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A certain function that is the solution of Salem's integral equation

We deal with "existence of a solution satisfying the condition of Salem's integral equation", which is an equivalent conjecture to Riemann hypothesis. Also We do not consider "boundedness of solution", which is one of the requested conditions, and shown by calculation that the function ϕ(z) defined below is the non-trivial (non-zero) solution of Salem's integral equation.

Introduction

In this paper, we consider the equivalence conjecture of the Riemann hypothesis, "The existence of solutions that satisfy the conditions of Salem's integral equation". First, the conjecture we should consider are those that are equivalent to the Riemann hypothesis, represented in the following form. 

does not have a non-trivial and bounded solution ϕ(z) for 1 2 < δ < 1, y > 0.

In the following, for the above integral equation, we propose a function ϕ(z) defined by z > 0 that can be a solution for certain δ, y and verify that it is a solution by substituting it into the above integral in practice. (However, we will not verify the boundedness of ϕ(z)) Furthermore, if the function considered in this paper to be the solution of Salem's integral equation is bounded, it is possible to disprove the Riemann hypothesis. Therefore, it is necessary to consider the possibility that the Riemann hypothesis is false in the subsequent research, so that the values of the constants δ and y of Salem's integral equation, which have the highest possibility of the function to be considered being bounded, are chosen in the discussion process.

Preliminaries

First, we define the following hyperbolic functions and inverse hyperbolic function that frequently appear when dealing with some functions. And the Differential and integral formulas for inverse tangent, inverse cotangent functions, inverse hyperbolic tangent and inverse hyperbolic cotangent, which are necessary when calculating the integral, are also described below.

Definition 2.1. For x ∈ R, {y ∈ R : -1 < y < 1}, {z ∈ R : z < -1 ∨ z > 1}, we define the hyperbolic functions sinh(z), cosh(z), the hyperbolic tangent function tanh(z), and inverse hyperbolic tangent and inverse hyperbolic cotangent functions tanh -1 (z), coth -1 (z) as follows.

sinh(x) = e x -e -x 2 , cosh(x) = e x + e -x 2 (2) 
tanh(x) = sinh(x) cosh(x) (3) 
tanh -1 (y) = 1 2 ln(y + 1) - 1 2 ln(y -1) (4) coth -1 (z) = tanh -1 ( 1 z ) (5) Definition 2.2. we define y = tan -1 (z) as the inverse function of y = tan(z) in the domain of { z ∈ R : -π 2 < z < π 2 } . Similarly, define the inverse function of y = cot(z) in the domain of { z ∈ R : -π 2 < z < π 2 } as y = cot -1 (z).
Lemma 2.1. For the derivatives and integrals of inverse trigonometric and inverse hyperbolic cotangent functions, the following equations hold. where C is a constant of integration.

d dx (cot -1 (x)) = - 1 x 2 + 1 (6) 
∫ dx x 2 + 1 = tan -1 (x) + C (7) d dx (coth -1 (x)) = 1 1 -x 2 (8) 
In addition, for coth -1 (x) and cot -1 (x), the following series expansion is possible for

|x|> 1. Lemma 2.2. coth -1 (x) = tanh -1 ( 1 x ) = x -1 + x -3 3 + x -5 5 + x -7 7 + • • • = ∞ ∑ n=0 x -(2n+1) 2n + 1 (9) cot -1 (x) = x -1 - x -3 3 + x -5 5 - x -7 7 + • • • = ∞ ∑ n=0 (-1) n x -(2n+1) 2n + 1 (10) 
For convenience, for some indefinite integrals in the text, we will use the following to simplify it. Where C 0 is a constant of integration.

- ∫ ln(1 -x) x dx = Li 2 (x) + C 0 (11)
In the following section, we will attempt to present and actually compute functions that can be solutions to Salam's integral equations, using the above definitions and others.

Solution of Salem's integral equation

Based on the above, we define the function ϕ(z) in the domain of {z ∈ R : 0 < z < ∞}, which can be the solution of the integral equation (1), as follows.

ϕ(z) = z 1 3 (e z 2 + 1) cosh(z) { 12 cosh(2z) + 6π cot -1 (e z ) sinh(z) -48 sinh 2 (z) cosh(z) coth -1 (e z ) -3π -4 } (12) 
On top of that, we should show the following theorem.

Theorem 3.1. For above ϕ(z), and

1 2 < δ = 2 3 < 1, y = 1 2 > 0, the following equations hold. ∫ ∞ 0 z δ-1 ϕ(z) e yz + 1 dz = 0 (13) 
Proof 3.1. For ϕ(z), in the domain of {z ∈ R : z > 0}, we define ψ(z) as follows.

ψ(z) = cosh(z) { 12 cosh(2z) + 6π cot -1 (e z ) sinh(z) -48 sinh 2 (z) cosh(z) coth -1 (e z ) -3π -4 } (14) 
Here, substituting ϕ(z) into the integral equation (13), for δ = 2/3, y = 1/2, equation (13) can be transformed as follows.

∫ ∞ 0 z δ-1 ϕ(z) e yz + 1 dz = ∫ ∞ 0 ψ(z)dz = 0 (15) 
Hence, we need to show that the above equation holds. Therefore, we actually compute the improper integral of (15) and verify that its value is equal to 0. For the above equation, if we try the substitutional integration with z = ln(t) (t > 1), we obtain the following integrals.

∫ ∞ 0 ψ(z)dz = ∫ ∞ 1 ψ(ln(t)) dz dt dt = ∫ ∞ 1 cosh(ln(t))(12 cosh(2 ln(t)) + 6π cot -1 (t) sinh(ln(t)) -48 sinh 2 (ln(t)) cosh(ln(t)) coth -1 (t) -3π -4) • 1 t dt = ∫ ∞ 1 { 3(t 2 + 1)(t 4 + 1) t 4 + 3π(t 4 -1) cot -1 (t) 2t 3 - 3(t 4 -1) 2 coth -1 (t) t 5 - 3π(t 2 + 1) 2t 2 - 2(t 2 + 1) t 2 } dt (16)
Furthermore, for the integrand of the above formula, we obtain the indefinite integral for each main part of each term as follows. Where C n is the integration constant for a natural number n.

∫ 3(t 4 -1) 2 coth -1 (t) t 5 dt = 3 ∫ ( coth -1 (t) t 5 + t 3 coth -1 (t) - 2 coth -1 (t) t ) dt = 3 { - 1 4t 4 coth -1 (t) - ∫ ( - 1 4t 4 ) • 1 1 -t 2 dt } + 3 { t 4 4 coth -1 (t) - ∫ t 4 4 • 1 1 -t 2 dt } -3 ∫ ln ( 1 + 1 t ) -ln ( 1 -1 t ) t dt = 3 [ - 1 4t 4 coth -1 (t) + 1 4 ∫ { - 1 t 4 - 1 t 2 - 1 2(t + 1) + 1 2(t -1) } dt ] + 3 [ t 4 4 coth -1 (t) + 1 4 ∫ { t 2 + 1 2(t -1) - 1 2(t + 1) + 1 } dt ] + 3Li 2 ( 1 t ) -3Li 2 ( - 1 t ) = 3 [ - 1 4t 4 coth -1 (t) + 1 4 ( - 1 3t 3 - 1 t + 1 2 ln(t + 1) - 1 2 ln(t -1) )] + 3 [ t 4 4 coth -1 (t) + 1 4 
( t 3 3 + 1 2 ln(t -1) - 1 2 ln(t + 1) + t )] + 3Li 2 ( 1 t ) -3Li 2 ( - 1 t ) + C 5 = 3Li 2 ( 1 t ) -3Li 2 ( - 1 t ) + ( 3t 4 4 - 3 4t 4 
) tanh -1

( 1 t ) + t 3 4 - 1 4t 3 + 3t 4 - 3 4t + C 1 (17) (18) 
∫ 3π(t 4 -1) cot -1 (t) 2t 3 dt = 3π 2 ∫ t cot -1 (t)dt - 3π 2 ∫ cot -1 (t) t 3 dt = 3π 2 { t 2 2 cot -1 (t) - ∫ t 2 2 
( - 1 t 2 + 1 ) dt } - 3π 2 
{ - 1 2t 2 cot -1 (t) - ∫ ( - 1 2t 2 ) ( - 1 t 2 + 1 ) dt } = 3π 2 { t 2 2 cot -1 (t) + 1 2 ∫ ( 1 - 1 t 2 + 1 ) dt } - 3π 2 
{ - 1 2t 2 cot -1 (t) - 1 2 ∫ ( 1 t 2 - 1 t 2 + 1 ) dt } = 3π 4 { t 2 cot -1 (t) + t -2 tan -1 (t) - 1 t + cot -1 (t) t 2 } + C 2 ∫ 3(t 2 + 1)(t 4 + 1) t 4 dt = ∫ ( 3 t 4 + 3t 2 + 3 t 2 + 3 ) dt = - 1 t 3 + t 3 - 3 t + 3t + C 3 (19) ∫ 3π(t 2 + 1) 2t 2 dt = 3 2 π ( t - 1 t ) + C 4 (20) ∫ 2(t 2 + 1) t 2 dt = 2 ( t - 1 t ) + C 5 (21) 
Therefore, the following equation holds.

∫ ψ(ln(t)) dz dt dt = ( - 1 t 3 + t 3 - 3 t + 3t ) - { 3 2 π ( t - 1 t )} - { 2 ( t - 1 t )} + 3π 4 { t 2 cot -1 (t) + t -2 tan -1 (t) - 1 t + cot -1 (t) t 2 } - { 3Li 2 ( 1 t ) -3Li 2 ( - 1 t ) + ( 3t 4 4 - 3 4t 4 ) tanh -1 ( 1 t ) + t 3 4 - 1 4t 3 + 3t 4 - 3 4t } + C 6 (22) 
In order to calculate the improper integral of (15), we consider the limit to both ends of the integral interval. First, considering the case of t → ∞, the limit to be find is represented as follows.

lim t→∞               ( - 1 t 3 + t 3 - 3 t + 3t ) - { 3 2 π ( t - 1 t )} - { 2 ( t - 1 t )} + 3π 4 { t 2 cot -1 (t) + t -2 tan -1 (t) - 1 t + cot -1 (t) t 2 } - { 3Li 2 ( 1 t ) -3Li 2 ( - 1 t ) + ( 3t 4 4 - 3 4t 4 
) tanh -1

( 1 t ) + t 3 4 - 1 4t 3 + 3t 4 - 3 4t }               (23) 
Here, by expanding tanh -1 ( 1 t ) , cot -1 (t) to an infinite series, for |x|> 1, we obtain the following equation.

tanh -1 ( 1 x ) = coth -1 (x) = x -1 + x -3 3 + x -5 5 + x -7 7 + • • • = ∞ ∑ n=0 x -(2n+1) 2n + 1 (24) cot -1 (x) = x -1 - x -3 3 + x -5 5 - x -7 7 + • • • = ∞ ∑ n=0 (-1) n x -(2n+1) 2n + 1 (25) 
Therefore, based on the above two equations, it is clear that the following equation holds.

Lemma 1 . 1 .

 11 The Riemann hypothesis and the following proposition are equivalent: Integral equation ∫ ∞ 0 z δ-1 ϕ(z) e yz + 1 dz = 0

)} = 0 (26) Also, in the function of t represented in the form a/t (a is a constant), it is trivial that a/t → 0 when t → ∞. Therefore, excluding functions of this form, the expression (23) is organized as follows.

(

Here, it is clear that the following equation holds.

Therefore, in t → ∞, the limit value of (27) is equivalent to the next limit value.

(30)

Furthermore, considering the case of t → 1, the limit to be find is represented as follows.

Here, Let Ψ(t) be the indefinite integral of ψ(ln(t)) dz dt , the above limit is lim t→1 Ψ(t), and since Ψ(t) has a value at t = 1, the value of lim t→1 Ψ(t) is equivalent to the following values. 3π 4

(32)

Since the above, it was shown that the following equation holds for δ = 2/3, y = 1/2.