(τ1)− φ(τ2)),

for every −τ0 ≤ τ1 ≤ τ2 ≤ τ0.
Recall now that the function in (40) is defined by averaging R(1B2r(x)) for some x ∈

Bǫ0(x0) and some 0 < r < r1. In spherical coordinates, x can be written (φx, θx) where
0 ≤ φx ≤ ǫ0 and 0 ≤ θx ≤ 2π. Hence, using our identification G(S2) ≃ S2, R(1B2r(x)) is 4r
times the characteristic function of the annulus of width 4r centered at Γx,

A2r(x) = {(φ, θ) : φ− arccos (− cos(θ − θx) sin(φx)) ∈ [−2r, 2r], 0 ≤ θ ≤ 2π} .
The boundary of this annulus is given by

∂A2r(x) = {(arccos (− cos(θ − θx) sin(φx))± 2r, θ) : 0 ≤ θ ≤ 2π}
and it is oriented thanks to the natural orientation on S

2. Using now that R(V ) is of class
C1 and (42), we know that, up to decreasing the value of ǫ0 (and thus of τ0 and r1), the
vector field X〈V 〉 is uniformly (negatively) transverse to ∂A2r(x)∩U2ǫ0 for every x ∈ Bǫ0(x0)
and for every 0 < r < r1. In particular, given γ ∈ Uǫ0 , the set

{
τ ∈ [−τ0, τ0] : ϕτ

〈V 〉(γ) ∈ A2r(x)
}

is an interval that we denote by Ix,r(γ). Hence,

0 ≤ 1

2τ0

∫ τ0

−τ0

R(1B2r(x)) ◦ ϕτ
〈V 〉(γ)dτ ≤ 2r|Ix,r(γ)|

τ0
,

and it remains to determine an upper bound on the size of this interval in terms of r.
Thanks to the upper bound (43), the length of the interval is bounded by the maximal
variation of φ along the orbit of γ inside A2r(x). If we denote the interval Ix,r(γ) by [τ1, τ2],
then

φ(τ1)−φ(τ2) ≤ 4r+|arccos (− cos(θ(τ1)− θx) sin(φx))− arccos (− cos(θ(τ2)− θx) sin(φx))| .
As φx ∈ [−ǫ0, ǫ0] (with ǫ0 > 0 small), this yields an upper bound of the form

φ(τ1)− φ(τ2) ≤ 4r + C sin(ǫ0)|τ2 − τ1|,
where C > 0 is some uniform constant. Combined with (43), it gives us

0 ≤ |Ix,r(γ)| = τ2 − τ1 ≤
4r

1− C sin(ǫ0)
,
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and then, for every x ∈ Bǫ0(x0) and every 0 ≤ r ≤ r1,

(44) ∀γ ∈ Uǫ0, 0 ≤ 1

2τ0

∫ τ0

−τ0

R(1B2r(x)) ◦ ϕτ
〈V 〉(γ)dτ ≤ 8r2

τ0(1− C sin(ǫ0))
.

This shows the expected upper bound in the neighborhood Uǫ(γ0) := Uǫ0 of γ0 when
X〈V 〉(γ0) is transverse to Γx0 .

4.5.2. The tangent case. We now deal with the slightly more delicate case where X〈V 〉(γ0)

is tangent to Γx0 where ∂R(V )
∂θ

(π/2, 0) = 0. Thanks to (4), we can again without loss of

generality assume that ∂R(V )
∂φ

(π/2, 0) > 0, and suppose that

(45) ∀γ = (φ, θ) ∈ U2ǫ0,
∂R(V )

∂φ
(φ, θ) >

1

2

∂R(V )

∂φ
(π/2, 0) =: a0 > 0.

Moreover, thanks to hypothesis (5), the critical point at 0 of the map θ 7→ R(V )(π/2, θ)
is nondegenerate. In particular, without loss of generality and up to decreasing the value
of ǫ0, there exists b0 > 0 such that

(46) ∀γ = (φ, θ) ∈ U2ǫ0 ,
∂2R(V )

∂θ2
(φ, θ) >

1

2

∂2R(V )

∂θ2
(π/2, 0) =: b0 > 0.

We now fix γ ∈ Uǫ0 ⊂ A2ǫ0 and, as before, we can suppose that, for every |τ | ≤ τ0,

∂R(V )

∂φ

(
ϕτ
〈V 〉(γ)

)
≥ a0 and

∂2R(V )

∂θ2
(
ϕτ
〈V 〉(γ)

)
≥ b0.

As in the transverse case, one has

0 ≤ 1

2τ0

∫ τ0

−τ0

R(1B2r(x)) ◦ ϕτ
〈V 〉(γ)dτ ≤ 2r|Ix,r(γ)|

τ0
,

where
Ix,r(γ) :=

{
τ ∈ [−τ0, τ0] : ϕτ

〈V 〉(γ) ∈ A2r(x)
}
.

The main difference with the above case is that this set is not an interval in general.
Yet, we can note that, along the trajectory of γ, the vector (φ′(τ), θ′(τ)) is nonvanishing
thanks to (45). Moreover, it is tangent to ∂Ar′(x) (for some r′ < 2ǫ0) if and only if

F (τ) := φ′(τ)− θ′(t)
sin(θ(τ)− θx) sin(φx)√

1− cos2(θ(τ)− θx) sin
2 φx

= 0.

We can observe that

F ′(τ) = − 1

sinφ(τ)

∂R(V )

∂θ
(φ(τ), θ(τ))

∂2R(V )

∂θ∂φ
(φ(τ), θ(τ))

− 1

sinφ(τ)

∂R(V )

∂φ
(φ(τ), θ(τ))

∂2R(V )

∂θ2
(φ(τ), θ(τ)) +O(ǫ0),

where the constant in the remainder is uniformly bounded for τ ∈ [−τ0, τ0] and γ ∈ Uǫ0 .
Thus, as ∂θR(V )(π/2, 0) = 0, we can suppose that, up to decreasing the value of ǫ0 > 0,
|F ′(τ)| ≥ a0b0/2. In particular, F is monotone and it vanishes at most at one point inside
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[−τ0, τ0]. As a consequence, the set Ix,r(γ) is the union of at most two disjoint intervals
inside [−τ0, τ0] that we denote by [τ1, τ2] and [τ3, τ4]. Moreover, X〈V 〉(ϕ

τ
〈V 〉(γ)) is tangent

to ∂A2r(x) at most at one point inside [τ1, τ2] ∪ [τ3, τ4].
It now remains to bound the length of these two intervals in terms of r. To that aim,

we observe that, for τ ∈ [τ1, τ2] ∪ [τ3, τ4], one can find r(τ) ∈ [−2r, 2r] such that

φ(τ) = r(τ) + arccos (− cos(θ(τ)− θx) sinφx) .

Given now τ, τ ′ ∈ [τ1, τ2] ∪ [τ3, τ4], one finds

r(τ)− r(τ ′) = F (τ ′)(τ − τ ′) +
F ′(τ ′)

2
(τ − τ ′)2 +O((τ − τ ′)3),

where the constant in the remainder can be made uniform in terms of r, γ, τ and τ ′. We
use this equality to find an upper bound on the length of [τ1, τ2]. The other interval (if
non empty) is handled simlarly. Recall from the above calculation that F ′(τ) ≤ −a0b0/2
for every τ ∈ [−τ0, τ0]. We have to distinguish three cases:

• F (τ1) ≤ 0. In that case, we take τ ′ = τ1 and τ = τ2 and we find

r(τ2)− r(τ1) ≤ −a0b0
4

(τ2 − τ1)
2 +O((τ2 − τ1)

3).

From this, we can deduce that |τ2 − τ1| ≤ 32r1/2

a0b0
.

• F (τ1) ≥ 0 and F (τ2) ≥ 0. In that case, we take τ ′ = τ2 and τ = τ1 and we find

r(τ1)− r(τ2) ≤ −a0b0
4

(τ2 − τ1)
2 +O((τ2 − τ1)

3).

Again, we deduce an upper bound of order O(r
1
2 ).

• F (τ1) > 0 and F (τ2) < 0. In that case, one can find some τ0 ∈ [τ1, τ2] such that
F (τ0) = 0. Then, we apply the above inequality twice to get

r(τ2)−r(τ0) =
F ′(τ0)

2
(τ2−τ0)2+O((τ2−τ0)3) and r(τ1)−r(τ0) =

F ′(τ0)

2
(τ1−τ0)2+O((τ1−τ0)3).

Combining the two equalities, we find that |τ2 − τ1| = O(r
1
2 ).

Gathering these bounds, we find that, for every x ∈ Bǫ0(x0) and for every r ≤ r1,

(47) ∀γ ∈ Uǫ0, 0 ≤ 1

2τ0

∫ τ0

−τ0

R(1B2r(x)) ◦ ϕτ
〈V 〉(γ)dτ ≤ Cr

3
2 .

4.5.3. The conclusion. By compactness, one can find γ1, . . . , γN in Γx0 and ǫ1, . . . ǫN > 0
such that ∪N

j=1Uǫj (γj) covers Γx0 . We take ǫ0 := min{ǫj : 1 ≤ j ≤ N} so that A2ǫ0 ⊂
∪N
j=1Uǫj (γj). In particular, given any x ∈ Bǫ0(x0) and any r < r1 (with r1 chosen small

enough to handle each neighborhood Uǫj (γj)), the support of the map

γ 7→ 1

2τ0

∫ τ0

−τ0

R(1B2r(x)) ◦ ϕτ
〈V 〉(γ)dτ
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is contained in ∪N
j=1Uǫj (γj). Thus, applying (44) and (47) to (38), we obtain, for any

normalized solution uh to (27),
∫

S2

χx,r(y)|uh(y)|2dυg0(y) = O(r
3
2 ) +O(h1−3β),

where the constant can be made uniform for x ∈ Bǫ0(x0) and r ≥ hβ. Taking β = 2
9
yields

Proposition 4.1.

Remark 4.5. The analysis of the vector field performed here is related to the analysis
in [29, § 4]. In that reference, we showed with Macià that the semiclassical measures of
−∆g0 + V can be decomposed as a convex combination of the Haar measures carried by
the Lagrangian tori of the completely integrable system (H0,Rcl(V )). For 2-dimensional
tori, the projection of the Haar measure on S2 is absolutely continuous [29, Th. 4.3] with
some eventual blow-up of the density at some points which are often called caustics [29,
Lemma 4.6]. This regularity of the projection is exactly the property we have been using
here in a somewhat refined way to get our bounds O(r1+α). The bound (44) (α = 1)
corresponds to points of these 2-dimensional Lagrangian tori where the projection is regular
while (47) (α = 1/2) corresponds to these caustics.

5. Final comments

5.1. Relaxing assumption (5). Up to some extra work, assumption (5) could certainly
be relaxed. For instance, one could require instead that the critical points are of finite
order i.e. the derivative does not vanish at a certain order which may be larger than 2. We
would then end up with some upper bound of order O(r1+α) for some 0 < α ≤ 1/2 related
to the order of vanishing at the critical points of R(V )|Γx0

. This would give slightly worst
upper bound on the growth of Lp-norms but it would allow to take larger compact subsets
K in (6).

5.2. Relaxing assumption (4). A priori, it does not seem possible to remove assump-
tion (4) from the hypothesis of Proposition 4.1. Indeed, if there exists γ0 ∈ Γx0 such that
X〈V 〉(γ0) = 0, then the value of (40) at γ0 will be equal to 4r and it will prevent us from
drawing the same conclusion using our argument.

5.3. The range p > 6. In this range, it is plausible that the methods from [20, 19, 13, 14]
allow to handle these critical geodesics. Indeed, suppose that there exist a point x0 ∈ S2

and a sequence (ψλk
)k≥1 of normalized solutions to (2) verifying λk → +∞ and

(48) lim
k→+∞

|ψλk
(x0)|λ−

1
2

k 6= 0.

Up to extracting a subsequence, we can suppose that (ψλk
)k≥1 has a single semiclassical

measure µ [58, Ch. 5]. Recall that it is a probability measure carried by S∗S2 which is
invariant by the geodesic flow ϕt

0. In particular, it induces a measure µ̃ on G(S2). Then,
we can consider µ̃x0 = µ̃|Γx0

. This measure can be decomposed into three parts: the
absolutely continuous component, the singular continuous one and the pure point one.
According to the results of Galkowski and Toth in [20], property (48) implies that the
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absolutely continuous part is not identically 0. Combined with [29, Prop. 2.3], this implies
that R(V )|Γx0

has infinitely many critical points. In other words, if R(V )|Γx0
has finitely

many critical points, then, for any sequence (ψλk
)k≥1 of normalized solutions to (2), one

has

|ψλk
(x0)| = o

(
λ

1
2
k

)
,

which improves the remainder from the local Weyl law at x0 without imposing (4). Com-
pared with Theorem 1.1, this is of course not quantitative. If one is able to combine the
quantitative arguments of Canzani and Galkowski [13, 14] with the extra invariance by the
flow ofX〈V 〉 [29], then this may give rise to improvements on Sogge’s upper bounds (3) in the
range p > 6 under weaker geometric assumptions than the ones appearing in Theorem 1.1.
Recall from the introduction that, thanks to the conjugation formula (7), eigenfunctions
of −∆g0 + V which are the image under U of joint eigenfunctions for (−∆g0 , V

♯) enjoy
improved Lp estimates near x0 (for p > 6) under appropriate assumptions on the critical
points of R(V )|Γx0

[21, 45]. In particular, if the spectrum of −∆g0 + V is simple, then all
eigenfunctions of −∆g0 + V will be the image of joint eigenfunctions.

5.4. The case of odd potentials. In [30], it was shown that one can uncover extra-
invariance properties of semiclassical measures even if R(V ) identically vanishes (meaning
that V is an odd function, e.g. V (x1, x2, x3) = x3). In principle, the above arguments
could be adapted following the lines of this reference, up to some extra technical work. In
that case, the role of R(V ) would be played by the function

R(2)(V ) = R(V 2)− 1

2π

∫ 2π

0

∫ t

0

{V ◦ ϕt
0, V ◦ ϕs

0}dsdt.

See also [23, 49] for earlier related results on spectral asymptotics of Schrödinger operators.

5.5. Semiclassical operators. In Remarks 2.3 and 3.1, we observed that our bounds on
Lp norms are valid more generally for solutions to

−h2∆g0uh + εhV uh = uh, ‖uh‖L2(S2) = 1.

Even if it was maybe not optimal, for p > 6, we needed to impose εh ≤ h1+ǫ for some
positive ǫ while for 4 ≤ p < 6, we only required εh ≤ h. Thanks to Remarks 4.3 and 4.4,
this yields the following bounds on Lp norms. For p = ∞, one has

‖uh‖L∞(Br0 (x0)) ≤ C∞,x0h
− 1

2

(
h

1
18 + h

ǫ
4

)
,

which yields a polynomial improvement over the usual bound. In the range 4 < p < 6, we
get similarly, for any r ≥ h

2
9 ,

‖uh‖Lp(Br0 (x0)) ≤ Cp,x0h
−σ0(p)

(
h

1
9 + (rh)−1εh

) 1
2(

6
p
−1)

,

while for p = 4, we end up with

‖uh‖L4(Br0 (x0)) ≤ C4,x0| log h|h−
1
8

(
h

1
9 + (rh)−1εh

) 1
4
,
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In these last two cases, it yields improvements over Sogge’s upper bound as soon as h−1εh →
0. Note that in every cases, εh may go to 0 very fast. For instance, one may have εh ≪ h2.

5.6. The case of Zoll surfaces. Following the lines of [29], we could adapt the results
to Laplace eigenfunctions,

−∆gψλ = λ2ψλ,

where g is a C2π (or Zoll) metric on S2, i.e. all of whose geodesics are closed, simple and
of length 2π. See [2] for a detailed review on this geometric assumption. In that case, it is
known [16] that √

−∆g = A+
α

4
+Q,

where Q is a pseudodifferential operator of order −1, α is the Maslov index of the closed
trajectories and Sp(A) ⊂ Z+. Combining the above proof with the arguments from [29,
§3.1], we will end up with the same quantities as in (38) except that R(V ) will be replaced
by some function q0(x, ξ) (related to the principal symbol of Q). An exact expression for
q0 was given by Zelditch in [53, 54] and it involves curvature terms of the metric. Under
the geometric assumptions of Theorem 1.1 on the point x0 but with q0 replacing R(V ),
we could obtain improved Lp-bounds near x0. Yet, the expression of q0 being a little bit
involved, this condition is harder to verify.

5.7. The higher dimensional case. For the sake of simplicity, we restricted ourselves
to the 2-dimensional case but the extra invariance property by the flow of X〈V 〉 remains
true in higher dimensions n ≥ 3 [29, Prop. 2.3]. Thus, modulo some extra work and
some appropriate assumptions on X〈V 〉|Γx0

, one should be able to obtain localized L2-
estimates as in Proposition 4.1 but maybe for smaller values of α. Then, in the range

pc =
2(n+1)
n−1

< p ≤ +∞, this can be transferred into Lp bounds using that (16) remains true

for p = ∞ in dimension n ≥ 3 [39, Eq.(3.3)]. Similarly, for p < pc, the Kakeya-Nikodym

bounds of Section 3 remains true up to p > 2(n+2)
n

and they can again be roughly bounded
by the L2-localized norms appearing in Proposition 4.1. Yet, we are not aware of an
analogue of Guillemin’s Theorem [22] showing that R is an isomorphism when restricted
to the appropriate spaces of smooth functions on Sn and G(Sn) and hence making the
condition on x0 easy to verify.
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