
IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 1

Circuit Design Steps for Nano-Crossbar Arrays:
Area-Delay-Power Optimization with Fault

Tolerance
M. Ceylan Morgul*, Luca Frontini, Onur Tunali, Lorena Anghel, Valentina Ciriani, E. Ioana Vatajelu, Csaba

Andras Moritz, Mircea R. Stan, Dan Alexandrescu, and Mustafa Altun

Abstract—Nano-crossbar arrays have emerged to achieve high
performance computing beyond the limits of current CMOS
with the drawback of higher fault rates. They offer area and
power efficiency in terms of their easy-to-fabricate and dense
physical structures. They consist of regularly placed crosspoints
as computing elements, which behave as diode, memristor, field
effect transistor, or novel four-terminal switching devices. In this
study, we establish a complete design framework for crossbar
circuits explaining and analyzing every step of the process. We
comparatively elaborate on these technologies in the sense of
their capabilities for computation regarding area including a
new logic synthesis technique for memristors, fault tolerance
including a novel paradigm for four-terminal devices, delay,
and power consumption. As a result, this study introduces a
synthesis methodology that considers basic technology preference
for switching crosspoints and fault rates of the given crossbar
as well as their effects on performance metrics including power,
delay, and area.

Index Terms—Crossbar Arrays, Logic Synthesis, Defect Tol-
erance, Fault Tolerance, Performance Optimization, Memristor
Arrays

I. INTRODUCTION

Nano-crossbars arrays have emerged to be an alterna-
tive/complementary technology to CMOS [46]. In their fabri-
cation, relatively cheap bottom-up nano-fabrication techniques
are used rather than pure lithography based conventional

M. Ceylan Morgul and Mustafa Altun are with the Department of Electron-
ics and Communication Engineering, and Onur Tunali is with the Department
of Nanoscience and Nanoengineering of Istanbul Technical University, Istan-
bul, Turkey e-mail: {morgul, onur.tunali, altunmus}@itu.edu.tr

Luca Frontini and Valentina Ciriani are with the Dipartimento di Infor-
matica, Università degli Studi di Milano, Milan, Italy e-mail: {luca.frontini,
valentina.ciriani}@unimi.it

Lorena Anghel and E. Ioana Vatajelu are with TIMA labora-
tory, Grenoble-Alpes University, Grenoble, France e-mail: {lorena.anghel,
ioana.vatajelu}@univ-grenoble-alpes.fr

Csaba Andras Moritz is with the Department of Electrical and Computer
Engineering,University of Massachusetts, Amherst, Massachusetts, USA e-
mail: andras@ecs.umass.edu

Morgul and Mircea R. Stan are with the Department of Electrical and
Computer Engineering, University of Virginia, Charlottesville, Virginia, USA
e-mail: {mm4uz, mircea}@virginia.edu

Dan Alexandrescu is with IROC Technologies, Grenoble, France e-mail:
dan.alexandrescu@iroctech.com

*: The work is primarily done when he was with Istanbul Technical
University; he is currently affiliated with University of Virginia

This work is part of a project that has received funding from the Euro-
pean Union’s H2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement #691178, as well as supported by the
TUBITAK-Career project #113E760 and TUBITAK-2501 project #218E068.

Copyright (c) 2020 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

Nano-crossbar Array

Crosspoint

a)

b)

c)
Fig. 1. Switching models of a nano-crossbar array: crosspoint as a) two-
terminal switch with terminals in the crossed lines, b) two-terminal switch
with terminals in the same line, and c) four-terminal switch.

production. Because of the novel manufacturing techniques,
end products have regular and dense forms with area and
power efficient structures [15] [4].

Main principle behind crossbar based computing is to utilize
crosspoints to behave like switches, either as two-terminal
or novel four-terminal [6]. This is illustrated in Figure 1.
Depending on the used technology, a two-terminal switch
behaves either as a diode [18], a resistive/memristive switch
[33] [20], or a field effect transistor (FET) [34]. Diode and
resistive switches correspond to the crosspoint structure in
Figure 1(a); here, the switch is controlled by the voltage
difference between the terminals. Figure 1(b) shows a FET
based switch; here, the red line represents the controlling
input. This is a unique opportunity that allows us to integrate
well developed conventional circuit design techniques into
nano-crossbar arrays. Finally, a novel four-terminal switch is
demonstrated in Figure 1(c). Four terminal architecture has
either all of its terminals connected or disconnected. The
desired state is actualized with a controlling input, which is
not present in the Figure 1(c) and has a separate physical
formation from the crossbar which is thoroughly explained for
different technologies in [6] [30]. Detailed TCAD simulations
and technology development are presented in [30]. In addition,
a realization with standard CMOS process is demonstrated in
[13].

Contrary to the conventional technologies, circuit design
steps of nano-crossbar arrays are not fully incorporated due
to their emerging nature. Motivated by this, we expand and
update our preliminary integrated synthesis methodology in
[24], and present it in length. Main steps of the methodology

Ioana VATAJELU
Text

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 2

R1

A

B

f

x1R3

f

R2

R1

x2 x2x1

a)

f

x1

x2

x2

c)

x1

b)

x1

x2

x2

x1

f
R

d)

x1 x2 x1 x2 f f

Power Supply

CMOS
Controller

x1 x2

x1 x2

f

PFET part NFET part

Fig. 2. Realization of fXOR2
with different nano-crossbar types: crosspoint

as a) diode, b) memristor, c) FET, and d) four-terminal switch.

are logic synthesis, defect/fault tolerance and performance
optimization. In Section II, overview of the methodology is
stated with the background information. Details of the design
steps are stated in the following sections III IV V. We present
a case study to elaborate the methodology conclusively in
section VI. For sake of clarity, the significant experimental
results are shown in the related sections. Main contributions
are as follows:

• Expanded version of integrated synthesis methodology
presented in [24].

• Multi-output logic synthesis for four-terminal lattices and
comparison with others.

• A greedy optimization algorithm for two-level single-
output memristor crossbar (logic synthesis).

• Defect tolerance technique for four-terminal lattice.
• Performance (delay-power) analysis of diode, FET and

four-terminal arrays.
II. OVERVIEW OF CIRCUIT DESIGN STEPS

A. Background
Nano-crossbar arrays are first shown to be realizable con-

ceptually in [33], [36] and then physically in [46], [48] as
an integrated circuit. After that, research mostly follows the
order of technology demonstration such as logic synthesis
with ideal (non-defective) arrays, logic synthesis with de-
fective arrays, performance-aware design (performance anal-
ysis/optimization), and technology development. This study
targets to integrate the current researches with completing
missing parts.

1) Logic Synthesis: Main goal of logic synthesis process
is to optimize the area size of the circuit through formalizing
the circuit size specific to underlying technology. To illustrate
different approaches, we show examples for the realization of
fXOR2 = x1x2 + x1x2 in Figure 2. Logic synthesis models
for diode and memristor based crossbars are quite similar to
Programmable Logic Array (PLA) as can be seen in Figure

2(a) and 2(b). Memristor based crossbars have one major
difference that establishing the output goes through several
states/loops (for further information refer to [44]). We chose
the approach in [44] for the memristive crossbars, because the
proposed architecture design does not lose its functionality
due to the sneak path issues [20]. For FET based crossbars,
each logic function product and dual function product is
realized by a separate column, as seen in Figure 2(c). Each
input is assigned to a row for controlling all the FETs on
corresponding row. Finally, a four-terminal based crossbar;
here every crosspoint performs switching on all four directions
and connection between top and bottom yields 1 as output
and 0 otherwise. Control lines of crosspoints are not shown in
Figure 2(d), and detailed explanation of control lines can be
found in [6] [30].

2) Defect/Fault Tolerance: Anticipated fault rates are much
higher for nano-crossbars, as expected, compared to those
of conventional CMOS circuits [35]. Therefore, during logic
mapping, consideration of faults is mandatory. This applies
to the all technology types such as diode, FET based or
novel four-terminal based arrays. In short, contrasting the
conventional CMOS approach, certain switches cannot be used
in mapping process, therefore mapping procedure becomes an
assignment problem. Early attempts to overcome this issue
consists of locating a fault-free region so no crossbar specific
assignment is necessary as in [37]. However, it has quickly
become apparent that fault free region is not satisfactory in
terms of area size [41]. For this reason, researchers focus on
challenges including defect and variance tolerances [40] [28].
In this study, we apply a new fault tolerance technique for
four-terminal crossbars (lattices).

3) Performance Optimization: With the process variabil-
ity data (as an extended concept of defects) of crossbars,
performance-aware design can be accomplished. Given that
targeted technologies have different performance characteris-
tics, to perform fair comparison, their dependencies on target
function should be analyzed. Previously, we have analyzed and
extracted delay and power characteristic with dependencies
on given function for memristor crossbars [43]. In this study,
we present delay and power model for diode, FET, and four-
terminal lattice. These models characterize the performance of
crossbar technologies for given target function. Idea is to opti-
mize a crossbar with given design specification. However, with
the lack of experimental results, optimization and comparison
studies are limited with modeled characteristics.
B. Overview of Integrated Methodology

As briefly stated, nano-fabrication produces switching nano-
crossbar arrays with varying properties, structurally and/or
component-wise. These random characteristics need to be
considered carefully by the synthesis process. For example,
a competent methodology must regard basic technology pref-
erence for switching elements, and defect or fault rate of the
given nano-crossbar. Presented synthesis methodology in this
study comprehensively covers the all specified factors and
provides optimization algorithms for each step of the process.
The diagram, given in Figure 3, summarizes the methodology
with demonstrating every step including annotated research
tasks.

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 3

Determining Technology
Crosspoint as

Memristor/Diode FET Four-Terminal

Nano-crossbar Array
Integrated Synthesis Methodology

F
ab

ri
ca

ti
o

n
P

o
st

 F
ab

ri
ca

ti
o

n
 C

o
n

fi
g

u
ra

ti
o

n

Determining
functionality

Fault Tolerance

Size
Redundant
Hardware

A
re

a
E

ff
ic

ie
n

cy
(G

en
er

al
ly

 1
.5

 t
im

es
 la

rg
er

 s
iz

e
u

se
d

)

Defect-aware Defect-unaware

Performance Optimization

Delay Power

Analyzing Transient Fault Tolerance Performance

Single & Multiple Output
Functions

Defect map

L
o

g
ic S

yn
th

esis
P

erm
an

en
t D

efect To
leran

ce
P

erfo
rm

an
ce O

p
ti m

izatio
n

Tran
sien

t F
au

lt
To

leran
ce

Fig. 3. Integrated synthesis methodology scheme for nano-crossbar arrays.

The first step (logic synthesis) covers the decision of
switching technology and generate logic function description
in crossbar form. The main goal is to determine which of the
diode/memristor, FET, or four-terminal based components are
to be used. This step is one of the most important procedures
determining the area size of the nano-crossbar that is the chief
optimization metric. Logic synthesis with diode/memristor,
FET, and four-terminal switching technology is in Section III.

The second step (fault tolerance) covers the permanent faults
(defects forming in the course of fabrication) and the transient
faults (which occur in-field). The main goal is to obtain a valid
mapping of a given logic function in crossbar form, produced
by logic synthesis step, and defect map. There are two distinct
approaches titled as defect− aware and defect−unaware.
The first approach employs faults existing in nano-crossbar
during the mapping ofthe function, hence the name aware.
The second approach avoids the defects by attempting to find
a defect-free region on the nano-crossbar at the beginning,
so that the mapping of the logic function is straightforward.
Finally, transient fault analysis is performed with respect to
fault rates/types and fed back to logic synthesis step. Detailed
explanations are given in Section IV.

The third step (performance optimization) covers final delay

and power issues. The main goal is to analyze delay and power
consumption of arrays by showing their dependencies on the
properties of a given logic function as well as specifics of the
used technology. Detailed explanations are given in Section
V.

To demonstrate the whole process in work, a case study
is provided to elucidate the proposed synthesis mechanism in
Section VI.

III. LOGIC SYNTHESIS

At the start, crossbar (or array used interchangeably) switch-
ing technology, i.e., diode, memristor, FET, or four-terminal,
needs to be chosen based on the following criteria:

• Crossbar size (number of rows and columns)
• Number of outputs (single or multiple function realiza-

tion)
• Fabrication complexity
• Power and delay specifications
• Application requirements
A decision can be made on the importance and priority of

the listed items, depending on the preference. For example,
if an application demands in-memory computing, then the
memristor technology can be chosen for the realization of logic
functions, since the memristor can also be used as a memory
unit.

On the other hand, the realization of a logic function
using a diode or a memristor based crossbar requires less
number of crosspoints than those of the FET based crossbars.
However, the FET based designs consume less power than
the diode/memristor-based design. Moreover, the four-terminal
based crossbar includes less number of crosspoints than other
crossbar designs [26].

Initially, we examine the logic synthesis techniques devel-
oped for diode, memristor, and FET based crossbars in the
literature and then we formulate their crossbar sizes required
to implement given logic functions. We also present results for
four-terminal switch based arrays to synthesize multi-output
functions.

In the second part, we present a new two-level synthesis
technique for memristor based crossbars and compare them
with other techniques in the literature.

A. Area Comparisons for Different Crossbar Technologies
We present the Logic Synthesis step of the integrated

methodology, considering only the number of crosspoints in
the crossbar. The size of a crossbar array including diode,
memristor, FET, and four-terminal is given as follows:

• Diode: (# of products of all fi) + n)×
((# of literals in f) + n)

• Memristor: ((# of products of all fi) + n)×
((# of literals in f) + 2n) [worst-case]

• FET: (# of literals in f + n)×
((# of products of all fi) +
(# of products of all fD

i))
• Four-terminal: (largest of # of products # in fD

i s)
× (()# of products of all fi) + n− 1) [worst-case]

where n is the number of logic functions (the number of
outputs); fi denotes the ith logic function, and fD

i stands for
its dual with 1 ≤ i ≤ n.

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 4

TABLE I
ARRAY SIZE COMPARISON OF DIODE, MEMRISTOR, FET, AND

FOUR-TERMINAL SWITCH BASED ARRAYS ON MULTIPLE OUTPUT
FUNCTIONS

Benchmarks Diode Memristor FET Four-Terminal [2] [1]
squar5 594 884 900 108
rd53 442 560 819 120

misex1 437 600 1334 126
sqrt8 840 1032 1340 165
b12 2028 2544 3003 180
inc 897 1280 2231 235
bw 1900 3300 1824 405

sao2 1488 1764 3672 476
rd73 2210 2620 4658 606
clip 2875 3528 6256 685
rd84 5180 6240 10960 2320
ex5p 10823 19596 32864 2664

ex1010 8820 11800 57960 5958
apex4 16835 25480 72335 7308

As mentioned in Section I, the logic synthesis on diode
and memristive based crossbars is similar to the PLA like
synthesis. Thus, the techniques, such as product sharing and
phase changing used in the PLA design, are also applicable
in these designs. Since, the array sizes can be further reduced
using the product sharing, these array size formulations can
be considered as an upper bound for the logic synthesis
techniques.

For the single and multiple output function realization, the
synthesis methodology for FET crossbar does not allow us to
produce multi-level logic synthesis, only two-level approach
can be used [35]. However, multi-level logic synthesis ap-
proach is feasible for the diode and memristive crossbars [42].
Therefore, the optimization of array size still demands further
research for the diode and memristor based designs.

The logic synthesis using four-terminal crossbars, generally
known as switching lattices, is a new method. As shown
in [6], Altun presented a useful logic synthesis technique
for the switching lattices. However, this method cannot find
the optimal solution in terms of the lattice size. Therefore,
new specific logic synthesis methodologies are needed to
be presented. As shown in [17] and [26], optimal synthesis
methodologies are provided. Moreover, decomposition based
approximate techniques are presented such as XOR based [25]
[9], p-circuit [10], and dimension reducibility [11] decompo-
sitions. Furthermore, a very efficient (20x faster) technique
for very large functions is recently developed to make logic
synthesis of four-terminal nano-crossbar arrays more feasible
[3].

However, all of these studies focus on the realization of
a single logic function using switching lattices. On the other
hand, in [2] [1], three main steps are presented to realize the
multiple functions using switching lattices. These steps are
given as follows: 1) find the realization of each logic function
using a switching lattice; 2) merge these lattices into a single
lattice; 3) check if these lattices can be realized using a smaller
number of rows and columns such that the final lattice includes
a small number of four-terminal switches.

This article is the first to present the sizes of diode, mem-
ristor, FET, and four-terminal based crossbar on the multiple
output functions. The results are given in Table I. Note that the

TABLE II
AREA COMPARISON OF TWO-LEVEL LOGIC SYNTHESIS ALGORITHMS:
INITIAL GREEDY ALGORITHM (GA-INITIAL) AND PROPOSED GREEDY
ALGORITHM (PGA) WITH OPTIMAL (BRUTE FORCE) AND BASIC [44]

APPROACHES FOR MEMRISTIVE ARRAYS

Benchmarks Basic [44] GA-initial [43] PGA Optimal
rd53 560 416 416 416

squar5 884 858 832 780
inc 1280 1280 1280 1248

rd73 2620 2620 1940 1940
misex1 600 750 600 600
sqrt8 1032 648 648 648
ex5p 19596 19312 19312 **
rd84 6240 6072 4584 4584
clip 3528 3500 3388 3332
sao2 1764 1176 1372 1176

ex1010 11800 11800 11800 11800
alu4 25696 16544 16544 16192
b12 2544 1872 1776 1776

table5 11136 11136 11136 **
vg2 7854 7854 7854 7854

** Time exceeds 600 seconds

results given in bold under the four-terminal column indicates
that they are found using the approximate algorithm of [2] [1]
(JANUS), following the three steps described above. On the
other hand, the other results are found using a divide and
conquer method, based on the divide and synthesize (DS)
method of [2] [1], following the first two steps described
above.

As can be observed from Table I, the four-terminal based
crossbar arrays include significantly less number of crosspoints
when compared to the diode, memristor, and FET based
crossbar arrays.

For the logic synthesis of memristor based crossbars, there
exists more area efficient techniques than in [44]; such as
[8] (SIMPLER MAGIC), [38], or [31] (which are essentially
improved versions of the MAGIC [21]). For example, misex1
can be realized in an array which has the size of 33, 88
and 52 with [8], [38] and [31], respectively. However they
require much larger number of operation cycles: 83, 52 and
31 with [8], [38] and [31], respectively. Note that, required
number of cycles is only 7 for [44]. This number can even be
reduced to 5 with the proposed technique [43]. On the other
hand, as stated in [45], the method in [44] can support the
method MAGIC. Furthermore, since the method of MAGIC
(and improved versions of it) uses all crosspoints in the array
(density is 100%), its defect intolerance is much higher than
[44]. Therefore, we used the approach in [44] and implemented
the improved version to our integrated synthesis methodology.

B. Proposed Greedy Algorithm for two-level multi output
synthesis for Memristive Arrays

In memristive crossbar arrays, function outputs and their
negations are produced [44]. However production order
changes the array size. We have called phase combination-0
and phase combination-1 realization, if realization is hap-
pened based on an output itself and its negation, respec-
tively. For instance, for the realization of phase combination-
1, first its negation is produced [43] and at last original
function outputs. Based on this property, array size of mem-
ristive crossbars can be optimized. The realization in [44] is
phase combination-1 realization.

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 5

Heuristically Find phase
combination which
gives minimum # of

products

.iIn

.oOut

.pP

.

.

.e

YES

i<Out

Pi < Pinvi

Phase[i]=1

YES

Phase[i]=0

NO

NO

Declare the phase
combination as
array of Phase

.iIn

.oOut

.pP
PhaseCombination
.
.e

GA_initial (Tunali, 2018)

Calculate # of products of F with
phase_combination-1 [P1] and

phase_combination-0 [P0]

Declare the phase
combination as

Reference_Phase

PGA

Reference_Number = min(P1,P0)

Create set0 and set1 and SET={set0 U set1}

Assign phase combination that yields lees
number of products to Reference_Phase

Find the phase combination [temp_phase]
in SET yields less number of products.
Assign the number to temp_number.

Calculate # of
products of
Fi [Pi] and
Fi [Pinvi]

temp_number <
Reference_Number

YES

NO

is the first
temp_phase in

set0?YES

Create new SET based on
Reference_Phase

Change ones to zero

NO

Change zeros to one

Reference_Number = temp_number
Reference_Phase = temp_phase

Fig. 4. Block diagrams of two-level multi output logic synthesis algorithms:
initial Greedy Algorithm (GA-initial) [43] and Proposed Greedy Algorithm
(PGA)

In our previous study [43], we have proposed a greedy
algorithm, which only considers outputs individually, and
doesn’t consider outputs interrelation (i.e. no product sharing
at the analysis). We can call this algorithm as ”initial Greedy
Algorithm (GA-initial)”. In this algorithm, only product num-
bers of individual outputs are considered. On the other hand
our new greedy algorithm considers product sharing with
the change of phase, meaning it considers total number of
products of whole (multi-output) function. We illustrate these
two algorithms in Figure 4 side-by-side.

Proposed Greedy Algorithm (PGA): investigates outputs
collectively by changing phase of outputs, one at a time,
starting from phase combination-0 and phase combination-1.
Compares them; if any of the changed phase combination has
less # of total product; then keeps that phase and continues
searching with changing other outputs’ phase one at a time.
Algorithm (PGA) is as follows:

1: Calculate and Compare number of prod-
ucts of phase combination-0 (00..0) and
phase combination-1 (11..1), Assign minimum
number of products to Reference Number, and the
phase combination to Reference Phase,

2: Create two sets of candidate phase combinations; set0:
includes phase combinations that only one output is
in “phase-1” and set1: includes phase combinations
that only one output is in “phase-0”, and Assign
SET = set0 ∪ set1,

3: Find the phase combinations (temp phase) which yields
minimum number of products (temp number) for the
function in SET .

4: Decide; if temp number is less than
Reference Number. If YES, Assign temp number
to Reference Number, and (temp phase) to
Reference Phase; If NO, Jump to 8 (end of the
algorithm),

5: Decide; If the found very first temp phase is in set0,
5a: If YES (in set0), Create a new SET , with phase

combinations, by changing ”0”s of Reference Phase
to ”1”s,

5b: If NO (in set1), Create a new SET , with phase
combinations, by changing ”1”s of Reference Phase
to ”0”s,

(Note that, every phase combination in SET has only
one alteration with Reference Phase)

6: Jump to 3,
7: Declare phase combinations as Reference Phase.
For example, if we are given a function which has

three outputs. First we check phases “000” and “111”
(phase combination-0 and phase combination-1). Then calcu-
late product numbers of phase in phase sets; set0: “001, 010,
and 100” (changing zeros to one), and set1: “110, 101, and
011” (Changing ones to zero) (Note that, we change one at
a time). Let’s say we compared product numbers and found
that phase “110” yields the minimum number of products.
Then we continue from the phase “110”, with changing ones
to zero. Means, we check “100 and 010” and compare the
results with result of phase “110”. If there is one which yields
less product number chose it, or chose the phase “110” for
the final phase combination of the function. (Notice that, for
a function, which has only three outputs, looking to sets of
set0 and set1 is enough)

To evaluate the algorithms and compare the results, we
use espresso and MATLABTM on a 3.20 GHz Intel Core
i7 CPU with 4GB memory. Results are shown in Table II.
Algorithm performances differs from function to function. For
six of the examples PGA results less area size than GA-initial.
Overall, PGA surpasses GA-initial, yet for two (clip and sao2)
of the functions GA-initial results less area size than PGA.
For the rest they produce the same result. GA-initial’s major
advantages is that it has almost no time cost. It can be used
for any case.

IV. DEFECT/FAULT TOLERANCE

In this section, we investigate the effects of permanent and
transient faults on the behavior of a logic function mapped
on a given crossbar array. We categorize faults into 2 classes:
permanent, generated by physical defects, and transient faults.
As mentioned in Section I, actual nano-crossbar arrays being
fabricated with emerging technologies, are affected mostly by
defects, due to the poor technology yields. Indeed, immature
process technologies used for nanowires, memristive, etc.
elements generate high defect density crossbars. At the same
time, these elements also show instabilities and variabilities
(behaving like transient or intermittent faults) and they are
also affected by transient phenomena occurring in the field.

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 6

O1

O2

O3

O4

Defective crossbar

Defect-aware mapping

P1

P2

P4

P3

IA = [x2 x3 x1 x1 x2 x3]

OA = [P1 P2 P4 P3]

I1 I2 I3 I4 I5 I6 x2 x3 x1 x1 x2 x3

: Configurable Switch

: Stuck-at-one Switch

: Stuck-at-zero Switch

f = x1 x2 + x2 x3 + x1 x3 + x1 x2 x3

Mapping
Algorithm

Fig. 5. Nano-crossbar array with faulty/defective crosspoints and mapping
process.

Permanent fault (defect) tolerance, also called defect
avoidance, basically means finding defect-free regions or
defect free crosspoints that can still be employed during
logic mapping, and it is usually done by the logic function
remapping (at the algorithm level) and/or by reconfiguration,
at algorithm or hardware level. Permanent fault model can
be seen in Figure 5 demonstrating only stuck-at-0 (open)
and stuck-at-1 (close) faults as being the most representative
permanent faults observed. This categorization is based on
actual physical realization of nano-crossbar array as reported
in [22] and [12] which state that fault rates reach up to 10%
and the most common faults are stuck-at-0 (open).

Transient and intermittent faults, on the other hand, man-
ifest themselves due to particular combinations of topological,
environmental factors or process mismatches and instabilities.
They can be tolerated by proper architectural reconfiguration,
but also by instability and variation-aware design. That is
to say by using properly sized, or well estimated hardware
redundancy in term of spare cells, critically sensitive cells
can be circumvented or protected. Transient fault model can
have multiple forms meaning they can be seen as parasitic, 0-
to-1 (1-to-0) transitions, parasitic positive (negative) pulses,
neighbor cells pattern dependent transitions, etc. Transient
fault domain is very closely related to a specific technology.
Transient faults are more efficiently covered by fault tolerance
strategies, as fault avoidance techniques will yield to a much
higher area, but also due to the complexity of the technology
dependence analysis.

For both type of faults, it is mandatory to perform crossbar
sensitivity analysis as the mapping algorithm can be enhanced
with fault avoidance properties, and also can be used to further
drive the fault tolerance strategy.

A. Defect Tolerance for Diode, Memristor and FET

Defect tolerance is achieved by mapping a target logic
function on a defective crossbar using a distinct input and
output assignment. This problem is considered as NP-complete
[32]. For the worst-case, N ! ×M ! permutations are required
to find a successful mapping for N ×M crossbar. Algorithms
in the literature use defect-unaware or defect-aware approach.

Defect-unaware algorithms aim to find the largest possible
k × k defect-free sub-crossbar from a defective N × N
crossbar where k ≤ N . The algorithms are inefficient for

1 1 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 0 1

1 0 1 0 0
1 0 1 1 1
1 2 0 2 2
0 1 1 0 0
0 2 2 2 0

b) c)

𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒 𝒙𝟒
𝒙𝟓 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔
𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕
𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕 𝒙𝟒
𝒙𝟒 𝒙𝟔 𝒙𝟕 𝒙𝟒 𝒙𝟕

a)
Fig. 6. a) Lattice design for the example function f and its sensitivity map
for b) SAO and c) SA1.

high fault rates - obtained k values are much smaller than N .
In this regard, defect-aware algorithms perform much more
satisfactorily [40]. Detailed analysis of both approaches can
be found in [41].

Defect-aware algorithms consider the defect characteristics
(stuck-at-0 or stuck-at-1), then decide which switch to employ
during the mapping. In our previous work [40], we have
proposed an efficient heuristic algorithms which aims to match
defective crossbar and the given logic function. For this,
it denotes crossbars as matrices. Therefore, it can perform
sorting, matching and backtracking steps efficiently. It makes
repetition for a limit of permutation. This controls heuristic
feature of the algorithm.

Defect tolerance for nano-crossbars is a well established
field with numerous research papers and for this reason we
focus on four-terminal architectures which is, to our knowl-
edge, exclusive to this study.
B. Defect Tolerance for Four Terminals Devices

Four-terminal defect tolerance demands a different approach
than the architectures we have covered so far. For this reason,
we present a novel method, which is firstly introduced in
this paper. The proposed method utilizes a prior sensitivity
analysis of crossbar (latttice) to specify critical switches, and
strengthens them with proposed mitigation factors. The same
naming conventions are applicable, regarding defects which
are categorized as stuck-at-0 (SA0) and stuck-at-1 (SA1),
called Stuck at Fault Model (SAF). Furthermore, we describe
a new model that can be considered for crossbars (lattices),
that consists in changing a switching literal in a cell ci,j
of the lattice with a literal that is in a adjacent cell (i.e.,
ci−1,j , ci+1,j ,ci,j−1, or ci,j+1). We denote this fault model as
Adjacent Cellular Fault Model (ACF). In addition, we follow
the same terminology adopted in [6] and [17] by addressing
crossbar as lattice and switch as cell to be consistent and
emphasize the distinction of four-terminal approach. Finally,
it should be noted that as opposed the previous sections, we
provide a more detailed explanation due to original technical
contribution presented in this section.

1) Defect Injection Methodology: The two fault injections
SAF and ACF are repeated for each cell of the lattice. Once a
”defective” lattice is obtained, both algorithms generate all the
possible 2n inputs (where n is the number of variables). For
each input, the simulation algorithms compare the given output
with the correct one. The two fault injection algorithms (one
for SAF and one for ACF) differ in the calculation of number
of defective outputs in the two fault models, as explained in
the following subsections.

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 7

Fault Model 1: Stuck-at Faults (SAFs) The sensitivity of the
decomposition algorithm on a given lattice is analyzed to face
SA0 and SA1, as a model widely adopted today for memristive
crossbars. As there is no consensus currently on the fault
distribution, we have chosen a uniform distribution for each
type of SA0 and SA1 [14]. The fault rates considered may
be up to 10% of the crossbar, all faults being independent, as
reported in [14]. The fault injection in the above lattices is
performed substituting a single cell with an always stuck-at 1
(SA1) or stack-at 0 (SA0) cell.

Let E0
ij (resp., E1

ij), with 1 ≤ i ≤ r, 1 ≤ j ≤ s, be the
number of defective outputs with a SA0 (resp., SA1) in the
cell (i, j) of the given lattice. Note that 0 ≤ {E0

ij , E
1
ij} ≤ 2n.

Moreover, when E0
ij (resp., E1

ij) is equal to 0 we have that,
for any possible input, the lattice output is never changed
by the SAF in the cell ci,j . In this case, we call the cell
ci,j robust w.r.t. SA0 (resp., SA1). Let R0 (resp., R1) be
the total number of robust cells w.r.t. SA0 (resp., SA1) in
the lattice. Finally, let E0 =

∑i=r
i=1

∑j=s
j=1 E

0
ij (resp., E1 =∑i=r

i=1

∑j=s
j=1 E

1
ij) be the total number of defective outputs with

SA0 (resp. SA1) in the simulation. For an example of function
f = x4x5x7+x4x6x7+x4x5x6x7+x4x6x7+x4x6x7 realized
in Figure 6(a) (with the method in [6]), in the Figure 6(b)
(resp., 6(c) shows the map containing E0

ij (resp., E1
ij) in each

cell. Consider SA0 case (matrix in Figure 6(b)). Each cell of
the matrix contains the number of faulty outputs due to a SA0
in the corresponding cell of the lattice 6(a). When a cell of
the matrices from Figures 6(b) (SA0) and 6(c) (SA1), contains
the value 0, the cell of the corresponding lattice is robust. In
this example, the overall number of robust cells for the SA0
(resp., SA1) is R0 = 1 (resp., R1 = 10).

Fault Model 2: Adjacent Cellular Faults (ACFs) In the classi-
cal CFM [16] used for CMOS circuits it is assumed that a fault
modifies the behavior of exactly one node v in a given circuit
C and that the modified behavior is still combinational. In the
case of a switching lattice L, the fault model can be described
as follows: a cellular fault in L is a tuple (ci,j , lc, lf), where
ci,j is the cell of the lattice L (i.e., fault location), lc is the
correct controlling literal in ci,j , and lf (6= lc) is the faulty
controlling literal. We denote adjacent cellular fault a cellular
fault where the faulty literal lf is the literal contained in an
adjacent cell. More precisely:

Definition 1: Let lh,k be the literal in the cell ch,k of a
lattice L, with 1 ≤ h ≤ r, 1 ≤ k ≤ s. We have that:

1) A Left Adjacent Cellular Fault (L-ACF) is the cellular
fault (ci,j , li,j , li,j−1) ,

2) A Right Adjacent Cellular Fault (R-ACF) is the cellular
fault (ci,j , li,j , li,j+1),

3) A Bottom Adjacent Cellular Fault (B-ACF) is the cellular
fault (ci,j , li,j , li+1,j),

4) A Top Adjacent Cellular Fault (T-ACF) is the cellular
fault (ci,j , li,j , li−1,j).

For example, consider the lattice depicted in Figure 6(a) and
the cell c2,1 containing the literal x5 in the second row from
top and first column from left. In this cell we can have three
possible adjacent Cellular Faults: 1) R-ACF: (c2,1, x5, x7)

that makes x7 the faulty literal of the cell c2,1; 2) B-ACF:
(c2,1, x5, x7) that makes x7 the faulty literal of the cell c2,1;
3) T-ACF: (c2,1, x5, x4) that makes x4 the faulty literal of the
cell c2,1. Notice that the cell c2,1 cannot be affected by a Left
Adjacent Cellular Fault.

Let EL
ij (resp., ER

ij , EB
ij , and ET

ij), with 1 ≤ i ≤ r, 1 ≤
j ≤ s, be the number of defective outputs with a L-ACF
(resp., R-ACF, B-ACF, and T-ACF) in the cell ci,j of the given
lattice. Let Ra (with a ∈ {L,R,B, T}) be the total number
of robust cells w.r.t. a-ACF in the lattice. Finally, let Ea =∑i=r

i=1

∑j=s
j=1 E

a
ij be the total number of defective outputs with

a-ACF in the simulation.

2) Metrics used for Sensitivity Analysis: Let us consider
a lattice with n input Boolean variables, the main aim of
our sensitivity analysis is to understand how many inputs
combinations (out of all the possible ones, which are 2n in
number) give an incorrect output value. For this purpose, we
inject one error in a cell of the lattice (one error at time), for all
cells. This way, we can compute the total number of defective
outputs (Ei, with i ∈ {0, 1, L,R,B, T}) and the total number
of robust cells (Ri, with i ∈ {0, 1, L,R,B, T}) as described
in the previous section. In order to evaluate the sensitivity
of a lattice to SAF and ACF, we propose two metrics. The
first one measures the average number of defective outputs
face to defect-sensitive cells. The second metric measures
the average number of defective outputs in the entire lattice,
considering robust and defective, non-robust cells. Note that
the total number of cells is the area of the lattice (i.e., r·s), the
number of non-robust cells for SA0 (resp., SA1) is r · s−R0

(resp., r·s−R1), and 2n is the total number of possible distinct
inputs. Moreover, the number of non-robust cells for a-ACF
(with a ∈ {L,R,B, T}) is r · s−Ra.

The sensitivity to defective cells is the total number
of inputs that give an uncorrected output (Ei, with i ∈
{0, 1, L,R,B, T}) divided by the total number of inputs (2n),
for each non-robust cell. The metric can be expressed as:
Si
C = Ei/(2n·(r·s−Ri)) for each fault i ∈ {0, 1, L,R,B, T}.
The sensitivity of lattice is the total number of inputs that

give an uncorrected output divided by the total number of
inputs for each cell: In particular, Si

L = Ei/(2n · r · s), with
i ∈ {0, 1, L,R,B, T}.

In summary, the first metric measures the impact of one cell
on the probability of failure of a logic function. The second
one allows us to evaluate the integrity of the entire lattice and
understand if it is possible to map strong, critical functions (for
a specific operation) in such lattice, which have high sensitivity
to faults or overall high robustness. For instance, if we have a
lattice where half of the cells are non robust we can understand
that we may not want to use it for critical functions (e.g.,
control, decision making, etc).

For example, consider the lattice depicted in Figure 6(a) and
the map in Figure 6(c) showing the values of E1

ij in each cell
in the SA1 model. Note that the number of rows and columns
is r = s = 5 and the number of different variables in the
lattice is n = 4 (i.e., x4, x5, x6, and x7). Moreover, the total
number of incorrect outputs is the sum of all the errors, i.e.,
E1 = 21 and the number of robust cells (i.e., cells with no

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 8

errors) is R1 = 10. Therefore, the sensitivity of defective cells
is S1

C = E1/(2n · (r · s − R1)) = 21/(24 · (5 · 5 − 10)) =
21/240. This means that out of all possible errors, which are
240 in number, we have 21 errors. The second metrics does
not take into account the robust cells, therefore we have that
S1
L = E1/(2n · (r · s)) = 21/(24 · (5 · 5)) = 21/400.

3) Benchmarks and Simulations: The defect simulations
have been run on a machine with two Intel Xeon E5-2683 for
a total of 64 CPUs and 756 GByte of main memory, running
Linux CentOS 7. The benchmarks functions are expressed in
PLA form and are taken from a subset of LGSynth93 [47].
Each output of a function is implemented as a separate
Boolean function for total of about 1000 functions.

The software used for simulations is written in C++. We
used ESPRESSO [23] to implement the method described
in [6], and a collection of Python scripts for computing
minimum-area lattices by transformation to a series of SAT
problems, to simulate the results reported in [17].

In Table III, we report a sample of benchmark functions
and their sensitivity values, according to the metrics presented
before. In particular, Table III refers to lattice synthesized as
described in [6] and [17]. The benchmarks marked with a ?
in Table III, were stopped after ten minutes of SAT execution
and, for this reason, they are missing from the benchmarks
synthesized using quantified Boolean logic.

More precisely, in both methods, the first column reports
the name and the number of the considered outputs of each
function. The following columns report dimension (r × s)
required for the synthesis of a given function according to each
decomposition method, and the number of input variables n.
Columns from 4 to 11 refers to Stuck At fault model, columns
from 12 to 27 to Adjacent Cellular Fault model showing the
total number of errors E, the Sensitivity of defective cells SC ,
the Sensitivity of lattice SL and the percentage of robust cells
%R/r×s. Table III shows that the synthesis method proposed
by [6] produces lattices with a lower number of errors and
a higher number of robust cells. However, the area of these
lattices is greater than the area of the corresponding lattices
synthesized using [17]. For example, consider the benchmark
circuit alu3(2): the area of the lattice minimized with [6] (resp.,
[17]) method is 10×11 (resp., 6×4), while the percentage of
robust cells in the lattice synthesized using [6] (resp., [17])
method is 98% (resp., 33%) in the SA0 case. For the other
fault models the percentage’s comparison is similar.

Table IV describes the overall results for the considered
benchmarks. More precisely in the columns from one to three
is reported the synthesis method, the average lattice area, and
the average number of input. Columns from four to twenty-
one show the average values of SC , SL, and %R/r × s for
each fault injection methodology. The columns from twenty-
two to twenty-four contain the average value of SC , SL, and
%R/r × s obtained considering all the fault models.

Table IV shows that the percentage of cells that are con-
sidered robust according to our metrics is higher in the first
approach [6]. For example if we consider the benchmark
prom2(0) with SA1 faults, using the approach [6] we have
100% of resilient cells, instead using the approach [17] there

are no resilient cells. This is due to the more constrained
structure of the lattices produced by the first synthesis method.
Indeed, the method proposed in [6] computes a lattice for
f and its dual, which it is in general less compact than the
lattice given by [17]. However, we can note that the sensitivity
of the lattices is quite low for both methods. In fact, the
experiments show that, in general, non-robust cells compute a
failed output for a very limited number of inputs. In particular,
lattices present lower sensitivity to Adjacent Cellular faults,
with respect to the Stuck-At faults. This is due to the fact that
when two adjacent cells contain the same value, this situation
will not show an impact on the output. In both synthesis
approaches, we observe that the lattice is more sensitive to
SA0 faults, while in the case of SA1 faults, it requires higher
percentage of redundant cells.

It is worth noting that we test lattices with up to 12 variables,
this makes interesting the use of this technology to implement
multipliers, or other complex arithmetic functions.

4) Mitigation by Defect Avoidance: From the above results,
it can be seen that the two analyzed mapping algorithms show
different sensitivities of the output of a given function. As a
matter of fact, the more restrictive an algorithm in terms of
area it is (closer to the optimal solution), the higher the defect
sensitivity of the output to a cell defect. It is thus mandatory to
include the mapping algorithm defect-avoidance heuristics, but
hardware-level defect tolerant scheme may also be necessary,
especially in the case of very high defect densities and
transient faults rates. Hardware redundancy schemes can be
used at the lattice column level, or at the block level [27],
as the basic computation unit of a memristor array is not
the memristive cell, as in classical CMOS based memories,
but the entire column. Therefore, several redundant columns
or blocks can be added to the initial design to replace the
memristive RAM affected columns but also to overcome the
situation when potential SAFs affect the redundant parts as
well.

Besides Redundancy Repair Techniques, other defect toler-
ance techniques can be used. For example, Error Correcting
Codes (ECC) especially when transient faults are the main
issue, but also fault masking techniques to typically repair
permanent faults, or combinations of both. Various advanced
error correction techniques have been proposed for emerging
technologies structures, which provide improvements over the
conventional ECC or Redundancy Repair techniques [19]. But
it is worth noting that all of them are generating quite signif-
icant area overhead due to the encoding/decoding circuitry,
or to the extra spare rows and columns, or a more complex
addressing and accessing schemes, but they also impact the
write/read margins of the lattice, and increase the access
latency, and power consumption. Therefore, a combination
of efficient defect avoidance mapping algorithm combined
with Redundancy based Repair techniques and/or ECC codes
will lead to fully functional lattices even for high defect and
transient fault rates. Mapping of logic functions on crossbar
arrays are thus divided into two main phases: mapping phase
to write the parameters of functions in the memristive array
and a read operation to check the results from the crossbar.

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 9

TABLE III
A SAMPLE OF BENCHMARK FUNCTIONS SYNTHESIZED WITH [6] AND [17] APPROACHES AND THEIR SENSITIVITY VALUES

name Benchmark Size Stuck at Fault Model Adjacent Cellular Fault Model
r × s n E0 S0

C S0
L % R0

r×s
E1 S1

C S1
L % R1

r×s
ER SR

C SR
L % RR

r×s
EL SL

C SL
L % RL

r×s
ET ST

C ST
L % RT

r×s
EB SB

C SB
L % RB

r×s

Synthesis with Dual Method [6]
alu3(2) 10×11 8 16 0.008 0 96 4 0.008 0 98 12 0.003 0 87 12 0.003 0 87 4 0.001 0 89 4 0.001 0 89
b12(6) 9×6 9 160 0.028 0.006 80 2072 0.225 0.075 68 80 0.013 0.003 78 72 0.013 0.003 80 2072 0.150 0.075 50 344 0.037 0.012 67
br2(0)? 5×14 12 227 0.002 0.001 50 546 0.003 0.002 41 100 0.001 0 56 125 0.001 0 54 545 0.003 0.002 36 381 0.002 0.001 41
clpl(3) 6×6 11 4085 0.074 0.055 25 1382 0.042 0.019 57 1010 0.019 0.014 28 3342 0.063 0.045 28 1381 0.032 0.019 42 274 0.008 0.004 53
dist(2)? 33×30 8 301 0.005 0.001 78 207 0.007 0.001 89 182 0.004 0.001 84 198 0.004 0.001 82 187 0.005 0.001 86 175 0.005 0.001 85
jbp(44) 2×10 11 576 0.031 0.014 55 1024 0.071 0.025 65 192 0.007 0.005 35 64 0.003 0.002 45 640 0.045 0.016 65 1024 0.056 0.025 55
luc(13) 9×10 6 70 0.024 0.012 50 36 0.019 0.006 68 36 0.017 0.006 62 38 0.017 0.007 61 29 0.014 0.005 64 36 0.014 0.006 57
m4(7)? 32×29 8 514 0.006 0.002 63 278 0.010 0.001 89 354 0.005 0.001 71 341 0.005 0.001 71 271 0.008 0.001 85 276 0.007 0.001 85

max128(9) 10×9 7 188 0.029 0.016 43 51 0.025 0.004 82 135 0.022 0.012 46 134 0.024 0.012 52 43 0.015 0.004 76 51 0.015 0.004 71
prom2(0) 8×6 8 122 0.063 0.014 78 184 0 0 100 92 0.043 0.009 80 92 0.039 0.007 83 168 0 0 94 136 0 0 94
radd(3)? 36×36 8 471 0.012 0.001 88 388 0.017 0.001 93 314 0.009 0.001 89 284 0.008 0.001 88 384 0.013 0.001 91 334 0.011 0.001 91
rd73(1)? 42×42 7 299 0.008 0.001 83 178 0.008 0.001 90 159 0.006 0.001 89 171 0.006 0.001 88 178 0.006 0.001 88 171 0.006 0.001 88

Synthesis with Quantified Boolean Logic [17]
alu3(2) 6×4 8 398 0.097 0.065 33 168 0.041 0.027 33 262 0.060 0.043 29 208 0.048 0.034 29 122 0.034 0.020 42 198 0.039 0.032 17
b12(6) 4×5 9 688 0.079 0.067 15 896 0.219 0.088 60 424 0.064 0.041 35 504 0.082 0.049 40 544 0.097 0.053 45 904 0.126 0.088 30
clpl(3) 6×3 11 1218 0.040 0.033 17 1579 0.043 0.043 0 783 0.027 0.021 22 946 0.033 0.026 22 618 0.017 0.017 0 1584 0.043 0.043 0
jbp(44) 2×7 11 2112 0.079 0.074 7 3328 0.116 0.116 0 2048 0.071 0.071 0 2048 0.077 0.071 7 3456 0.121 0.121 0 3648 0.127 0.127 0
luc(13) 6×4 6 86 0.058 0.056 4 115 0.078 0.075 4 82 0.058 0.053 8 85 0.058 0.055 4 94 0.064 0.061 4 105 0.071 0.068 4

max128(9) 6×4 7 269 0.091 0.088 4 210 0.071 0.068 4 216 0.073 0.070 4 260 0.092 0.085 8 225 0.076 0.073 4 234 0.079 0.076 4
prom2(0) 6×4 8 382 0.062 0.062 0 550 0.090 0.090 0 308 0.050 0.050 0 300 0.049 0.049 0 470 0.076 0.076 0 306 0.050 0.050 0

TABLE IV
OVERALL RESULTS OF THE SIMULATIONS

Synthesis
Method

Average
area

Average
n

S0
C S0

L % R0

r×s
S1
C S1

L % R1

r×s
SR
C SR

L % RR

r×s
SL
C SL

L % RL

r×s
ST
C ST

L % RT

r×s
SB
C SB

L % RB

r×s

Average values
SC SL % R

r×s

[6] 63 6 0.13 0.11 39% 0.08 0.04 56% 0.02 0.01 35% 0.02 0.01 35% 0.05 0.03 43% 0.03 0.02 45% 0.06 0.04 42%
[17] 15 7 0.1 0.08 20% 0.09 0.08 25% 0.06 0.06 17% 0.06 0.06 17% 0.07 0.07 19% 0.07 0.07 19% 0.08 0.07 20%

The objective here is to identify at the writing time, if common
literals and other multiple-choice literals of the function can
be mapped on highly critical cells, or not, so that the output
is not compromised.

Mitigation for Stuck at Faults: In order to mitigate the sensi-
tivity of a lattice to SAF, we propose the following possible
strategy applied to the synthesis method proposed in [6]
which has been proven a less sensitive to SAF impact on
the output functions: (1) For a given mapped function, if a
potential SA0, SA1 faults affects a robust cell identified by
the defect injection campaign, the lattice still computes the
correct output, thus we do not need any more mitigation with
defect tolerant design. (2) However, if an injected defect occurs
in a multiple-choice cell, if a different literal can be chosen to
increase the robustness, we change the literal with the new
one. (3) Otherwise, if the injected SA0 fault is proven as
being critical for the output value, the column that contains
that defective cell has to be replaced by a spare one. In case
of an SA1, the row that contains the defective cell has to be
replaced by a spare row. Note that in this case, the output
still provides a correct function f from top to bottom, but the
function from left to right could be changed and become a
function which will not be dual of f anymore.

As an example, consider the lattice synthesized in Fig-
ure 7(a) with f = x4x5x7 + x4x6x7 + x4x5x6x7 + x4x6x7 +
x4x6x7 by using synthesis method presented in [6]. The
example shows one case of mitigation of 3 independent SAD
affecting the lattice implementing the function, yielding an
approximate 10% defects. In Figure 7, critical SA1 cells are
marked in blue and SA0 cells a remarked in red.

To avoid output errors due to these SAF we have used the
following strategy:

1) Identify robust cells for a given function mapping. Ex-
ample: the defect in the first row, fifth column is non-
significant on the value of the output (robust cell). The
sensitivity map obtained through defect injection cam-
paign, shows that this cell (x4) is not sensitive to SA1

for the mapped function.
2) Identify the swapping of literals during synthesis process

on a column of a high sensitive cell. Example: the defect
in fifth row, fourth column (i.e., blue cell) is sensitive
to SA1. We can note that the yellow cell (the fourth
row, fourth column cell) contains the literals x7. By
Figure 7(a) we know that we can choose x4 instead of x7.
With this new literal (x4), we have an equivalent lattice
where if the blue cell is affected by a SA1 at fabrication
time, this will not affect the output of the function.

3) Identify the critical cell for the output value and add a
spare column per critical cell. Example: the defect in the
third row and second column will influence the value of
the output and no swapping operands is possible. Thus the
only solution remains to add a spare column (in green)
identical to the column containing the SA0 defect, and
perform the spare and replace strategy. By using spare
columns, the mapping algorithm can eliminate columns
of the lattice, with critical cells, susceptible to affect the
output value of the function, in case SA defect appear at
fabrication or in the field.

Mitigation for Adjacent Cellular Faults: In the case of adja-
cent cellular fault model, we can note that adjacent cells
containing the same controlling literal are robust to faults. For
example, consider the lattice depicted in Figure 6(a), and the
two variables x4 at the end of the first row. The lattice is
obviously robust to a L-ACF in the last x4 (and to a R-ACF
in the forth cell, containing x4). For this reason, in sensitivity
analysis to ACF model, it is of huge importance to maximize
the number of adjacent cells with the same controlling literal.

Recall that the properties of the lattice synthesized with [6]
guarantee that row and column permutations for a given lattice
do not change the Boolean function computed by the switching
lattice. Because of the good level of flexibility, we consider
the lattice obtained by this synthesis method as a starting point
for increasing the number of robust cells without changing the
function represented.

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 10

Fig. 7. a) defect-free lattice; b) lattice with defects: SA0 in red and SA1 in
blue; and c) lattice with the defect fixed.

Thus, given a lattice synthesized with [6], a possible strategy
is to perform column and row permutations in order to
maximize the number of adjacent cells containing the same
literal. For example, consider the R-ACF, the number of cells
with the same literal in the right-adjacent cell in the lattice
in Figure 6(a) is 1. Suppose to simply swap the second and
the third column, the number of cells with the same literal in
the right-adjacent cell becomes 4 (i.e., the number of robust
cells is incremented by 3). Note also that while the number
of robust cells to R-ACF and L-ACF can be increased by
column permutations, the number of robust cells to T-ACF
and B-ACF can be increased by row permutations. Finally,
observe that this method increases the number of robust cells
without increasing the dimension of the lattice.

C. Transient Fault Tolerance
Before moving on to transient faults, one distinction should

be emphasized such that contrary to defects, transient faults are
not known in advance and occur in-field. For this reason, tran-
sient fault tolerance works in predictive manner. In addition,
since nano-crossbars are in the early stage of development,
there is data deficiency regarding the occurrence rates and
characteristics of transient faults.

First, we follow the same naming conventions of defects
(permanent faults) for transient faults in modeling. Accord-
ingly, the effects of transient faults can be categorized with 4
different scenarios:

1) Stuck-at-zero on unused crosspoint produces no effect
2) Stuck-at-zero on used crosspoint removes corresponding

input
3) Stuck-at-one on unused crosspoint adds corresponding

input
4) Stuck-at-one on used crosspoint produces no effect.

P1

P2

P4

P3

x2 x3 x1 x1 x2 x3

f = x1 x2 + x2 x3 + x1 x3 + x1 x2 x3

P1

P2

P4

P3

P1

P2

P4

P3

x2 x3 x1 x1 x2 x3

P1

P2

P4

P3

Transient Faults

P1

P2

P4

P3

x2 x3 x1 x1 x2 x3

P1

P2

P4

P3

f
2
 = x1 x2 x1 + x2 x3 + x1 x3 + x1 x2 x3

f
1
 = x1 x2 + x2 x3 + x1 x3 x2 + x1 x2 x3

a) b)

c)

: Stuck-at-one: Stuck-at-zero

a) Function is mapped to crossbar.

b) Transient faults modify the
crossbar. But resulted f

1
 is equal to f.

c) Transient faults modify the
crossbar. But resulted f

2
 is not equal

to f.

Fig. 8. Transient faults and how inherent tolerance works.

To mitigate faults, first approach is to introduce extra circuit
elements to compensate erroneous results. Inserting redundant
components can be constructed with adding extra rows and/or
columns as shown in [29] [7]. A detailed study of redundancy
techniques can be found in [41].

The second approach requires the knowledge of prevalent
fault types beforehand so that it is possible to modify the
target logic function accordingly. If stuck-at-zero faults are
more common, then using the logic function form with least
number of inputs implies many unused crosspoints and high
tolerance (scenario 1). If stuck-at-one faults are more common,
then using the logic function form with the most number
of inputs (e.g. using the minterm form) implies many used
crosspoints and high tolerance (scenario 4). Nevertheless,
trade-off between area size and transient fault tolerance is open
to further research.

Finally, logic functions possess an inherent tolerance inde-
pendent of methodology and benefits from the equivalence
of different logic functions. This is an intrinsic feature of
the given logic function having many forms. Figure 8 shows
how different faults modify the crossbar and resulted logic
function is equivalent to the original in Figure 8(b) and not
in Figure 8(c). These tolerated faults are limited to certain
switches of crossbar and can be found with using algebraic
calculations as show in [40]. As for the example in Figure 8
f = x1x2+x2x3+x1x3+x1 x2 x3, every following function
is equivalent to the original one:

• f1 = x1x2 + x2x3x1 + x1x3 + x1 x2 x3

• f2 = x1x2x3 + x2x3 + x1x3 + x1 x2 x3

• f3 = x1x2 + x2x3 + x1x3x2 + x1 x2 x3

For more detailed explanations of determining tolerable
switches, calculating the fault tolerance and effects of multi-
output functions reader can refer to [40].

Eventually, a more resource hungry approach would be
fault sensitivity analysis by performing extensive Monte Carlo
simulation and determining every possible case of fault oc-
currence, yet it is rather costly. As a final word, transient
fault tolerance, at the moment, is at its infancy and additional
research is needed for best practices.

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 11

Benchmark

Function

(Squar5)

.i5

.o8

.p25

1-1-0

0--10

.

.

.e

Pla format

Technology

Choice

Crossbar (lattice)

Description

Logic Synthesis

Area Size

Diode 594

FET 900

Memristor 832

4-Terminal 160

Diode

FET

Memristor

4-Terminal

Section II Section III Section IV

Defect/Fault Tolerance Performance Optimization

Defect Tolerance

Diode 100%

FET 100%

Memristor 100%

4-Terminal -

Defect tolerant mapping

Cross.

Desc.

Defect

Map
Delay and Power

Diode R x 10 - 1/R

FET 300 - 1/10

Memristor 7 - 133/5

4-Terminal 73 - 80/73

Fig. 9. Whole integrated synthesis pipeline of benchmark function squar5. R denotes the load resistor.

V. PERFORMANCE OPTIMIZATION

We focus on area-oriented optimization for our method-
ology. As stated in Section I, main motivation to use nano-
crossbars is that they are dense. Thus, logic functions can be
realized with smaller area. We first find the minimum sized
array, and perform defect tolerance analysis. If it is needed,
we increase the area size based on the defect tolerance results.
Later, we perform delay and power performance analysis with
minor tuning. However, as a downside we loose the benefit of
further delay and power minimization [13] [5].

Section III investigates the area performance. Here, we will
analyze the delay and power depending on number of products
and/or literals. Main purpose is to construct a fair metric
for performance comparison. In our previous study [43], we
have conducted this analysis for memristive crossbars. All
supply voltages of technologies are assumed to be the same.
Therefore, comparing their performance behaviors (for a given
function) is considered to be sufficient method for integrated
synthesis methodology.

1) Delay Analysis: We have used an approach of multiply-
ing resistive and capacitive loads (RC-delay) for delay. This
helps us to calculate maximum frequency with 1/delay. In the
delay analysis for diode, we see that ”number of columns” and
”load resistor” dominate the capacitive load and resistive load
respectively. For memristive crossbars, it is proportional to
constant 7× tcycle (independent from the target function; i.e.
latency). Considering FET, we need to calculate resistive loads
and capacitive loads from the longest path for the worst-case
scenario. Lastly, four-terminal’s delay is directly proportional
to the longest path on the lattice, same as FET. The longest
path on the lattice can be calculated as explained in [6]:

Llong path =

{
R R ≤ 2

⋃
C ≤ 1

3R−2
2

C
2 + 2+(−1)R+(−1)C

2 R > 2
⋂

C > 1

where R: number of rows, C: number of columns, Llong path:
length of the longest path on the lattice.

Finally, Delay performances are proportional to:
• Diode: ∝ (load resistor)× (# of literals in f)
• Memristor: ∝ 7× tcycle (latency) [43]
• FET: ∝ (degree of the largest product in f and fD)
× ((# of products in f) + (# of products in fD) +
of literals in f)

• Four-terminal: ∝ Llong path

2) Power Analysis: Power consumption is the total energy
used in unit time. Therefore we estimate consumed total
energy in a period, afterwards we divided it with delay (delay
is proportional with a period at maximum frequency). Because
we assumed that circuit will be used in maximum frequency.
For delay estimation, we will going to use the formulation in
above.

The power of diode based crossbar is dominated by static
power. So, it is inversely proportional only with a load
resistor. Load resistor can be considered as 10 times of diode’s
inner resistance. Total energy consumption of memristor is
proportional to total count, because it is assumed that all
memristors are changing their states one time only [43]. Note
that, in this memristor based crossbar, sneak path current is
minimized [20], so the power consumption caused by it can
be neglected. Total energy consumption of FET crossbars is
directly proportional to the capacitance of the output node and
nodes related to the output node. For four-terminal, we assume
all crosspoints consume energy at the worst-case scenario.
Finally, we divide energy consumption by the delay to find
the complexity of power consumption.

However, effect of the estimated switching activity of an
input to the power consumption is not the same for all
technologies. For memristor, even though change in inputs
does not cause any change for the state of the output, there
will be dynamic power consumption. Because every cycle
(stage) will be recalculated. Also, since the power of diode
is dominated by static power, we didn’t include the effect of
switching activity to the calculation of power consumption.
For only FET and four-terminal, we include the estimation
of switching activity by multiplying it with 0.5. (Notice that,
supply voltages are assumed as the same.)

Finally, Power performances are proportional to:

• Diode:∝ 1 / (load resistor)
• Memristor: ∝ (total memristor count in crossbar)/7

[43] [39]
• FET:∝ 0.5 / (degree of the largest product in f and fD)

(@ maximum frequency)
• Four-terminal: ∝ (0.5 (# of products in rows) ×

(# of products in columns)) / Llong path

VI. A CASE STUDY FOR BENCHMARK FUNCTION Squar5

In this section, we demonstrate the whole process with an
example. We have chosen the benchmark function Squar5

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 12

which has 5 inputs, 25 products and 8 outputs in PLA format.
Diagram of the process is given in Figure 9.

First, we need to evaluate different technologies such as
diode, FET, memristor or four-terminal. Using logic synthesis,
we can generate function descriptions in crossbar (lattice) form
and obtain area sizes utilizing equations in Section III. Results
are as follows:

Diode: (# of products of all foi) + n) ×
((# of literals in f) + n) = (25 + 8) × (10 + 8) =
594.

Memristor: ((# of products of all foi) + n) ×
((# of literals in f) + 2n) = (25 + 8) × (10 + 16) = 858.
However, our proposed greedy algorithm PGA decreases the
size to 832.

FET: (# of literals in f + n) ×
((# of products of all foi)+ (# of products of all fD

oi))
= (10 + 8) × (25 + 25) = 900. Coincidentally, its dual also
has the same number of products.

Four-terminal: (degree of the largest product in fD
oi)×

(# of products of all foi +n− 1) = 5 x (25 + 8-1) = 160.
First term is chosen according to the product which has the
maximum number of literals.

Secondly, we use function descriptions and defect map
of a crossbar. Applying the defect tolerant logic mapping
methods in Section IV, it is possible to measure defect/fault
performance. Key point is that diode, FET and memristor
have a rich literature of methods for reaching 100% defect
tolerance for defect rates up to 10% [41] [43]; nevertheless
four-terminal is at its infancy in terms of defect tolerance. In
this paper, defect performance of only single output functions
are studied and we are planning to extend the work into multi
output functions as well in the future.

Lastly, we conduct a performance optimization specific
to technology dependent delay and power parameters of
crossbars. Since related equations are presented in immediate
section, only result are given:

Diode: Delay is R× 10 (Load resistor is shown with R).
Power is 1/R. If assume R is 10 times than a diode’s inner
resistance, then Delay is 100 and Power is 1/10.

Memristor: Delay (latency) is constant (independent from
the function) and 7tcycle. Power is 133/7 ≈ 19. The number
133 denotes the number of memristors used in the crossbar.

FET: Delay is 300 and power is 1/10. Including the next
four-terminal, FET has the largest delay.

Four-terminal: The longest path is 73, so is the delay.
Power is 80/73 ≈ 1.

Note that, values only lights the complexity of delay and
power, they are not real elapsed time and power consumption.
Here we assume, they all fabricated with same technology. For
instance, in order to calculate the delay of diode crossbars, we
need to know value of R and the source voltage.

To provide an overall evaluation, four-terminal is the most
advantageous choice in terms of area size. However, defect
tolerance is poor especially regarding the complexity and
computation power needed to conduct experiments for four-
terminal. Delay of memristive crossbars is predictable, it
doesn’t depend on function. Therefore, it could be considered
as the most advantageous choice in terms of delay. For power

consumption, diode seems to have the least value, yet it is
static power also depends source voltage. On the other hand,
FET crossbars has only dynamic power consumption with
complementary architecture.

VII. CONCLUSION AND DISCUSSION

In conclusion, we have presented an integrated synthesis
methodology regarding every design steps of a crossbar circuit
including novel optimization and defect tolerance algorithms
for each step. Since the main motivation of crossbar tech-
nologies is that they are able produce denser circuit structures
comparing to the conventional technologies, the synthesis
methodology takes area optimization as base. In addition to
that, defect tolerance analysis gets the size of the crossbar as
the input. However, devising area-oriented optimization causes
only having course delay and power analysis/optimization.
An extension of the selection of delay- or power-oriented
optimizations will increase the performance optimization ca-
pability of the methodology.

In logic synthesis section, comparison of four crossbar types
with multi-output logic functions is firstly presented. Also, a
new technique of logic synthesis for memristor based crossbars
is presented. Since developing new efficient algorithms for
logic synthesis is in progress and also the area sizes are
depending on different parameters of a logic, there has not
been a verdict on this race.

In defect tolerance section, we focus on four-terminal ar-
chitectures and design a novel sensitivity analysis and fault
tolerance approach. First step of the method locates the prob-
lematic cells and guides the second step through introducing
preventive measures such as reassignment of cell (if possible)
or adding redundant columns/rows to the lattice. Currently,
method is limited in term of input size, so an important
improvement to sensitivity analysis would be to increase the
number of variables the method can manage.

In performance optimization section, effects of the crossbar
size and function parameters to the delay and power are
presented. Even though room for optimizations of delay and
power are limited due to the area-oriented optimization, the
paper presents a clear projections to the designer. However the
real values in the crossbar technologies (for different types) is
in process of evolving. Certain studies are in proof of concept
level. For instance, pitch sizes were given as micrometers
in the early 2000s [18] [34], yet they are reduced to tens
of manometers [20]. Also, a recent study [13] realizes four-
terminal switch based crossbar (lattice) with 65nm CMOS-
process for a proof of concept. As expected, the situation is
also same for the comparison on the delay and power analysis.
This is the inherent reason that this study is independent
from technology nodes, thus it can be implemented to the
every technology. 3D printing electronics could be a promising
candidate for comparing the crossbar types with actual values.

As a future work, a fully automated software tool for the
synthesis methodology is planned to be developed. It will take
the target function, the used technology, and the performance
specifications (area, delay and/or power consumption) as input
and return the optimized crossbar-arrays structure as an output.
This software tool, to be developed, will benefit from the

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 13

optimization algorithms introduced in this study. It will also
produce the mapping using technology specification data.
The tool is expected to be updated based on established
experimental results and novel algorithms. Another direction
could be the study of transient faults on lattices, so that it can
generate complete defect tolerance analysis. The future study
should evaluate how the redundancies in lattices can limit the
area overhead.
Acknowledgement: We thank Dr. Levent Aksoy for his con-
tribution to synthesis process of multi-output functions with
four-terminal based switching arrays.

REFERENCES

[1] L. Aksoy and M. Altun, “Novel methods for efficient realization of logic
functions using switching lattices,” IEEE Transactions on Computers,
vol. 69, no. 3, pp. 427–440, 2019.

[2] L. Aksoy and M. Altun, “A satisfiability-based approximate algorithm
for logic synthesis using switching lattices,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
1637–1642.

[3] L. Aksoy and M. Altun, “A novel method for the realization of complex
logic functions using switching lattices,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2020.

[4] D. Alexandrescu, M. Altun, L. Anghel, A. Bernasconi, V. Ciriani,
L. Frontini, and M. Tahoori, “Synthesis and performance optimization
of a switching nano-crossbar computer,” in Euromicro Conference on
Digital System Design (DSD). IEEE, 2016, pp. 334–341.

[5] M. Altun, I. Cevik, A. Erten, O. Eksik, M. Stan, and C. A. Moritz,
“Nano-crossbar based computing: Lessons learned and future direc-
tions,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2020.

[6] M. Altun and M. D. Riedel, “Logic synthesis for switching lattices,”
IEEE Transactions on Computers, vol. 61, no. 11, pp. 1588–1600, 2012.

[7] S. Baranov, I. Levin, O. Keren, and M. Karpovsky, “Designing fault
tolerant FSM by nano-PLA,” in 15th IEEE International On-Line Testing
Symposium (IOLTS). IEEE, 2009, pp. 229–234.

[8] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled,
and S. Kvatinsky, “SIMPLER MAGIC: synthesis and mapping of in-
memory logic executed in a single row to improve throughput,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2019.

[9] A. Bernasconi, “Composition of switching lattices and autosymmetric
boolean function synthesis,” in 2016 Euromicro Conference on Digital
System Design (DSD). IEEE, 2017.

[10] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and
T. Villa, “Logic synthesis for switching lattices by decomposition with
p-circuits,” in 2016 Euromicro Conference on Digital System Design
(DSD). IEEE, 2016, pp. 423–430.

[11] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Synthesis on
switching lattices of dimension-reducible boolean functions,” in 2016
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC). IEEE, 2016, pp. 1–6.

[12] J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. Ohlberg, W. Wu,
D. R. Stewart, and R. S. Williams, “A hybrid nanomemristor/transistor
logic circuit capable of self-programming,” Proceedings of the National
Academy of Sciences, vol. 106, no. 6, pp. 1699–1703, 2009.

[13] I. Cevik, L. Aksoy, and M. Altun, “Cmos implementation of switch-
ing lattices,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 274–277.

[14] C.-Y. Chen, H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu,
and F. T. Chen, “RRAM defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Transactions on
Computers, vol. 64, no. 1, pp. 180–190, 2015.

[15] Y. Chen, G.-Y. Jung, D. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen,
K. A. Nielsen, J. F. Stoddart, and R. S. Williams, “Nanoscale molecular-
switch crossbar circuits,” Nanotechnology, vol. 14, pp. 462–468, 2003.

[16] A. D. Friedman, “Easily testable iterative systems,” IEEE Transactions
on Computers, vol. 100, no. 12, pp. 1061–1064, 1973.

[17] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing optimal
switching lattices,” ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), vol. 20, no. 1, pp. 1–14, 2014.

[18] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M.
Lieber, “Logic gates and computation from assembled nanowire building
blocks,” Science, vol. 294, no. 5545, pp. 1313–1317, 2001.

[19] W. Kang, W. Zhao, Z. Wang, Y. Zhang, J.-O. Klein, Y. Zhang, C. Chap-
pert, and D. Ravelosona, “A low-cost built-in error correction circuit
design for STT-MRAM reliability improvement,” Microelectronics Re-
liability, vol. 53, no. 9-11, pp. 1224–1229, 2013.

[20] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain,
N. Srinivasa, and W. Lu, “A functional hybrid memristor crossbar-
array/CMOS system for data storage and neuromorphic applications,”
Nano letters, vol. 12, no. 1, pp. 389–395, 2012.

[21] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “MAGIC—memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[22] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery,
P. Lin, Z. Wang et al., “Efficient and self-adaptive in-situ learning in
multilayer memristor neural networks,” Nature communications, vol. 9,
no. 1, pp. 1–8, 2018.

[23] P. C. McGeer, J. V. Sanghavi, R. K. Brayton, and A. Sangiovanni-
Vicentelli, “ESPRESSO-SIGNATURE: A new exact minimizer for logic
functions,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 1, no. 4, pp. 432–440, 1993.

[24] M. C. Morgul, O. Tunali, M. Altun, L. Frontini, V. Ciriani, E. I. Vatajelu,
L. Anghel, C. A. Moritz, M. R. Stan, and D. Alexandrescu, “Integrated
synthesis methodology for crossbar arrays,” in 14th IEEE/ACM Interna-
tional Symposium on Nanoscale Architectures (NANOARCH), 2018, pp.
91–97.

[25] M. C. Morgül and M. Altun, “Anahtarlamalı nano dizinler ile lojik devre
tasarımı ve boyut optimizasyonu logic circuit design with switching nano
arrays and area optimization,” in ELECO, 2014.

[26] M. C. Morgul and M. Altun, “Synthesis and optimization of switching
nanoarrays,” in 2015 IEEE 18th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS). IEEE, 2015,
pp. 161–164.

[27] M. Nicolaidis, L. Anghel, and N. Achouri, “Memory defect tolerance ar-
chitectures for nanotechnologies,” Journal of Electronic Testing, vol. 21,
no. 4, pp. 445–455, 2005.

[28] F. Peker and M. Altun, “A fast hill climbing algorithm for defect
and variation tolerant logic mapping of nano-crossbar arrays,” IEEE
Transactions on Multi-Scale Computing Systems, vol. 4, no. 4, pp. 522–
532, 2018.

[29] W. Rao, A. Orailoglu, and R. Karri, “Logic level fault tolerance ap-
proaches targeting nanoelectronics PLAs,” in 2007 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2007, pp. 1–5.

[30] S. Safaltin, O. Gencer, M. C. Morgul, L. Aksoy, S. Gurmen, C. A.
Moritz, and M. Altun, “Realization of four-terminal switching lattices:
Technology development and circuit modeling,” in 2019 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 504–509.

[31] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Logic
synthesis for RRAM-based in-memory computing,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 7, pp. 1422–1435, 2017.

[32] A. M. S. Shrestha, S. Tayu, and S. Ueno, “Orthogonal ray graphs and
nano-PLA design,” in 2009 IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 2009, pp. 2930–2933.

[33] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A: Materials Science & Processing, vol. 80, no. 6, pp. 1165–
1172, 2005.

[34] G. Snider, P. Kuekes, T. Hogg, and R. S. Williams, “Nanoelectronic
architectures,” Applied Physics A, vol. 80, no. 6, pp. 1183–1195, 2005.

[35] G. Snider, P. Kuekes, and R. S. Williams, “CMOS-like logic in defective,
nanoscale crossbars,” Nanotechnology, vol. 15, no. 8, p. 881, 2004.

[36] D. B. Strukov and K. K. Likharev, “CMOL FPGA: a reconfigurable
architecture for hybrid digital circuits with two-terminal nanodevices,”
Nanotechnology, vol. 16, no. 6, p. 888, 2005.

[37] M. B. Tahoori, “A mapping algorithm for defect-tolerance of reconfig-
urable nano-architectures,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2005, pp. 668–672.

[38] P. L. Thangkhiew, A. Zulehner, R. Wille, K. Datta, and I. Sengupta, “An
efficient memristor crossbar architecture for mapping boolean functions
using binary decision diagrams (bdd),” Integration, vol. 71, pp. 125–133,
2020.

[39] M. Traiola, M. Barbareschi, and A. Bosio, “Estimating dynamic power
consumption for memristor-based CiM architecture,” Microelectronics
Reliability, vol. 80, pp. 241–248, 2018.

Ioana VATAJELU
Text

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) 14

[40] O. Tunali and M. Altun, “Permanent and transient fault tolerance for
reconfigurable nano-crossbar arrays,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 5, pp.
747–760, 2016.

[41] O. Tunali and M. Altun, “A survey of fault-tolerance algorithms for
reconfigurable nano-crossbar arrays,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1–35, 2017.

[42] O. Tunali and M. Altun, “Logic synthesis and defect tolerance for
memristive crossbar arrays,” in 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 425–430.

[43] O. Tunali, M. C. Morgul, and M. Altun, “Defect-tolerant logic synthesis
for memristor crossbars with performance evaluation,” IEEE Micro,
vol. 38, no. 5, pp. 22–31, 2018.

[44] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels,
“Fast boolean logic mapped on memristor crossbar,” in 2015 33rd IEEE
International Conference on Computer Design (ICCD). IEEE, 2015,
pp. 335–342.

[45] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “A
mapping methodology of boolean logic circuits on memristor crossbar,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 2, pp. 311–323, 2017.

[46] H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C.
Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for
nanoprocessors,” Nature, vol. 470, no. 7333, pp. 240–244, 2011.

[47] S. Yang, Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

[48] J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber,
“Nanowire nanocomputer as a finite-state machine,” Proceedings of the
National Academy of Sciences, vol. 111, no. 7, pp. 2431–2435, 2014.

Muhammed Ceylan Morgul received his BSc de-
gree in Electronics and Communication Engineering
in 2014, and MSc degree in Electronics Engineering
in 2017 at Istanbul Technical University. He is
currently a PhD student in Electrical Engineering
at the University of Virginia. He has been principal
investigator of one TUBITAK, and researcher of EU-
H2020-RISE, SRC-JUMP and TUBITAK projects,
in Turkey, USA, France, Portugal and Malaysia. He
is an author of more than 7 peer reviewed research
papers. His current research interests include relia-

bility and emerging computing.
Luca Frontini received the Laurea degree in physics
in 2015 (University of Milan), in 2019 he received
the Ph.D. in Computer Science (University of Mi-
lan). He is currently a postdoc at University of Mi-
lan. His main interests are: logic synthesis of emerg-
ing technologies, design of mixed-signal circuits,
VLSI design, rad-hard electronics, and integrated
photonic devices.

Onur Tunalı received his BSc degree in mathe-
matics at Istanbul University and MSc degree in
Nanoscience and Nanoengineering at Istanbul Tech-
nical University. He has worked as a researcher in
various projects including TUBITAK and EU H2020
RISE. His current research interests include logic
synthesis, re-configurable nano-crossbars, algorithm
design,emerging computing, and reliability.

Lorena Anghel is Scientific Director and a Full
professor at Grenoble Institute of Technology, and
a member of the research staff of SPINTEC Labo-
ratory. She received the PhD from Grenoble Institute
of Technology in 2000, Cum Laudae. Her research
interests include hardware design and test of neural
networks chips, on-line testing, fault tolerance, and
digital reliable design and verification. She has been
involved in several European Projects (FP5 and FP7)
and French National projects ANR. She has served
on numerous technical program committee of pres-

tigious conferences and symposiums, as General Chair, Program Chair. She is
involved in the Steering Committees of IEEE European Test Symposium and
Design Automated and Test in Europe. She is a recipient of several Best Paper
and Outstanding Paper Awards, and published more than 130 publications
in international conferences and symposia, and supervised more than 54
engineering students. From 2016 to 2020 She was Deputy Vice President
at Grenoble INP, in charge of Industrial relationships.

Valentina Ciriani (IEEE Senior member) received
the Laurea degree and the Ph.D. degree in Com-
puter Science from the University of Pisa, Italy,
in 1998 and 2003, respectively. She is currently
an Associate Professor in Computer Science with
the Department of Computer Science, Università
degli Studi di Milano, Italy. Her research interests
include combinational logic synthesis for emerging
technologies, VLSI design of low power circuits,
and testing of Boolean circuits. She has authored or
coauthored more than 90 research papers, published

in international journals, conference proceedings, and books chapters.
Elena Ioana Vatajelu received her PhD degree in
electronics engineering from Universitat Politecnica
de Catalunya (UPC), Barcelona, Spain in 2011. Is
currently a CNRS researcher within TIMA Labora-
tory in Grenoble, France. Her current research ac-
tivity is focused on emerging memory technologies
with special emphasis on their use in architectures
for emerging computing paradigms. She is mainly
focusing on the characterization of fabricationin-
duced process variability, fault modeling and defect
characterization; design for- reliability, designfor-

test and design-for-security.
Csaba Andras Moritz is a Professor of Electri-
cal and Computer Engineering at the University of
Massachusetts Amherst. He is the founder and chair-
man of BlueRISC Inc., a leading system-assurance
company, and EPRIVO.com in digital privacy. His
interests include nano fabrics beyond 2D CMOS
and circuit styles with emerging technology, new
models of computation and inference for AI and
their realization through emerging technology, and
AI-driven cyber-security and system assurance.

Mircea R. Stan (IEEE Fellow) is the Virginia
Microelectronics Consortium (VMEC) Professor at
the University of Virginia. He has received the 2018
Influential ISCA Paper Award, the NSF CAREER
award in 1997 and was co-author on best paper
awards at ASILOMAR19, LASCAS19, SELSE17,
ISQED09, GLSVLSI06, ISCA03 and SHAMAN02
and on IEEE Micro Top Picks in 2008 and 2003. He
gave keynotes at DCAS18, SOCC16, CogArch16,
WoNDP15, iNIS15 and CNNA14 and is Associate
Editor-in-Chief (AEIC) for the IEEE TVLSI, Senior

Editor (SE) for the IEEE TNano, Associate Editor (AE) for IEEE Design &
Test.

Dan Alexandrescu (IEEE Member’07-Senior Mem-
ber’13) is the CEO of IROC Technologies. Dan
holds a Ph.D in Microelectronics from INPG, Greno-
ble Institute of Technology, France. He specializes in
the design, optimization and improvement of highly-
reliable microelectronic circuits. He contributed to
the organization of reliability-centric workshops and
symposia and he prepared many publications in the
field of reliability and radiation-induced effects.

Mustafa Altun received his BSc and MSc degrees
in electronics engineering at Istanbul Technical Uni-
versity in 2004 and 2007, respectively. Since 2013,
he received his PhD degree in electrical engineering
with a PhD minor in mathematics at the University
of Minnesota in 2012. He has served as an asso-
ciate professor at Istanbul Technical University and
runs the Emerging Circuits and Computation (ECC)
Group. Dr. Altun has been served as a principal
investigator/researcher of various projects including
EU H2020 RISE, National Science Foundation of

USA (NSF) and TUBITAK projects. He is an author of more than 50 peer
reviewed papers and a book chapter, and the recipient of the TUBITAK
Success, TUBITAK Career, and Werner von Siemens Excellence awards.

Ioana VATAJELU
Text

