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Abstract

The absence of the Duffy protein at the surface of erythrocytes was considered for decades

to confer full protection against Plasmodium vivax as this blood group is the receptor for the

key parasite ligand P. vivax Duffy binding protein (PvDBP). However, it is now clear that the

parasite is able to break through this protection and induce clinical malaria in Duffy-negative

people, although the underlying mechanisms are still not understood. Here, we briefly

review the evidence of Duffy-negative infections by P. vivax and summarize the current

hypothesis at the basis of this invasion process. We discuss those in the perspective of

malaria-elimination challenges, notably in African countries.

Author summary

Plasmodium vivax is the most widespread of the parasite species causing human malaria.

It was considered for decades to be almost absent from sub-Saharan African countries

because the majority of people in these areas lack a red blood cell receptor, the Duffy pro-

tein, which is the critical gateway for the parasite’s entry into erythrocytes. In the last

years, this dogma has been challenged by an increasing number of observations of P.

vivax clinical infections into Duffy-negative people (individuals lacking the Duffy recep-

tor) in many African countries as well as in South America where a significant number of

people of African descent are also Duffy-negative. However, we still do not know how P.

vivax is able to infect those individuals. Understanding how this invasion takes place will

be critical for the implementation of adapted control solutions targeting this parasite spe-

cies in order to achieve malaria elimination, especially in African countries where tremen-

dous decline in the prevalence of the other major human malaria species, P. falciparum,

has been achieved in the past decade.

Introduction

Plasmodium vivax is one of the five Plasmodium species causing human malaria and although

considered as benign during prior decades, it is now recognized as a significant cause of
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morbidity and mortality in endemic populations [1–4]. Its geographic distribution is the wid-

est, and more than three billion people live within the P. vivax transmission limits [5]. For

decades, this parasite was considered to be almost absent from the African continent with the

exception of the Horn of Africa [6, 7]. Indeed, during the era of malariotherapy, it was noted

that individuals of African ancestry were often resistant to P. vivax infection [8–10]. Later on,

it was shown that individuals lacking the Duffy antigen, a red blood cell membrane protein

known to be absent in several populations of African origin, were protected from P. vivax
infections, establishing the evidence that the receptor of P. vivax at the erythrocyte surface was

the Duffy protein [11–13]. It’s not until the 2000s that the dogma was challenged by reports of

Duffy-negative people infected by P. vivax [14, 15]. Here we review the Duffy nomenclature,

the different polymorphisms affecting P. vivax invasion, the evidence describing infections of

Duffy-negative individuals by P. vivax as well as the hypotheses currently held to explain the

molecular basis of Duffy-negative P. vivax infections. We discuss those in the perspective of

malaria-elimination challenges notably in African countries.

How Duffy affects P. vivax invasion

The Duffy protein is a receptor for chemokines (Duffy antigen receptor for chemokines

[DARC]), officially called the atypical chemokine receptor 1 (ACKR1) [16, 17]. This protein is

the receptor for P. vivax Duffy binding protein (PvDBP), allowing entry of the parasite into

the red blood cells and more precisely, into the reticulocytes, the target cells of P. vivax inva-

sion [18]. Duffy is polymorphic, and many variants have been described, with nomenclature

often changing over time. In this Review, we briefly describe the main variants of relevance for

interaction with P. vivax, using the nomenclature commonly used in the field (see [19] for

thorough up to date description of the Duffy polymorphism). There are two major alleles

known for Duffy: FY�A (coding for the Fya antigen) [20] and the ancestral allele FY�B (coding

for the Fyb antigen) [21–26] (Table 1). Three major genotypes exist (FY�A/FY�A, FY�B/FY�B,

and FY�A/FY�B), resulting in three possible phenotypes (corresponding to the associated

blood groups): Fy(a+b-), Fy(a-b+), and Fy(a+b+), collectively called Duffy-positive. The Fy(a-

b-) phenotype is referred to as the Duffy-negative phenotype [11]. One single point mutation

in the GATA-1 transcription factor binding site of the promoter of the gene at position −67

changing a T nucleotide to a C underlies the Duffy-negative phenotype [19, 24]. This genotype

is referred to as erythrocyte silent (ES) because individuals homozygous for this mutation lack

the Duffy protein on erythrocytes, while heterozygous individuals display approximately 50%

of the Duffy protein [27–30]. Duffy-negative people of African ancestry are homozygous for

this mutation that is at near fixation in sub-Saharan Africa [31]. In those individuals, the muta-

tion is located upstream of the FY�B allele, leading to the homozygous FY�BES/FY�BES geno-

type responsible for the refractoriness of Duffy-negative people to P. vivax infections.

Table 1. Major Duffy alleles, genotypes and phenotypes described in human populations and alternate nomenclature.

Allelesa Antigen Genotypes Phenotypes

Pos FY�A = FY�01 Fya FY�A/FY�A Fy(a+b-)

FY�B = FY�02 Fyb FY�A/FY�B Fy(a+b+)

FY�A/FY�BES Fy(a+b-)

Neg FY�AES = FY�Anull = FY�01N.01 FyES FY�A/FY�AES Fy(a+b-)

FY�BES = FY�O = FY�Bnull = FY�02N.01 FyES FY�B/FY�B Fy(a-b+)

FY�B/FY�BES Fy(a-b+)

FY�BES/FY�BES Fy(a-b-)

aThe official allele nomenclature is indicated in bold.

Neg, negative, Pos, positive

https://doi.org/10.1371/journal.ppat.1008258.t001
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Discrepant results have been reported concerning the impact on P. vivax infection of hav-

ing only one ES allele. It was initially shown in Papua New Guinea that FY�A/FY�AES hetero-

zygous individuals were at lower risk of P. vivax infection compared to FY�A/FY�A people (in

Papua, the −67 T to C mutation has arisen upstream of the FY�A allele, independently of the

FY�BES found in Africa) [30, 32]. Similarly, in the Brazilian Amazon, heterozygous FY�A/

FY�BES individuals were at lower risk of P. vivax malaria compared to FY�A/FY�B people [33].

However, in the same Brazilian study, heterozygous FY�B/FY�BES individuals were at

increased risk of malaria infection compared to homozygous FY�A/FY�B people [33]. These

apparently conflicting observations might simply reflect differences between the numbers of

individuals analyzed for each genotype, resulting in underpowered analysis. More epidemio-

logical studies in different endemic settings are needed to get a clearer understanding of the

associations between the Duffy genotypes and infection outcomes.

In addition, independently of the ES genotype, there seems to be a protective effect of the

FY�A allele compared to the FY�B one against P. vivax infections. Indeed, in vitro studies have

shown that the PvDBP binding to the FY�A allele was reduced compared to binding to the

FY�B allele [34]. It was also observed that FY�A was associated with clinical protection, while

FY�B was associated with increased infection risk by P. vivax [33, 34].

Altogether, those studies suggest that the link between Duffy genotypes and susceptibility

to P. vivax is more complex than just the association between Duffy-negative and full

protection.

Evidence of P. vivax infections in Duffy-negative people

Travelers infected by P. vivax coming back from sub-Saharan African

regions

The first indirect evidence of P. vivax infection in Duffy-negative individuals comes from the

reports of travelers presenting a P. vivax infection after returning from African areas where Duffy-

negative is at near fixation [35, 36]. However, those observations did not question the prevailing

dogma of Duffy-negative refractoriness for several reasons. First, P. vivax is morphologically simi-

lar to P. ovale endemic in most Africa, which could lead to microscopic misinterpretation. The

advent of molecular techniques to diagnose parasites have ruled out this confounding factor and

have allowed to unequivocally identify P. vivax [37–39]. Second, because of the occurrence of P.

vivax hypnozoites hiding in the liver for months or even years before triggering a relapse infection,

the origin of the parasite is difficult to determine. Third, it was suggested that a small proportion

of Duffy-positive individuals is enough to sustain the transmission cycle of P. vivax independently

of Duffy-negative infections [40]. Similarly, the detection of P. vivax in Anopheles mosquitoes col-

lected in areas where the majority of people are Duffy-negative cannot conclusively demonstrate

Duffy-negative infections [14]. Therefore, additional evidence is clearly needed to demonstrate the

ability of P. vivax to infect Duffy-negative individuals.

P. vivax infections in Duffy-negative people from sub-Saharan Africa

In the last decade, reports of P. vivax infections in Duffy-negative individuals have increased

steadily. There is no doubt that the advent of molecular techniques unambiguously detecting

P. vivax at high sensitivity has greatly contributed to those observations. However, those obser-

vations come with caveats that can only be resolved by microscopic observations. Indeed,

detection of P. vivax DNA by PCR in a Duffy-negative individual’s blood sample can arise from

pre-erythrocytic stages of the parasites even in the absence of actual red blood cell invasion [41].

Similarly, seropositivity to P. vivax antigens can result from the presence of pre-erythrocytic
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parasite forms independently of blood-stage infection (not to mention the possible crossreactiv-

ity of the serological analysis with other Plasmodium species) [42]. Therefore, microscopic

observation of P. vivax within a Duffy-negative erythrocyte, along with genotyping confirma-

tion (especially to exclude a P. ovale infection), is necessary to prove Duffy-negative infection.

The first mention of a microscopic observation of P. vivax in a Duffy-negative erythrocyte was

made in 2006 [14] (Culleton and colleagues [40] mentioned a report by Van Ros in 1985 but we

could not retrieve the original publication). However, when the slides were double read by two

expert microscopists for confirmation, P. vivax could not be confirmed [14]. It is in 2010 that

the definitive evidence of a P. vivax infection within Duffy-negative erythrocyte from patients

living in Madagascar was reported [15]. It was hypothesized that it is the admixture of Duffy-

positive and Duffy-negative people occurring in Madagascar that has allowed the parasites to

become adapted to Duffy-negative individuals. Of note, when Bray assessed the susceptibility of

30 Nigerian people to P. vivax through experimental mosquito bite infections, he did observe P.

vivax blood-stage infection in one of the subjects [43]. It can be speculated that this Nigerian

individual was Duffy-negative, though this cannot be confirmed. Interestingly, the strain used

by Bray was the “Madagascar strain” of P. vivax, and it is tempting to speculate that its Malagasy

genetic background allowed the parasite to infect a Duffy-negative individual. However, the

exact origin of this strain is controversial, and it cannot be ascertained that it indeed comes

from Madagascar [2, 44–46]. Since then, further unequivocal P. vivax Duffy-negative infections

were reported from Ethiopia where Duffy-negative and Duffy-positive people coexist [47, 48]

and also from countries where Duffy negativity is at near fixation, such as Cameroon [49] and

Mali [50] (though in some of those studies the morphological features of erythrocytic P. vivax
were not well resolved). Additionally, the detection of P. vivax in Duffy-negative individuals

either by molecular diagnostic or serological analysis only has been made in a large number of

sub-Saharan countries (for extensive review, see [36]). The description of Duffy-negative

patients harboring microscopically-confirmed P. vivax erythrocyte infections coupled to molec-

ular diagnostic confirmation in genotyped Duffy-negative individuals have undoubtedly chal-

lenged the established paradigm that prevailed for decades, opening new research questions

regarding this neglected malaria parasite.

P. vivax infections of Duffy-negative people from the American continent

Current American populations are characterized as an admixture of individuals of different

ancestries, due to the historical human migrations over the last centuries (European, African,

Native American, Asian, etc.). Depending on the areas, some variable numbers of people are

Duffy-negative due to their African ancestry and are distributed throughout South America up to

southern United States of America [6]. In South and Central America, where P. vivax is endemic,

the paradigm of Duffy-negative protecting against P. vivax malaria was quite well established

with a number of studies from diverse locations [51–56]. However, similarly to the situation in

Africa, several studies have suggested through serological, molecular, and microscopic detection

analysis that Duffy negativity is not completely protective against P. vivax infection [33, 57–59].

All those studies clearly show that the protection of the Duffy negativity does not constitute

an absolute barrier against P. vivax infections.

Towards understanding the mechanisms of Duffy-negative invasion by P.

vivax
How does P. vivax invade Duffy-negative red blood cells? Has P. vivax recently evolved strate-

gies to infect Duffy-negative erythrocytes, or are alternative invasion pathways ubiquitous in

P. vivax populations? Those are key questions, and answering them will be critical to develop

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008258 February 20, 2020 4 / 14

https://doi.org/10.1371/journal.ppat.1008258


strategies to prevent the emergence of Duffy-negative infections. No clear answer has been

made yet, mainly because of the inherent difficulty in working on P. vivax as there is still no in

vitro continuous culture available for this species [60, 61]; however, some hypothesis can be

raised on the parasite and/or human sides.

Parasite side: PvDBP duplication and/or other parasite ligands?

The first mechanistic hypothesis that has been made following the observation of Duffy-nega-

tive, P. vivax-infected patients in Madagascar came through whole genome sequencing (WGS)

of field isolates. This analysis showed a duplication in the PvDBP gene in Malagasy isolates,

and further molecular epidemiology surveys revealed that this duplication was observed in

parasites isolated from a wide range of geographic locations (South America, East Africa, Mad-

agascar, Asia-Pacific) [62]. Noteworthy, the highest frequency of isolates with pvdbp duplica-

tion (nearly 53%) was detected in Madagascar, in comparison to other areas (12.5% in Sudan,

9% in Cambodia). It was thus speculated that this duplication might have been selected in

Madagascar to respond to the Duffy negativity barrier perhaps by increasing the amount of

PvDBP protein on the merozoite’s surface to bind to an unknown low-affinity receptor [62].

Interestingly, in two different studies, P. vivax-infecting, Duffy-negative individuals from Ethi-

opia (where the prevalence of pvdbp amplification is between 55% to 80% [63, 64]) carried

multiple copies of pvdbp, although the number of individuals were too low to draw definitive

conclusions (only two in each report) [48, 64]. However, PvDBP itself has been shown to not

bind to Duffy-negative erythrocytes, questioning how it could be involved in Duffy-negative

invasion [18, 48]. Furthermore, the analysis by WGS of more than 200 P. vivax isolates from

around the world indicated that 33% of Cambodian parasites carried the pvdbp duplication,

much higher than the previously reported 9% [65]. In fact the initial PCR-based surveys have

missed isolates carrying the duplication, because of variation in the boundaries of the duplica-

tion among parasites [66]. Using a quantitative PCR assay that enables the gene copy number

assessment independently of the duplication boundaries, no difference in the pvdbp copy

number between Cambodian parasites (where there is virtually no Duffy-negative individuals)

and Malagasy ones (where an admixture of Duffy-negative and Duffy-positive individuals

coexist) was observed [67]. Those results suggest that pvdbp amplification is not selected in

response to the Duffy negativity barrier [67]. In a recent molecular epidemiology study con-

ducted on Ethiopian P. vivax isolates, it was observed that the proportion of parasites with

pvdbp amplification was higher in individuals carrying the FY�A allele compared to individu-

als carrying the FY�B one [64]. As mentioned above, because the binding of PvDBP to FY�A is

lower than to FY�B, it can be speculated that pvdbp amplification could have been selected to

increase the affinity to erythrocytes expressing the FY�A allele by supposedly increasing the

amount of PvDBP protein at the surface of the merozoites. In the same study, the proportion

of parasites with multiple pvdbp copies was significantly higher in symptomatic patients com-

pared to asymptomatic individuals, raising the possibility that pvdbp amplification is involved

in immune evasion of the parasites. Further investigations are clearly needed to understand

the role of pvdbp amplification.

In addition to copy number variation, there is a number of evidence pointing to the absence

of a specific sequence polymorphism in PvDBP in relation to Duffy-negative invasion.

Recently, PvDBP sequence analysis of parasites infecting Duffy-negative and Duffy-positive

people from Sudan showed that most alleles were shared between parasites, and those alleles

were found globally [68]. Also, recombinant PvDBP alleles isolated from two Duffy-negative

individuals infected by P. vivax in Ethiopia were expressed in vitro, and none could bind to

Duffy-negative erythrocytes while they were binding to Duffy-positive ones [48].
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There are other parasite ligands described, such as P. vivax reticulocyte binding proteins

(PvRBPs), although they have received much less attention than PvDBP and their role in eryth-

rocyte invasion (whether Duffy-positive or Duffy-negative) for most of them is yet to be deter-

mined [69, 70]. PvRBPs are a family of ligands shown to bind to erythrocytes, but conflicting

results were obtained for some of them regarding specific binding to reticulocytes [70, 71].

Among the different PvRBPs, the binding to Duffy-negative erythrocytes was evaluated only

for PvRBP1a and PvRBP2c, and both were found to bind to Duffy-negative reticulocytes, indi-

cating they could be involved in Duffy-independent invasion pathways [69]. Naturally-

acquired antibodies against some RBPs inhibiting binding to erythrocytes or being associated

with clinical protection have been described; however, the involvement of those ligands in

actual parasite invasion was not assessed, except for PvRBP1a and PvRBP2b [72–77]. While

PvRBP1a does not seem to be critical for P. vivax invasion in Duffy-positive cells [75],

PvRBP2b was recently shown to be a key ligand involved in reticulocyte recognition and inva-

sion through the transferrin receptor 1 (TfR1) [76]. However, the roles of PvRBP1a and of

PvRBP2b–TfR1 have not been evaluated specifically in the invasion of Duffy-negative red

blood cells. Recently, P. vivax merozoite surface protein-1 paralog (PvMSP1P) and P. vivax
glycosylphosphatidylinositol-anchored micronemal antigen (PvGAMA) were shown to bind

to both Duffy-positive and Duffy-negative red blood cells, and antibodies against PvMSP1P

blocked the related P. knowlesi invasion in Duffy-positive reticulocytes [78–80]. Those results

suggest that PvGAMA and PvMSP1P are ligands that could be involved in Duffy-independent

reticulocyte invasion pathways, although functional demonstration is still lacking. Finally, P.

vivax erythrocyte-binding protein (PvEBP, also known as PvDBP2) has also been shown to

moderately bind to Duffy-negative reticulocytes [48, 81, 82]. Of interest, it was recently shown

that this gene can be amplified and a higher proportion of parasites from Madagascar (where

Duffy-negative and Duffy-positive people coexist) carry multiple copies of PvEBP compared

to isolates from Cambodia (where only Duffy-positive people are present) [67]. Also, while

only duplication was observed in Cambodia, up to five copies of PvEBP were detected in Mala-

gasy parasites [67]. Altogether, those results suggest that PvEBP might be also involved in

Duffy-negative invasion mechanisms, but again, functional demonstration is still lacking.

Functional studies need to be developed in the future to figure out the role of each of the men-

tioned parasite ligands in the invasion of Duffy-positive and Duffy-negative reticulocytes as

well as to identify possible unknown ligands involved in alternative invasion pathways (Fig 1).

Human side: Alternate receptor or Duffy involvement?

On the human erythrocyte side, the main question is: Through what receptor is P. vivax able

to enter Duffy-negative red blood cells? While for P. falciparum many receptors have been

described to ensure the parasite entry through multiple pathways, for P. vivax (until recently)

only the Duffy protein was known. As mentioned above, TfR1 has recently been identified as

the receptor to PvRBP2b for reticulocyte recognition and invasion [76]. TfR1 is one of the

many membrane proteins lost during red blood cell maturation and is thus absent from nor-

mocytes [83, 84]. It is present on both Duffy-positive and Duffy-negative reticulocytes; how-

ever, it is believed that the critical interaction between PvRBP2b and TfR1 occurs upstream of

the PvDBP–Duffy one, not independently of it [76]. Anyway, the role of this interaction in

Duffy-negative has not been assessed, and an alternate human red blood cell receptor involved

in Duffy-independent invasion pathways has yet to be discovered.

Could the invasion of Duffy-negative people require a particular Duffy protein not recog-

nized by serological tools and therefore falsely assigned as negative? Probably not, as sequenc-

ing of this gene has consistently shown that the basis for Duffy-negative is a single mutation in
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the promoter of the gene upstream of the FY�B allele in African populations [24]. More con-

clusively, the full coding sequence of the Duffy gene, including its promoter, of 14 Duffy-

Fig 1. Schematic representation of receptor-ligands involved in P. vivax invasion process of reticulocytes. At the end of the erythrocytic cycle, the

schizonts burst and release merozoites in the blood stream, enabling the invasion of uninfected reticulocytes. The recognition of reticulocytes and the

invasion process require interactions between parasite ligands and reticulocyte receptors. For Duffy-positive reticulocyte invasion, PvRBP2b binds first to

the TfR1 present on reticulocytes, and subsequently, PvDBP engages with the Duffy protein allowing the entry of the merozoite in the cell. Other ligands

such as PvEBP, PvRBPs, PvMSP1P, PvAMA1, or PvGAMA are currently being investigated for their involvement in this invasion process, and their

putative receptors are unknown. PvRBP2b probably also recognizes TfR1 of Duffy-negative reticulocytes; however, the subsequent invasion steps are still

unknown. Are there a few Duffy molecules present on the surface of the erythrocyte enabling parasites with multiple PvDBP gene copies to invade the cell?

Conversely, is the invasion process of Duffy-negative reticulocytes occurring through alternate, yet-to-identity receptors of, perhaps, ligands such as

PvEBP, PvMSP1P, or PvGAMA? Finally, the invasion process might occur through complete unknown pathways with both unidentified ligands (noted

with X) and receptors. AMA1, anchored micronemal antigen 1; DBP, Duffy binding protein; EBP, erythrocyte-binding protein; GAMA,

glycosylphosphatidylinositol-anchored micronemal antigen; MSP1P, merozoite surface protein-1 paralog; Pv, Plasmodium vivax; RBP, reticulocyte

binding proteins; TfR1, transferrin receptor 1.

https://doi.org/10.1371/journal.ppat.1008258.g001
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negative individuals actually infected by P. vivax, have been sequenced, and all were homozy-

gous with the expected −67 T to C mutation upstream of the FY�B alleles, indicating that no

cryptic allele was at the origin of the infection [15].

However, what has not been definitely ruled out and is perhaps the most parsimonious

explanation for the mechanisms of Duffy-negative invasion is that the Duffy-negative pheno-

type is not Duffy null [85]. Indeed, it can be speculated that although the −67 T to C mutation

reduces the binding of the GATA-1 transcription factor and therefore transcription of the

gene, this reduction might not be complete and RNA transcription could still be occurring at

very low levels, leading to an amount of Duffy protein below the limit of detection of current

analytical tools. Some recent data suggest that Duffy protein is notably detectable in erythroid

precursor cells typically found in the bone marrow where P. vivax invasion is believed to occur

to some extent [85–87]. It is worth mentioning here that Duffy-negative people do express the

Duffy protein in other cell types such as in endothelial cells, indicating that the expression of

Duffy is not intrinsically abolished by the −67 T to C mutation [23, 88]. This hypothesis would

explain the very low parasitemia usually observed in Duffy-negative infected patients and also

imply that P. vivax does not necessarily require an alternate pathway but could instead go

through the classical PvDBP−Duffy invasion process. Such a hypothesis is so far only a specu-

lation, and the involvement of an unknown receptor cannot be excluded (Fig 1). More investi-

gations are needed to determine how the parasite is able to infect Duffy-negative red blood

cells.

Future directions and conclusive remarks

With such evidence of P. vivax infections in Duffy-negative people, a better understanding of

the epidemiology of this parasite is necessary and will involve the implementation of specific

diagnostics in the African continent, where apart from the Horn of Africa and Madagascar, P.

vivax is usually not looked for. A characteristic of P. vivax infections in Duffy-negative individ-

uals is the usually low parasitemia easily missed by microscopy or conventional rapid diagnos-

tics tests (RDTs) and leading to asymptomatic infections often detected through community-

based, cross-sectional surveys [50, 89]. As such, sensitive molecular detection tools such as

PCR should be implemented for P. vivax diagnostics.

To provide better insights in the mechanisms underlying Duffy-negative infections, next-

generation sequencing technologies will be extremely useful both at the genomic and tran-

scriptomic level. By identifying genomic loci under selection in P. vivax isolates infecting

Duffy-negative individuals compared to Duffy-positive ones or originating from areas where

Duffy negativity is at near fixation compared to areas where Duffy-positive are predominant,

candidate genes involved in the adaptation to Duffy-negative reticulocytes might be detected.

Similarly, by comparing the gene expression profiles of parasites infecting Duffy-negative or

Duffy-positive people, the signature of genes specifically regulated to respond to the Duffy neg-

ativity barrier might be identified. Such an approach could also make use of the Saimiri and

Aotus nonhuman primate model—as both species can be infected by P. vivax, while PvDBP

can bind only to Aotus erythrocytes and not to Saimiri ones, indicating an alternative invasion

pathway reminiscent of what is observed for Duffy-negative human erythrocytes [90]. Alterna-

tive models to decipher erythrocyte invasion mechanisms could also rely on the genetically

tractable P. knowlesi that shares many biological similarities with P. vivax, including the

requirement of the Duffy receptor for erythrocyte invasion [91] or even on P. cynomolgi,
closely related to P. vivax and recently adapted to in vitro culture [92].

Providing definitive evidence of the involvement of any candidate ligand involved in

Duffy-negative reticulocytes’ invasion will anyway require functional demonstration in a P.
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vivax human reticulocyte model. However, as mentioned before, there is still no continuous in

vitro culture for this parasite species, and consequently no genetic transformation is possible.

Only tedious, short-term cultures conducted in a handful of laboratories around the world can

be performed [76, 93–95]. Nevertheless, using those assays in order to evaluate the capacity of

parasites with different genotypes (i.e., single or multicopy pvdbp parasites) to invade Duffy-

negative reticulocytes in presence or absence of monoclonal antibodies specific for a candidate

ligand or receptor will allow one to determine the pathways used by P. vivax to infect Duffy-

negative erythrocytes. In addition, on the erythrocyte side, elegant technologies have been

developed to manipulate the repertoire of proteins expressed on erythropoietic cells using an

immortalized erythroid progenitor cell line that can provide additional evidence on the

involvement of specific receptors in P. vivax invasion [96]. All those approaches, combined

with structural biology techniques, have the potential to identify receptor–ligand interactions

involved in P. vivax invasion as performed for the recent discovery of PvRBP2b–TfR1 involve-

ment [76].

In Africa, malaria burden is largely due to the more virulent and severe P. falciparum that

is, of course, currently the primary target of elimination strategies. However, it can be expected

that in the future while the elimination of falciparum malaria hopefully continues as seen for

the last decade [97], more cases of P. vivax will be reported, as often the proportion of P. vivax
cases increases while elimination progresses [5]. In those countries and elsewhere, in order to

achieve elimination of all malaria species it will be necessary to implement strategies targeting

P. vivax [98]. Among those, a PvDBP-based vaccine is currently under clinical development

[99, 100], and deciphering the molecular pathways by which P. vivax is able to infect Duffy-

negative people will be critical for ensuring the success of such a strategy.
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56. Vallejo AF, Chaparro PE, Benavides Y, Álvarez Á, Quintero JP, Padilla J, et al. High prevalence of

sub-microscopic infections in Colombia. Malaria Journal. 2015; 14(1):201. https://doi.org/10.1186/

s12936-015-0711-6 PMID: 25971594
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