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Abstract
We developed a computational framework for simulating thin fluid flow in narrow interfaces
between contacting solids, which is relevant for a range of engineering, biological and
geophysical applications. The treatment of this problem requires coupling between fluid
and solid mechanics equations, further complicated by contact constraints and potentially
complex geometrical features of contacting surfaces. We developed a monolithic finite-element
framework for handling mechanical contact, thin incompressible viscous flow and fluid-induced
tractions on the surface of the solid, suitable for both one- and two-way coupling approaches.
Additionally, we consider the possibility of fluid entrapment in “pools” delimited by contact
patches and its pressurization following a non-linear compressibility constitutive law. Image
analysis algorithms were adapted to identify the local status of each interface element (i.e.
distinguish between contact, fluid flow and trapped fluid zones) within the Newton-Raphson
loop. First, an application of the proposed framework for a problem with a model geometry
is given, and the robustness is demonstrated by the residual-wise and status-wise convergence.
The full capability of the developed two-way coupling framework is demonstrated on a
problem of a fluid flow in contact interface between a solid with representative rough surface
and a rigid flat. The evolution of the contact pressure, fluid flow pattern and the morphology
of trapped fluid zones under increasing external load until the complete sealing of the interface
is displayed. Additionally, we demonstrated an almost mesh-independent result of a refined
post-processing approach to the real contact-area computation. The developed framework
permits not only to study the evolution of effective properties of contact interfaces, such
as transmissivity and real contact area, but also to highlight the difference between one-
and two-way coupling approaches, and, in particular, to quantify the effect of trapped fluid
“pools” on the coupled problem.

Keywords fluid–solid interaction · monolithic coupling · contact · thin fluid flow · trapped fluid ·
finite-element method

1 Introduction

The problem of thin fluid flow in narrow interfaces between contacting or slightly separated deformable
solids appears in different contexts: in engineering and biological applications, as well as in geophysical
sciences. Rigorous handling of such problems requires solving a strongly nonlinear contact problem, which is
further complicated by a multi-field coupling of essentially interrelated fluid and solid mechanics. The free
volume1 between contacting surfaces depends on their initial geometry (Paggi and He, 2015), which can be
rather complex: they may have deterministic features, such as turned (Pérez-Ràfols et al., 2016), patterned

∗Corresponding author: andrei.shvarts@glasgow.ac.uk
1By free volume, here, we mean the void separating the contacting surfaces.

ar
X

iv
:1

91
2.

11
29

2v
3 

 [
cs

.C
E

] 
 2

1 
M

ar
 2

02
1



Computational framework for monolithic coupling for thin fluid flow in contact interfaces

surfaces (Sahlin et al., 2010a; Prodanov et al., 2013), and at a certain magnification may be considered as
randomly rough (Nayak, 1971) down to atomistic scale (Krim and Palasantzas, 1995; Ponson et al., 2006;
Whitehouse, 2010; Thomas, 1999).
Numerous applications of the problem of thin fluid flow in contact interfaces include sealing engineering (Müller
and Nau, 1998), lubrication in elasto-hydrodynamic and mixed regimes (Stupkiewicz and Marciniszyn, 2009;
Sahlin et al., 2010b) and functioning of human joints (Caligaris and Ateshian, 2008). Such an interaction
between fluids and solids in contact is also relevant for hydraulic fracturing (Bažant et al., 2014), extraction
of shale gas and oil from rocks (Hubbert and Willis, 1972), and at larger scales in landslides (Viesca and Rice,
2012), slip in pressurized faults (Garagash and Germanovich, 2012) and bazal sliding of glaciers (Fischer and
Clarke, 1997).

1.1 Fluid-structure interaction approaches

The problem under discussion belongs to a vast domain of fluid-structure interaction (FSI) problems, which
involve deformation and/or motion of solids interacting with internal and/or external fluid(s). These problems
are of a very wide range, spanning from deformation of aeroplane wings and rotor blades subjected to the sub-
or supersonic air flow (Farhat et al., 2003; Bazilevs et al., 2011) to modelling of the blood flow (Bazilevs et al.,
2006; Gerbeau and Vidrascu, 2003) and heart valves (Dos Santos et al., 2008; Astorino et al., 2009; Kamensky
et al., 2015; Hiromi Spühler and Hoffman, 2020), scaling up to suspended bridge instabilities under wind
load (Païdoussis et al., 2010), ship stability (Wackers et al., 2011) or huge iceberg’s capsize in water (Bonnet
et al., 2020). All these problems correspond to different length and time scales, operating conditions and
other requirements, therefore a unified FSI approach fit for all cases does not exist, and different techniques
have been developed for particular problems.
Many problems of the fluid-structure interaction, such as aeroelasticity and hemodynamics, correspond to the
case of the high-Reynolds-number flow. Therefore, different mesh density, and often different time stepping, are
required for the solid and fluid domains. Furthermore, the fluid domain evolves due to motion and deformation
of solids. A number of methods have been used to overcome the associated computational complexity, such
as arbitrary Lagrangian–Eulerian method (Donea et al., 1982; Takashi and Hughes, 1992; Wick, 2014),
fictitious domain method (Baaijens, 2001; Dos Santos et al., 2008; Kadapa et al., 2016), immersed boundary
method (Mittal and Iaccarino, 2005; Kadapa et al., 2017, 2018) and extended finite element method (Mayer
et al., 2010; Gerstenberger and Wall, 2008), to name a few.
On the contrary, fluid flow in contacting or slightly separated interfaces is usually of low Reynolds number
and, moreover, the thickness of the fluid film is usually much smaller than other dimensions of the solid.
In this case general Navier-Stokes equations could be readily simplified down to Reynolds equation for the
viscous flow (Hamrock et al., 2004). This simplification permits to use compatible meshes for the fluid and
the solid domains and, under assumption of constant pressure through the film thickness, to define the
Reynolds equation on the so-called lubrication surface, so that specific methods discussed above are not
required (Stupkiewicz and Marciniszyn, 2009; Stupkiewicz et al., 2016).

1.2 One-way and two-way coupling approaches

From the point of view of underlying physical processes, FSI strategies could be divided into one-way and
two-way coupling approaches. In the context of thin fluid flow through contact interfaces, the former implies
that the solution of the solid mechanics problem defines the distribution of the free volume in the interface
which can be occupied by the fluid flow; however, the fluid pressure does not affect the deformation of
the solids, i.e. the fluid problem is solved assuming rigid walls of solids. In the two-way coupling this
approximation is dropped, and the effect of the fluid-induced traction acting on the surface of the deformable
solid is taken into account.
In elastohydrodynamic lubrication regime, as well as for non-contact seals, two-way coupling is often
used (Stupkiewicz and Marciniszyn, 2009; Stupkiewicz et al., 2016; Yang and Laursen, 2009). However, for
the important case of contact seals, or, more generally, if contact is present in the interface, the one-way
coupling is rather utilized (Dapp et al., 2012; Dapp and Müser, 2016; Pérez-Ràfols et al., 2016). It is widely
assumed in this context that the deformation of the solids happens mainly due to the contact interaction,
and the fluid pressure effect on the solid is negligible, since the contact pressure at surface’s asperities is
considerably higher than the physically relevant fluid pressure. However, to the best of authors knowledge, a
quantitative range of validity of one-way coupling for problems involving thin fluid flow in contact interfaces,
depending on the surface geometry, material properties and the fluid pressure, has not been determined yet.
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The lack of such quantitative analysis is probably caused by insufficiency of existing numerical methods for
comparison of one- and two-way coupling approaches for this type of problems, which is the main motivation
of the current study.
It is important to note, that the aforementioned general FSI approaches to problems involving solid-to-solid
contact enable two-way coupling, see e.g. (Mayer et al., 2010; Kamensky et al., 2015; Kadapa et al., 2018).
However, these methods become inefficient when a very fine discretization is required to accurately represent
surface roughness in a numerical simulation. This computational complexity can be overcome by considering
surface roughness in an averaged sense at the macroscopic level (Patir and Cheng, 1978; Pérez-Ràfols et al.,
2016; Zaouter et al., 2018; Waseem et al., 2017), or as was done recently using a porous flow model (Ager et al.,
2019). Nonetheless, if one is interested in the effect of rough or deterministic surface features on the solution
of the coupled problem, e.g. spatial distribution of contact stresses and fluid flow patterns, this approximation
is not appropriate. Therefore, the main purpose of the current study is to develop a computational framework
suitable for both one- and two-way coupling approaches and applicable for a discretization which reflects
salient features of the surface geometry.
An important example of the effect of the surface roughness on the coupled problem, relevant only for the
two-way coupling, is the phenomenon of fluid entrapment. Studying the evolution of the morphology of the
contact area under increasing normal load, one may observe how non-simply connected contact patches appear,
see (Yastrebov et al., 2015; Lorenz and Persson, 2010). At the same time, the fluid present in the interface
can be trapped inside “pools” (or “valleys”) bounded by these patches and subsequently become pressurized,
providing additional load-bearing capacity. The behaviour of trapped fluid accounts for a significant reduction
of friction in tyre–road contact (Scaraggi and Persson, 2012), cold metal forming (Azushima and Kudo, 1995)
and functioning of human joints (Soltz et al., 2003; Chan et al., 2011). However, the effect of the fluid
entrapment on transmissivity of contact interfaces, which is an import characteristic for sealing engineering,
has not been thoroughly investigated yet.
Recently, we studied the behaviour of pressurized fluid trapped in a contact interface without considering the
fluid flow (Shvarts and Yastrebov, 2018a). Using the finite element framework, we successfully introduced a
novel trapped fluid superelement based on all out-of-contact segments (faces in 3D), surrounded by a contact
patch. Therefore, an additional objective and a major novelty of the current study is the incorporation of
such a formulation of the trapped fluid element into a monolithic computational framework for coupling
contact and fluid equations, which will permit to quantify the effect of trapped fluid zones on the solution of
the problem.

1.3 Partitioned and monolithic implementation approaches

From the implementation point of view two distinct approaches for any FSI problem exist: partitioned and
monolithic, see e.g. (Felippa et al., 2001). The former is based on two different solvers for the fluid and solid
sub-problems, and in order to take into account the coupling, one- or two-way data exchange between them
must be established, while a certain iterative process may be required to obtain the convergence. At the same
time, the utilization of the partitioned approach benefits from modularity, since different solvers tailored for
the sub-problems could be used (Küttler and Wall, 2008; Matthies and Steindorf, 2003). On the contrary,
under the monolithic approach all equations which govern sub-problems and the interaction between them are
rendered into a single system (Hübner et al., 2004; Michler et al., 2004; Heil, 2004; Verdugo and Wall, 2016).
Upon its solution DOF values corresponding to both sub-problems are obtained simultaneously, therefore,
the data exchange in this case is not needed.
Elasto-hydrodynamic lubrication problems are often solved under the monolithic approach (Stupkiewicz et al.,
2016; Stupkiewicz and Marciniszyn, 2009; Yang and Laursen, 2009), whilst for the contact sealing problems
the partitioned approach is generally preferred (Dapp et al., 2012; Pérez-Ràfols et al., 2016). Moreover,
as was already mentioned above, the latter problem is often solved under the one-way coupling approach,
using the assumption of the infinitesimal slopes of the surface profile and the small deformation formulation.
Boundary element method (Pérez-Ràfols et al., 2016) and Green’s function molecular dynamics (Dapp et al.,
2012) are frequently used for the mechanical contact problem and the Reynolds equation is often solved by
the finite-differences method.

1.4 Objectives and outline

In this paper we develop a computational framework aimed first at solving the two-way coupling of the
mechanical contact and fluid flow sub-problems, which could require frequent and considerable data exchange
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in case of the partitioned approach. The second objective is to take into account the effect of trapped fluid
pools appearing in the interface. If the number of these zones becomes large, then a resolution under the
partitioned approach becomes even more complicated, since the history tracking of trapped zones is needed.
The monolithic approach appears beneficial for our purposes and, therefore, it was applied throughout this
study. We use the finite-element method for implementing the monolithic approach. This choice also makes
possible the application of the developed tool to different surface geometries (including surfaces with finite
slopes), under large deformation formulation and with different material models of the solid (e.g. elasto-plastic,
viscoelastic, etc).
Note that the methodology presented here was already used to solve a two-way coupling problem of a
pressure-driven fluid flow in contact interface between an elastic solid with an extruded wavy surface and a
rigid flat (Shvarts and Yastrebov, 2018b). A good agreement was observed between the numerical solution
and an approximate analytical formula (derived in the same paper), in the interval of loads within which
the latter is applicable. However, since only regular wavy profiles were studied, the problem did not include
trapped fluid zones, therefore a complete testing of the proposed method was not possible. Moreover, the
methodology was only used, but was not presented in detail in the above cited work.
The present paper is organized as follows. In Section 2 we formulate the coupled problem by outlining
equations governing sub-parts for each physics, while Section 3 introduces the variational statement for
this problem under both one- and two-way coupling approaches. In Section 4 we propose the monolithic
framework and provide ready-to-implement finite-element formulations of the tangent matrix and the residual
vector of the coupled problem. Moreover, we discuss the algorithm used to determine the local status in the
interface and keep track of formation and evolution of multiple trapped fluid zones. Section 5 is devoted to
examples showing capabilities of the proposed framework and some relevant discussions. Finally, Section 6
provides a short conclusion, while the Appendix A outlines detailed expressions for components of residual
vectors and tangent matrices of discussed elements.

2 Coupled problem statement

We consider a problem of a thin fluid flow in contact interface formed between a solid body with the surface
geometry given for concreteness by function z(x, y) and a rigid flat described by plane z = 0. This set-up was
chosen to simplify the formulation of the contact problem and to concentrate the discussion on handling of
the fluid/solid coupling. Furthermore, for the same reason, we will consider only small deformation/small
rotation formulation; justifying arguments for these assumptions regarding the problem of thin fluid flow in
contact interfaces will be given below.
Note that the unilateral contact set-up is equivalent to the case of contact between two deformable bodies
under linear isotropic elasticity and infinitesimal strain assumptions (Barber, 2003). Furthermore, the problem
statement with one of the contacting solids considered as rigid is relevant when the Young’s modulus of this
solid is considerably higher than this of the other, which is the case, for example, in metal-to-rubber sealing
applications (Persson and Yang, 2008) and in tyre–road contact (Scaraggi and Persson, 2012). At the same
time, the numerical framework developed in this paper for the case of unilateral contact can be extended
afterwards to include the problem of contact between two deformable solids with arbitrary surface geometries.
Let us denote by Ω a deformable solid and by Γ ⊂ ∂Ω a part of its surface which represents the potential
contact zone, i.e. defines the maximal possible extent of the contact interface. The resolution of the coupled
problem for any given boundary conditions requires partitioning of the surface Γ into subsets, according to
the local status2 of each point of the interface, see Fig. 1:

Γ = Γc ∪ Γfsi ∪
ntf⋃
i=1

Γtf
i . (1)

The notation of the subsets is the following: Γc is the active contact zone (which may consist of several
separated contact clusters), where normal contact tractions are non-zero, Γfsi is a part of the solid’s surface
which interacts with the flowing fluid and where the surface tractions are equal to the corresponding tractions
in the fluid (so-called fluid-structure interface), and Γtf

i , i = 1, ntf are trapped fluid zones, i.e. parts of the
surface Γ which are out of contact, but completely delimited by non-simply connected contact patches, which
encircle pools containing the fluid. Furthermore, we term by Γf the projection of Γfsi on the plane z = 0,
which serves as the lubrication surface where the Reynolds equation for the fluid flow will be defined.

2By the local status in this context we mean that each point of the solid’s surface may belong to either the active
contact zone, or fluid-structure interface, or one of the trapped fluid zones.
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Figure 1: Sketch of the problem under study: (a) contact between a solid Ω and a rigid flat with fluid present
in the interface; (b) view of the interface Γ. Notations: Γc is the active contact zone, Γfsi is the fluid-structure
interface, its projection on the rigid flat is denoted as Γf, which is the lubrication surface where the Reynolds
equation is solved, and Γtf

1 is the trapped fluid zone.

By definition, Γc ∩ Γfsi = ∅ and Γc ∩ Γtf
i = ∅ ∀i = 1, ntf. Note also, that Γfsi ∩ Γtf

i = ∅ ∀i = 1, ntf, i.e. even
though all trapped pockets contain the same fluid as the one present in the fluid-flow domain, the behaviour
of the trapped fluid is to be considered separately. We assume here that in the initial configuration Γc = ∅
and ntf = 0, so that the fluid flow zone occupies the whole interface. This assumption makes impossible
appearance of non-contact zones which do not belong to Γfsi or to one of the trapped fluid zones Γtf

i . However,
consideration of such a case (e.g., air bubbles entrapment in the case of non-saturated fluid interface) could
be included into the framework.

2.1 Solid mechanics problem with unilateral contact

The deformation of the solid (in absence of the fluid) is governed by the balance of momentum equation
complemented by the contact and boundary conditions, which in absence of inertial and volumetric forces
reads as: 

∇ · σs(u) = 0 in Ω (2a)
g(u) ≥ 0, σn(u) ≤ 0, g(u) σn(u) = 0 on Γ (2b)
u = u0 on Γu (2c)
σs · n = t0 on Γσ (2d)

where u is the displacement field, σs is the Cauchy stress tensor; (2b) are the Hertz–Signorini–Moreau
conditions for non-adhesive frictionless unilateral contact (Wriggers, 2006; Yastrebov, 2013), σn = n ·σs ·n is
the normal traction on the solid’s surface (to which n is the outer normal). For each point x ∈ Γ, x = [x, y, z]ᵀ,
we denote by g(u) the normal gap, i.e. the signed distance between the surface of the solid and the rigid flat:
g > 0 in case of separation, g = 0 in contact and g < 0 refers to non-admissible penetration:

g(u) = g0 + u · ν, (3)
where g0 is the initial gap of this point and ν is the outward normal to the rigid flat. Finally, (2c) are
the Dirichlet boundary conditions with a prescribed displacement u0 and (2d) are the Neumann boundary
conditions with a prescribed surface traction t0, defined on Γu ⊂ ∂Ω and Γσ ⊂ ∂Ω, respectively.
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Note that our coupled framework concerns processes occurring in the contact interface only and permits
arbitrary constitutive laws for the underlying solid, see examples in (Shvarts, 2019). Here, in order to simplify
the discussion and concentrate it on the aspects of the coupling, we will consider isotropic linearly elastic
solid, i.e. the Cauchy stress tensor is related to the infinitesimal strain tensor ε = (∇u+ (∇u)ᵀ)/2 by Hooke’s
law: σs = λ trace(ε)I + 2µε with the Lamé constants (elastic moduli) λ and µ, I is the identity tensor.

2.2 Thin fluid flow

Working under assumptions of thin laminar flow and neglecting inertial and volumetric forces, Navier-Stokes
equations, which govern the mechanics of a viscous fluid in a general case, can be reduced to the Reynolds
equation, see e.g. (Hamrock et al., 2004), without loss of accuracy for the class of applications considered in
this paper. Accordingly, we state the boundary value problem for the thin fluid flow as follows:

∇ ·
[
g(u)3∇p

]
= 0 in Γf (4a)

p = p0 on γp (4b)
q ·m = q0 on γq (4c)

where (4a) is the Reynolds equation for isoviscous incompressible Newtonian fluid, note that the tangential
relative motion of the solid walls is not considered here whereas the normal approaching is assumed to be
quasi-static, p(x, y) is the fluid pressure field defined on the lubrication surface Γf, which is a projection
of the fluid-structure interface Γfsi on the plane z = 0, and the ∇ operator in (4a) is defined as ∇(·) :=
∂(·)/∂x ex + ∂(·)/∂y ey, where {ex, ey} are orthonormal basis vectors lying in the plane z = 0. Finally, (4b)
are the Dirichlet boundary conditions with a prescribed fluid pressure p0 and (4c) are the Neumann boundary
conditions with a prescribed fluid flux q0, defined on γp ⊂ ∂Γf and γq ⊂ ∂Γf, respectively (m is the outward
normal to Γf), while the fluid flux is given by:

q = −g(u)3

12µ ∇p, (5)

where µ is the dynamic viscosity. Note that for each point (x, y) ∈ Γf the thickness of the film is computed as
the normal gap g(u) of the corresponding point (x, y, z) ∈ Γfsi.
It is important to note, that in addition to conditions outlined above, an assumption of sufficiently small
slopes of the surface geometry is required for the validity of the Reynolds equation. Omitting this assumption
results in inconsistencies between predictions of the Reynolds equation and those of the full Navier-Stokes
equations, for example, in the problem of the fluid flow through fractures (Brown et al., 1995). At the same
time, consideration of small slopes of the surface geometry justifies the assumption of small deformations and
small rotations for the contact problem discussed above, see also (Barber, 2003).

2.3 Fluid-structure interface

We do not need to consider the no-slip condition (i.e. zero flow velocity at the fluid-structure boundary),
as, for example, in (Farhat et al., 1998), since it is already taken into account in the considered form of
the Reynolds equation (4a). At the same time, the equilibrium of the solid and fluid tractions on the
fluid-structure interface Γfsi needs to fulfil the following equation:

σs · n = −p n− g(u)
2 ∇p on Γfsi, (6)

where the first right-hand side term is the normal traction due to the hydrostatic pressure, while the second
one is the tangential traction due to shear stresses in the fluid that act on the solid’s surface (here, it results
from the Poiseuille flow), see (Hamrock et al., 2004) for details.

Note that the ∇ operator here is defined on the lubrication surface Γf, and the second right-hand side term
in (6) is not exactly perpendicular to the outward normal n to the surface Γfsi. Nevertheless, this slight
inconsistency is justified by the requirement of small slopes of the surface geometry mentioned above, and is
often accepted in elasto-hydrodynamic lubrication problems (Stupkiewicz, 2009; Stupkiewicz et al., 2016).
Moreover, in the derivation of the Reynolds equation (4a) the thickness of the fluid film is assumed to be
much smaller than other length scales, and therefore, the term corresponding to the tangential traction
in (6) is often neglected in lubrication problems. However, in application to sealing problems, studies of the
elasto-hydrodynamic lubrication regime show a noticeable effect of the shear tractions on the seal’s leakage,
see (Stupkiewicz and Marciniszyn, 2009). Therefore, for the sake of completeness, we will consider both
normal and shear components of the fluid-induced traction in the developed framework.
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2.4 Trapped fluid zones

The hydrostatic pressure ptfi , developed in the i-th trapped fluid zone, is applied to the surface of the solid
body as the normal traction:

σn = −ptfi on Γtf
i , i = 1, ntf. (7)

However, the pressure ptfi is a priori unknown, and the behaviour of the trapped fluid is not governed by the
Reynolds equation. Furthermore, the pressure developed in such trapped fluid pocket can be considerably
higher than the pressure in the fluid flow, and therefore a model of incompressible (or even linearly compressible)
fluid becomes inaccurate, see discussions in (Shvarts and Yastrebov, 2018a). Therefore, we will consider
a model of compressible fluid with a pressure-dependent bulk modulus K = K0 + K1 p

tf
i , where K0 [Pa]

and K1 (dimensionless) are model parameters, suitable for fluids typically used in lubrication and sealing
applications, see also (Kuznetsov, 1985) for details. According to this model, the pressure of the trapped
fluid is a non-linear function of the relative change of its volume:

ptfi =
(
ptfi0 + K0

K1

)(
V tf
i

V tf
i0

)−K1

− K0

K1
, (8)

where V tf
i is the current volume of fluid in the i-th zone, V tf

i0 is the volume of the fluid in this zone at the
moment when it was formed, and ptfi0 is the corresponding initial pressure of this trapped fluid, see (Shvarts
and Yastrebov, 2018a) for more details.

Therefore, since the behaviour of each trapped fluid zone depends on its own set of initial parameters (V tf
i0 and

ptfi0), each zone is to be considered separately from others. As was mentioned above, we assume that in the
initial configuration the fluid occupies the whole free volume between the contacting surfaces. Accordingly,
the volume of the fluid in the i-th pool is equal to the volume of the gap between the surface Γtf

i and the
rigid flat, i.e. the fluid fills the entire volume of the closed pocket:

V tf
i =

∫
Γtf
i

g(u)(−n · ν) dΓ, (9)

where n is the outward normal to the surface Γtf
i , and ν is the normal to the rigid flat, see Fig. 1.

It is important to note, that the presented problem set-up corresponds to the two-way coupling approach,
and therefore not only the displacement field u depends on the fluid pressure p and vice versa, but also the
extent of fluid-flow domain Γf and trapped fluid zones Γtf

i depends on the morphology of the active contact
zone, i.e. on the resolution of contact constraints. Additional effort may be necessary for handling edge
effects, e.g. enforcing continuity of surface tractions across boundaries between contact and fluid-flow zones,
and also between contact and trapped fluid zones. Below we will discuss in detail our recipes of partitioning
the interface and handling these issues. At the same time, the one-way coupling approach, which neglects the
action of the fluid pressure on surface of the solid, can also be considered in the present problem statement if
equations (6)-(9) are omitted.

3 Variational formulation of the coupled problem

Before presenting the numerical framework, we discuss the variational formulation of the coupled problem
stated in the previous section. We start by outlining contribution of each sub-problem to the balance of
virtual work and then provide the variational formulation of the coupled problem for both one- and two-way
coupling approaches.

3.1 Weak formulation of the solid mechanics problem with contact constraints

The variational statement of the solid mechanics problem with contact constraints (2), see e.g. (Kikuchi and
Oden, 1988), consists in finding a function u ∈ K:

K = {u ∈ V | g(u) ≥ 0 on Γ} , V =
{
u ∈ H1 (Ω)

∣∣ u = u0 on Γu
}
, (10)

such that: ∫
Ω

σs(u) :∇δu dΩ−
∫
Γσ

t0 · δu dΓ ≥ 0 ∀ δu ∈ V0, (11)
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where V0 is a subspace for virtual displacements:

V0 =
{
v ∈ H1 (Ω)

∣∣ v = 0 on Γu
}
, (12)

and H1 (Ω) denotes the Sobolev space for vector-valued functions with square-integrable derivatives.
The variational statement of the problem (2) takes the form of the inequality (11) instead of a standard
(equality) variational principle due to the presence of contact constraints defining a subset of admissible
displacements K ⊂ V, see (10). In order to transform (11) to a standard variational principle, we use the
augmented Lagrangian method, which combines benefits of the classic Lagrange multipliers method (exact
satisfaction of the constraints) and the penalty method (rendering the functional smooth across the transition
of contact states), see also (Alart and Curnier, 1991). Thus, we introduce the augmented Lagrangian for the
problem (2):

La(u, λ) = 1
2

∫
Ω

σs(u) :∇u dΩ−
∫
Γσ

t0 · u dΓ +
∫
Γc

[
λ g(u) + ε

2 g(u)2
]
dΓ−

∫
Γ\Γc

1
2ε λ

2 dΓ, (13)

where the first two terms constitute the potential energy Πs(u) of the solid in absence of contact, and the
two last terms correspond to the contact interaction energy W c(u, λ), computed for both active Γc and
non-active Γ \ Γc zones of contact, see (Yastrebov, 2013) for more details. Here ε is the augmentation
parameter, and λ ∈ M is the Lagrange multiplier function, equivalent to the normal traction σn on the
surface Γ: M≡ H− 1

2 (Γ), i.e. the space for Lagrange multipliers is dual to H 1
2 (Γ), which is the trace of the

space H1(Ω) on the boundary Γ, see (Kikuchi and Oden, 1988).
The solution of the contact problem is found as the stationary saddle point of the Lagrangian (13), at which
its variation vanishes:

δLa(u, λ) = DΠs(u) · δu+DW c(u, λ) · δu+DW c(u, λ) δλ = 0, ∀ δu ∈ V0, ∀ δλ ∈M, (14)

where we used the notation of directional (Gateaux) derivative, defined for the potential energy Πs(u) as

DΠs(u) · δu = lim
α→0

Πs(u+ α δu)−Πs(u)
α

, (15)

and defined similarly for the contact energy term W c(u, λ), see (Wriggers, 2006) for more details. Therefore,
the variational inequality (11) is transformed into a problem of finding functions u ∈ V and λ ∈ M such
that they satisfy the variational equality:∫

Ω

σs(u) :∇δu dΩ−
∫
Γσ

t0 · δu dΓ +
∫
Γc

[λ+ ε g(u)] ∂g(u)
∂u

· δu dΓ = 0, ∀ δu ∈ V0, (16a)

∫
Γc

g(u) δλ dΓ−
∫

Γ\Γc

1
ε
λ δλ dΓ = 0, ∀ δλ ∈M. (16b)

3.2 Weak statement of the fluid flow sub-problem

In order to obtain the weak form of the fluid-flow problem (4), we follow the standard approach to elliptic
equations, see e.g. (Zienkiewicz and Taylor, 1977), which results in the following statement: find a scalar field
p ∈ P:

P =
{
p ∈ H1(Γf)

∣∣ p = p0 on γp
}
, (17)

such that ∫
Γf

g(u)3

12η ∇p · ∇δp dΓ +
∫
γq

q0 δp dγ = 0, ∀ δp ∈ P0, (18)

where P0 is a subspace for scalar virtual functions:

P0 =
{
δp ∈ H1(Γf)

∣∣ δp = 0 on γp
}
. (19)
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3.3 Weak form of the fluid-structure interface balance

We may compute the work of the fluid-induced tractions on the surface Γfsi (6), corresponding to a virtual
displacement δu, as:

δW fsi =
∫

Γfsi

(
−pn− g(u)

2 ∇p
)
· δu dΓ, (20)

and include it to Eq. (16a) of balance of the virtual work with the negative sign, since the virtual work of
surface tractions has a sign opposite to the one of the work of internal forces. It is also important to bear in
mind that the traction in (20) is not known a priori and depends on the fluid pressure p, its gradient ∇p and
the displacement field u which determines the gap field.

3.4 Virtual work of trapped fluid zones

To capture the effect of the trapped fluid pressure on the solid, we recall the thermodynamic definition of the
elementary work done on a system, corresponding to an infinitesimal change of its volume. Following this
concept, we compute the virtual work of an i-th trapped pool on the surface of the solid as:

δW tf
i = −ptfi δV tf

i , (21)
where the minus sign is used since an increase of the volume of a trapped pool leads to a decrease of its
pressure, and consequently, to a release of the energy of the trapped fluid. Since the volume of the fluid inside
a trap Vi is a functional of the displacement field u as defined by the integral (9), δVi can be treated as its
first variation and computed using the directional (Gateaux) derivative:

δV tf
i = DV tf

i (u) · δu = lim
α→0

V tf
i (u+ αδu)− V tf

i (u)
α

. (22)

Therefore, substituting the non-linear formula for the trapped fluid pressure (8), the virtual work of a trapped
fluid pocket corresponding to a virtual displacement δu can be expressed as:

δW tf
i = −

[(
ptfi0 + K0

K1

)(
V tf
i (u)
V tf
i0

)−K1

− K0

K1

]
DV tf

i (u) · δu, (23)

which can now be included into the equation for the virtual work (16a), taking into account the contribution
of each trapped fluid zone separately.

3.5 Variational formulation of the coupled problem

Combining contributions of the sub-problems outlined above, we provide the variational statement of the
coupled problem in the spirit of the monolithic approach (Yang and Laursen, 2009; Stupkiewicz, 2018): find
fields u ∈ V, λ ∈M and p ∈ P such that:

Gs(u, λ, p; δu) = 0, ∀ δu ∈ V0, (24a)
Gc(u, λ; δλ) = 0, ∀ δλ ∈M, (24b)
Gf(u, p; δp) = 0, ∀ δp ∈ P0, (24c)

where

Gs(u, λ, p; δu) =
∫
Ω

σs(u) :∇δu dΩ−
∫
Γσ

t0 · δu dΓ +
∫
Γc

[λ+ ε g(u)] ∂g(u)
∂u

· δu dΓ (25a)

+
∫

Γfsi

(
pn+ g(u)

2 ∇p
)
· δu dΓ (25b)

−
ntf∑
i=1

[(
ptfi0 + K0

K1

)(
V tf
i (u)
V tf
i0

)−K1

− K0

K1

]
DV tf

i (u) · δu, (25c)

Gc(u, λ; δλ) =
∫
Γc

g(u) δλ dΓ−
∫

Γ\Γc

1
ε
λ δλ dΓ, (25d)

Gf(u, p; δp) =
∫
Γf

g3(u)
12η ∇p · ∇δp dΓ +

∫
γq

q0 δp dγ. (25e)

9
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The weak problem statement (24)-(25) is valid for the two-way coupling approach, when both sub-problems
have an impact on each other. The one-way coupling approximation for the problem under study can also be
considered upon following modifications: (i) omit the fluid-induced tractions on the surface of the solid (25b),
(ii) neglect the effect of trapped fluid zones (25c), and (iii) assume rigid solid walls while solving fluid-flow
equation (24c). Therefore, in case of one-way coupling, instead of (24), we shall have the following equations:

Gs(u, λ; δu) = 0, ∀ δu ∈ V0, (26a)
Gc(u, λ; δλ) = 0, ∀ δλ ∈M, (26b)
Gf

u(p; δp) = 0, ∀ δp ∈ P0. (26c)
Note that u is still required as an input to compute the normal gap used in (26c), thus we added the subscript
“u” for Gf

u, however, for any given displacement field u the fluid-flow sub-problem becomes linear under the
one-way coupling approach.

4 Computational framework

In this section, we discuss the solution of the formulated above coupled problem in a monolithic finite-element
framework. Similarly to the previous section, we discuss handling of each sub-problem separately, and then
we present the monolithic resolution algorithm which combines them all. We build the coupled framework on
top of the standard displacement-based implicit finite element approach for elliptic problems of continuum
mechanics, details of which may be found elsewhere, e.g. in (Zienkiewicz and Taylor, 1977). Note that for
brevity the same notations are preserved for discretized entities as were introduced in the continuous problem
statement outlined above. Furthermore, in accordance with the problem statement presented in Section 2 we
use the small deformations and small rotations assumptions. Nevertheless, the necessary modifications to
take into account large deformations and/or large rotations can be added into presented framework. The
developed monolithic finite element framework was implemented in the finite-element suite Z-set (Besson and
Foerch, 1997; Z-set, 2019).

4.1 Mechanical contact

The solution of the considered coupled problem requires partitioning of the interface into contact, fluid-flow
and, possibly multiple, trapped fluid zones, see (1). In order to make the identification of the interface status
consistent, it appears natural to associate each face Γel of the surface Γ with a contact element, i.e. adopt the
“face-to-rigid-surface” discretization approach, rather than the “node-to-rigid-surface” technique according
to which a contact element consists of a single node of the surface Γ, see (Wriggers, 2006; Konyukhov and
Schweizerhof, 2012; Yastrebov, 2013) for more details. Note also that according to our formulation, a contact
element is associated with each face of the surface Γ irrespective of the actual status of a given face; criteria
for determining if a contact element is active or not will be discussed below.
In order to apply the augmented Lagrangian method (see discussion in Section 3), we append a scalar
Lagrange multiplier to each node of the potential contact surface Γ. Thus, on each face Γel we consider
interpolation of the gap and Lagrange multiplier function as, respectively:

g(ξ, η) =
n∑
i=1

Ni(ξ, η) gi, λ(ξ, η) =
n∑
i=1

Ni(ξ, η)λi, (27)

where n is the number of nodes adjacent to a face Γel, Ni is the shape function associated with the node i,
{ξ, η} are local parametrization coordinates of a finite-element face, see Fig. 2. Furthermore, gi = g0i + ui · ν
is the gap value of the node i, where g0i is the initial gap and ui is the displacement vector of the given node.
Note that the same shape functions are used here for interpolation of geometric gap and Lagrange multipliers,
however, it is not a necessary condition. We used bilinear shape functions associated with quadrilateral faces
of the discretized surface, nonetheless, polynomials of higher order can be utilized, see (Puso et al., 2008).
Due to the considered “face-to-rigid-surface” discretization and associated interpolation (27), the contact
constraints (2b) cannot be satisfied point-wise on the surface Γ. To overcome this inconsistency, we follow
the mortar approach (Puso, 2004; Puso and Laursen, 2004) and consider the third condition in (2b) in the
integral form over the surface Γ: ∫

Γ

λ g dΓ =
∑
el

∫
Γel

λ g dΓ = 0, (28)

10
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Figure 2: Sketch of the interface highlighting contact elements: Γ is the potential contact zone, Γc is the
active contact zone, Γel is a face associated to one contact element, λ is the Lagrange multiplier, which
represents contact pressure and is attributed to each node of the surface Γ, g is the gap function: g = 0 on Γc

and g > 0 on Γ \ Γc.

where the summation is performed over all contact elements on the surface Γ, and the interpolated field of
Lagrange multipliers λ represents the normal traction σn. Substituting (27) into (28) and considering two
first conditions of (2b) at every node of the surface Γ, we obtain the following discrete (nodal) form of the
contact conditions valid for each contact element, i.e. face Γel:

g̃i ≥ 0, λi ≤ 0, λi g̃i = 0, 1 ≤ i ≤ n, (29)
where g̃i is termed as the integral (weighted) gap associated with the node i of the face Γel and is given by:

g̃i =
n∑
j=1

gj

∫
Γel

NiNj dΓ =
n∑
j=1

gj Iij . (30)

In the finite-element framework weights Iij are calculated as:

Iij =
1∫
−1

1∫
−1

NiNj J dξ dη, (31)

where J is the Jacobian of the transformation of the physical coordinates x = [x, y, z]ᵀ on the surface Γel to
the face’s coordinates in the parent space {ξ, η}:

J =
∣∣∣∣∂x∂ξ × ∂x

∂η

∣∣∣∣ , x =
n∑
i=1

xiNi, (32)

and xi is the position of the i-th node of the face. Using Gauss quadrature rule, the integral in (31) is
computed as:

Iij =
ngp∑
k=1

wkNi(ξk, ηk)Nj(ξk, ηk)J(ξk, ηk), (33)

where ngp is the number of Gauss points associated with the face Γel, wk is the weight coefficient of the k-th
Gauss point, and {ξk, ηk} are its coordinates in the parent space.

11
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Next, in order to fulfil the contact constraints (29) on each element, we apply the augmented Lagrangian
method and formulate the “potential energy” of a contact element as follows:

W c
el =

n∑
i=1

 λi g̃i + ε

2 g̃
2
i , if λ̂i ≤ 0,

− 1
2ελ

2
i , if λ̂i > 0,

(34)

which can be seen as the discretized version of the contact contribution to the augmented Lagrangian (13).
Note that ε acts here as the augmentation parameter with units [N/m5].

The following notation of the augmented Lagrange multiplier is introduced: λ̂i = λi + εg̃i, the sign of which
defines the contact state of the node: if λ̂i ≤ 0 the node is in the active state, while if λ̂i > 0 the node is not
in contact. It is important to note that the augmented Lagrange multiplier depends on the weighted gap (30),
integrated over a particular face, and therefore the state of each node is always evaluated with respect to a
particular element, i.e. the same node can be in active state with respect to one adjacent element and in
non-active state with respect to another. Furthermore, we term hereinafter an element as active if at least
one of its nodes has λ̂i ≤ 0 (with respect to this element), and inactive otherwise, which is important for a
consistent partitioning of the interface into contact, fluid-flow and trapped fluid zones.
In order to find the contribution of each contact element to the balance of virtual work, we calculate the
variation of (34):

δW c
el =

n∑
i=1


λ̂i

n∑
j=1

Iij
∂gj
∂uj

· δuj + g̃iδλi, λ̂i ≤ 0

−1
ε
λiδλi, λ̂i > 0

(35)

where uj is the displacement vector of the node j. Note that in accordance with the infinitesimal strain
formulation, integrals Iij are not variated. To linearize the problem, we calculate the second variation of the
virtual work δW c

el:

∆δW c
el =

n∑
i=1


ε

n∑
j=1

Iij
∂gj
∂uj

· δuj
n∑
k=1

Iik
∂gk
∂uk

·∆uk +
n∑
j=1

Iij
∂gj
∂uj

· (δuj∆λi + ∆ujδλi) , λ̂i ≤ 0

−1
ε
δλi∆λi, λ̂i > 0.

(36)

Finally, the virtual work (35) and its variation (36) could be expressed in a compact form, introducing the
residual vector Rc and the tangent matrix Kc of a contact element:

δW c
el =

[
Rc

u

Rc
λ

]ᵀ [
δu

δλ

]
, ∆δW c

el =
[

∆u
∆λ

]ᵀ [Kc
uu Kc

uλ

Kc
λu Kc

λλ

] [
δu

δλ

]
, (37)

where for brevity we use the notations δu = [δu1, . . . , δun]ᵀ, ∆u = [∆u1, . . . ,∆un]ᵀ and δλ = [δλ1, . . . , δλn]ᵀ,
∆λ = [∆λ1, . . . ,∆λn]ᵀ. Ready-to-implement expressions of the outlined components of Rc and Kc are given
in Appendix A.1. Note that in the frictionless case considered here the tangent matrix of the contact element
is symmetric, i.e. Kc

uλ = Kc
λu.

4.1.1 Post-processing computation of the real contact area

Consideration of a contact element as being active if at least one of its nodes is in active state is required
for a consistent partitioning of the interface, which will be discussed in detail below. However, during the
post-processing stage, different methods may be applied to compute the real contact area. A straightforward
approach is to sum up areas Ael of faces Γel associated with active elements (hatched blue area in Fig. 3):

Ael =


ngp∑
k=1

wk J(ξk, ηk), ∃ i ∈ [1, . . . , n] s.t. λ̂i ≤ 0

0, ∀ i ∈ [1, . . . , n] λ̂i > 0.
(38)

However, our studies showed that this method of computation of the contact area leads to its significant
overestimation. Therefore, we discuss here also a more precise approach for computing the real contact area:
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Figure 3: Sketch on the computation of the real contact area. Red circles represent nodes which are active
with respect to all adjacent elements, blue circles correspond to nodes which are active with respect to some
of the adjacent elements but not all of them, and white circles are nodes not active with respect to any
adjacent element. The hatched blue area represents the contact area computed by summing up areas of all
active elements (which have at least one active node), see (38). The shaded red area is obtained by a refined
approach of summing up for each element contributions to the contact area from each Gauss points nearest
to an active node, see (39).

considering separately each contact element, add up to the contact area only contributions from Gauss points
closest to active nodes (shaded red area in Fig. 3):

Ael =
n∑
i=1

{
wi J(ξi, ηi), λ̂i ≤ 0
0, λ̂i > 0,

(39)

where wi and (ξi, ηi) are the weight coefficient and coordinates of a Gauss point closest to the node i. Note
that we assumed here that n (the number of element’s nodes) equals to ngp (the number of Gauss points of
the corresponding face). However, if shape functions of a higher order than in (27) are used for interpolation
of the geometry and of the contact pressure, as was done, for example, in (Puso et al., 2008), then a different
refined approach to the real contact area computation tailored for such case may be required. The comparison
of two discussed approaches to real contact area computation will be presented in Section 5.2.2.
It is important to note, that the refined approach can be used when the number of Gauss points is not equal
to the number of nodes of an element if the status is checked at Gauss points rather than at nodes. However,
to make such a computation of the real contact area consistent with the augmented Lagrangian method
used to solve the contact problem, the formulation presented in (34)-(36) should be slightly modified. In
particular, the criterion for computing the element’s contribution to the residual vector and the tangent
matrix, i.e. the value of the augmented Lagrange multiplier, should also be checked at Gauss points. Our
preliminary study of such contact formulation showed results (in terms of the contact pressure and contact
area) very similar to those of the refined approach presented in this work. At the same time, a formulation
based on Gauss-point-wise criterion opens possibilities of extending the developed framework to the case of
hierarchical basis functions, which is an interesting topic for future research.

4.2 Thin fluid flow

Here we discuss the implementation of the weak form of the fluid flow problem (24c) into the finite-element
framework. In order to concentrate the reader’s attention on the aspects of the coupling, we consider only
trivial Neumann boundary conditions on a portion of the fluid boundary, i.e. the prescribed zero fluid flux
q0 = 0 on γq ⊂ ∂Γf, however, a non-trivial Neumann boundary condition could be included in the present
formulation in the standard manner.
Following the assumption of the constant fluid pressure across the film thickness, we attribute a fluid pressure
DOF to each node of the surface Γ and define a finite element for the fluid transport problem for each face of
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Figure 4: Sketch of the interface highlighting fluid flow elements: Γf is the lubrication surface (subset of
plane z = 0), where the Reynolds equation is defined, Γf

el is a face on this surface associated to one fluid flow
element, pi is the fluid pressure DOF, added to each node of the surface of the solid (note that the constant
fluid pressure across the film thickness is assumed).

the surface Γf, formed by faces of Γfsi projected onto the rigid flat, see Fig. 4. We use the same interpolation
for the gap as in the contact problem, see (27), and the same interpolation is used for the fluid pressure p
and the test function δp:

p =
n∑
i=1

Ni(ξ, η) pi, δp =
n∑
i=1

Ni(ξ, η) δpi, (40)

where n is the number of nodes which belong to a given element. Substituting these expressions into (25e)
we obtain the following contribution of one fluid-flow element to the balance of the virtual work:

δW f
el =

n∑
i=1

δpi

1∫
−1

1∫
−1

(
n∑
k=1

Nk gk

)3
J−1

n∑
j=1
∇Njpj

(J−1∇Ni
)

det(J) dξdη, (41)

where (ξ, η) are coordinates in the parent space, J is the Jacobian matrix defined as:

J =
[∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
, (42)

and det(J) is its determinant. The second variation reads:

∆δW f
el =

n∑
i=1

δpi

{
n∑
j=1

∆pj
1∫
−1

1∫
−1

(
n∑
k=1

Nk gk

)3 (
J−1∇Nj

) (
J−1∇Ni

)
det(J) dξdη

+
n∑
l=1

∂gl
∂ul

∆ul
1∫
−1

1∫
−1

3
(

n∑
k=1

Nk gk

)2

Nl

J−1
n∑
j=1
∇Njpj

(J−1∇Ni
)

det(J) dξdη
}
. (43)

Note that the variation of the Jacobian matrix J, components of which are computed on the projection
of faces of the solid’s surface on the rigid flat, is not considered due to assumptions of small deformations
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Figure 5: Sketch of the interface highlighting FSI elements: Γfsi is fluid-structure interface on the surface of
the solid, Γfsi

el is a face associated to one FSI element, p is the fluid pressure at each node of this surface and
n is the outer normal.

and small rotations. Introducing the residual vector Rf and the tangent matrix Kf of a fluid flow element
(explicitly given in Appendix A.2), we may write:

δW f
el =

[
Rf
p

0

]ᵀ [
δp

δu

]
, ∆δW f

el =
[

∆p
∆u

]ᵀ [Kf
pp 0

Kf
up 0

] [
δp

δu

]
, (44)

with δp = [δp1, . . . , δpn]ᵀ and similarly ∆p = [∆p1, . . . ,∆pn]ᵀ, whereas δu and ∆u were given in the
previous section. Note, that the presented formulation of the fluid-flow element was derived for the two-way
coupled problem, however, it is also suitable for the one-way coupling. The only required modification is the
assumption of the rigid walls of the solid, according to which the variation of the virtual work with respect to
the displacement in (43) vanishes and consequently Kf

up = 0.

4.3 Fluid-structure interface

To include the virtual work of fluid tractions on the solid’s surface (25b) into the numerical framework, we
associate a fluid-structure interface element with each face of the surface Γfsi, see Fig. 5. We use the same
interpolation of the fluid pressure and the gap, as in (40) and (27), respectively. Therefore, the contribution
of each fluid-structure interface element to the balance of virtual work reads:

δW fsi
el =

n∑
i=1

δui

{
n∑
j=1

pj

1∫
−1

1∫
−1

nNiNj J dξdη + 1
2

n∑
k=1

gk

1∫
−1

1∫
−1

(
J−1

n∑
l=1
∇Nlpl

)
NiNk J dξdη

}
, (45)

where the gradients of shape functions ∇Nl are computed on the projection of the face Γfsi on the rigid flat,
i.e. in the same sense as in Section 4.2. The corresponding Jacobian matrix J was defined in (42), and the
normal n is given by:

n =
∂x
∂ξ ×

∂x
∂η∣∣∣∂x

∂ξ ×
∂x
∂η

∣∣∣ , x =
n∑
i=1

Ni(ξ, η)xi. (46)

Note that here the Jacobian J is not computed on the lubrication surface and thus is not given by det(J),
but it is computed on the surface of the deformable solid as in (32). The second variation then takes the
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following form:

∆δW fsi
el =

n∑
i=1

δui

{
n∑
j=1

∆pj
1∫
−1

1∫
−1

nNiNj J dξdη + 1
2

n∑
k=1

∂gk
∂uk

∆uk
1∫
−1

1∫
−1

(
J−1

n∑
l=1
∇Nlpl

)
NiNk J dξdη

+ 1
2

n∑
k=1

gk

n∑
l=1

∆pl
1∫
−1

1∫
−1

(
J−1∇Nl

)
NiNk J dξdη

}
, (47)

where variations of the Jacobian J , the matrix J and the normal vector n are not considered due to
assumptions of small deformations and small rotations.
Finally, the associated virtual work and its variation could be expressed in a compact form using the residual
vector Rfsi and the tangent matrix Kfsi of a FSI element (details can be found in Appendix A.3):

δW fsi
el =

[
Rfsi

u

0

]ᵀ [
δu

δp

]
, ∆δW fsi

el =
[

∆u
∆p

]ᵀ [Kfsi
uu 0

Kfsi
pu 0

] [
δu

δp

]
. (48)

Note that in the case of one-way coupling, the action of the fluid pressure on the surface of the solid is
neglected, so that the virtual work (25b) vanishes and no contribution of the FSI element is included into the
global system, i.e. Rfsi

u = 0, Kfsi
uu = 0,Kfsi

pu = 0.

4.4 Trapped fluid zones

In order to take into account the effect of pressurized volumes of trapped fluid (25c) on the coupled problem,
we follow (Shvarts and Yastrebov, 2018a) and use the nonlinear penalty method to simulate the behaviour of
compressible fluid with a pressure-dependent bulk modulus. We discuss here two possible approaches for
implementing this model into the finite-element framework. First, we present a “superelement” formulation
for a trapped-fluid element containing all faces of one trapped fluid zone Γtf

i , i = 1, ntf. A possible standard
finite-element formulation which computes contributions from each face of the trapped fluid zone separately
is also stated; benefits and drawbacks of these two approaches are briefly discussed.

4.4.1 Superelement formulation

In the finite-element framework the volume of the i-th trapped zone (9) can be calculated by the following
formula:

V tf
i (U) =

mi∑
k=1

1∫
−1

1∫
−1

nk∑
j=1

Nj g(uj) (−nk · ν) J dξdη, (49)

where the summation with respect to index k = 1,mi is performed over all faces of the surface Γtf
i ,

and the summation with respect to j = 1, nk is over all nodes of the k-th face. Thus, we denote by
U = [u1, . . .uj , . . .uM ]ᵀ vector of displacements of all M nodes on the surface Γtf

i , which shall serve as the
DOF vector for the trapped fluid superelement. Next, g(uj) is the normal gap computed for the j-th node of
the k-th face and Nj(ξ, η) is the shape function associated with this node; J is the Jacobian defined in (32).
Finally, nk is the normal to the k-th face, which can be computed in the same way as in (46). The integral
in (49) can be calculated using the Gauss quadrature rule as:

V tf
i (U) =

mi∑
k=1

ngp
k∑
l=1

nk∑
j=1

g(uj)Nj(ξl, ηl) (−nk(ξl, ηl) · ν) J(ξl, ηl)wl, (50)

where ngpk is the number of Gauss points associated with the k-th face of the surface Γtf
i , wl is the weight

coefficient of the l-th Gauss point, (ξl, ηl) are its coordinates in the parent space.
Therefore, using the expression for the virtual work (23), we may write the residual vector and the tangent
matrix for the trapped fluid superelement as:

Rtfi
u = −

{(
K0

K1
+ ptfi0

)(
V tf
i (U)
V tf

0

)−K1

− K0

K1

}[
∂V tf

i (U)
∂U

]
,

Ktfi
uu =

(
K0

K1
+ ptfi0

)
K1

V tf
0

(
V tf
i (U)
V tf

0

)−K1−1 [
∂V tf

i (U)
∂U

]
⊗
[
∂V tf

i (U)
∂U

]ᵀ
, (51)
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where ⊗ is tensor product. Note that we used the small strain formulation and neglected the variation of
normals, and therefore the matrix of second derivatives ∂2V tf

i /∂U2 is zero, which simplifies the formulation
of Ktfi

uu.

4.4.2 Standard finite-element formulation

Alternatively to the superelement formulation presented above, a standard finite-element formulation can be
used, according to which the residual vector Rtfi

u and the tangent matrix Ktfi
uu are assembled using separate

contributions from each face of the trapped fluid zone. However, in application to the considered problem the
standard approach is bound to certain limitations. Indeed, the volume of the gap (49) can be computed as
sum of volumes Vk corresponding to each single face:

V tf
i (U) =

mi∑
k=1

Vk(Uk), Vk(Uk) =
1∫
−1

1∫
−1

nk∑
j=1

Nj g(uj) (−nk · ν) J dξdη, (52)

where Uk is the vector of displacements of nodes of the k-th face only. However, the behaviour of fluid
in each elemental volume Vk cannot be considered to follow the same constitutive behaviour as the entire
trapped fluid volume V tf

i , i.e. the union of volumes Vk should react as an ensemble. Accordingly, the tangent
matrix Ktfi

uu which includes the tensor product
[
∂V tf

i /∂U
]
⊗
[
∂V tf

i /∂U
]ᵀ, see (51), is not sparse and cannot

be constructed using the standard assembly process.
Nevertheless, the standard finite-element formulation can still be used to handle the trapped fluid model if
the method of Lagrange multipliers and the penalty method are used simultaneously. In order to show that,
following (Abaqus, 2018), we consider the contribution of the trapped fluid to the combined Lagrangian for
the coupled problem as:

W tf
i = −λtfi

[
V tf
i (U)− V tf∗

i (ptfi )
]
, (53)

where λtfi is an additional Lagrange multiplier, V tf
i (U) is computed in the same sense as in (9), while V tf∗

i (ptfi )
represents the volume of the trapped fluid as a function of its pressure, i.e. the inverse of the constitutive
relation (8):

V tf∗
i (ptfi ) = V tf

i0

(
ptfi +K0/K1

ptfi0 +K0/K1

)−1/K1

. (54)

Realizing that the Lagrange multiplier λtfi is equivalent to the pressure in the i-th trapped fluid zone, we may
substitute ptfi by λtfi in (54) and express the variation of the term W tf

i as:

δW tf
i = −

[
λtfi

∂V tf
i (U)
∂U · δU +

(
V tf
i (U)− V tf∗

i (λtfi )
)
δλtfi − λtfi

∂V tf∗
i (λtfi )
∂λtfi

δλtfi

]
, (55)

which permits now to avoid the tensor product in the tangent matrix Ktfi
uu and apply the standard finite-element

assembly, combining contribution from each face separately.
Furthermore, if the problem under consideration involves multiple trapped fluid zones, then an additional
Lagrange multiplier λtfi needs to be considered for each one of them. However, the number and the extent of
trapped fluid zones can vary not only between load steps, but also between iterations of the Newton-Raphson
method. The associated inevitable change of the size of the global DOF vector, and consequently, the global
matrix, is undesirable, particularly for an implicit finite-element code. Moreover, it can make the algorithm for
tracking trapped fluid zones (discussed below) more complex. Therefore, in our implementation we followed
the proposed above approach of superelements for each trapped fluid zone, which does not require additional
DOFs. Nevertheless, it is important to bear in mind that in this case the tangent matrix of the trapped fluid
element is not sparse, which may increase considerably the storage space required for the construction of the
global matrix, as well as its bandwidth.

4.5 Monolithic coupling

Following the monolithic approach to the coupled problem, we combine contributions of all discussed above
sub-problems together, outlining the general structure of the global tangent matrix and residual vector,
constructed for each iteration of the Newton-Raphson method. Moreover, we propose a novel algorithm for
identification of the local status of the interface in the sense of partition given by Eq. (1).
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4.5.1 The global residual vector and tangent matrix for the coupled problem

We will denote here by v = [u, λ, p]ᵀ the global vector of nodal DOFs, consisting of displacement components,
Lagrange multipliers for the contact problem, and fluid pressure values for the fluid flow problem, respectively.
Note that the trapped fluid elements do not require any additional degrees of freedom, since the penalty
method and the superelement formulation were used. Furthermore, by ∆v = [∆u,∆λ,∆p]ᵀ we shall denote
the increment of the DOF vector, corresponding to a single iteration. Then the global system of equations
takes the following form: 

K∗uu Kc
uλ Kf

up

Kc
λu Kc

λλ 0

Kfsi
pu 0 Kf

pp


∆u

∆λ
∆p

 = −


R∗u
Rc
λ

Rf
p

 , (56)

The matrix K∗uu and vector R∗u are assembled using corresponding entities of all aforementioned sub-problems,
introduced in (37), (44), (48) and (51):

K∗uu = Ks
uu + Kc

uu + Kfsi
uu +

ntf∑
i=1

Ktfi
uu, R∗u = Rs

u + Rc
u + Rfsi

u +
ntf∑
i=1

Rtfi
u , (57)

where Rs
u and Ks

uu are the residual vector and tangent matrix of the solid mechanics problem in absence of
contact constraints and fluid flow, computed in a standard way as:

Rs
u = ∂Πs(u)

∂u
, Ks

uu = ∂2Πs(u)
∂u2 . (58)

If one prefers to perform simulation of the two-way coupling neglecting the presence of trapped fluid and
considering only the effect of fluid pressure in the flow on the deformation of the solid, then contributions
of all trapped fluid zones may be omitted in Eqs. (56)-(57). It is also important to note that in case of
two-way coupling the global matrix defined in (56) is not symmetric, since non-diagonal block terms Kf

up

and Kfsi
pu are obtained upon discretization of different equations, see (44) and (48), and therefore are not

equal in the general case. However, if the one-way coupling is considered, these terms vanish, rendering the
global tangent matrix symmetric. To solve the system (57) in both one- and two-way coupling cases we use a
direct multi-frontal solver MUMPS (Amestoy et al., 2000) in a shared-memory parallel environment, while a
distributed-memory version of the framework is a subject of future work.
Newton-Raphson iterations are performed until the norm of the global residual vector falls below a prescribed
tolerance. However, for the coupled problem under study in order to ensure the balance between different
fields, we consider separately the norms of the subsets of the residual vector corresponding to different types
of DOFs: R∗u, Rc

λ, Rf
p, see (56). Therefore, iterations are performed until all of the following conditions are

simultaneously fulfilled:
||R∗u||2
||Rext

u ||2
< εu, ||Rc

λ||∞ < ελ, ||Rf
p||∞ < εp, (59)

where εu, ελ, εp are the error tolerance thresholds, chosen separately for each type of the DOF. Note that for
the contact mechanics sub-problem a nodal vector of external loads Rext is available, and, therefore, for the
displacements residual R∗u we consider the relative error, while for two other residuals we use the absolute
error criterion. The following notations are used for two different definitions of a norm of a vector R:

||R||2 =

√√√√ N∑
i=1

R2
i , ||R||∞ = max

i=1...N
|Ri|, (60)

where N is the length of this vector. Note that (59) renders the choice of the error thresholds ελ and εp
problem-dependent, unless an appropriate scaling of the residual vector and the tangent matrix is performed.

4.5.2 Resolution algorithm

Finally, a methodology for identification of local status (active contact, fluid flow, or trapped fluid) of interface
elements remains to be defined. Before starting the computation, we construct a graph of the interface, where
each vertex of the graph represents a face of the surface Γ. Two vertices are connected by a link in the graph
if the two corresponding faces of the surface Γ share an edge, i.e. for a regular quadrilateral surface mesh we
consider the so-called “4-connected” (von Neumann) neighbourhood.
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Algorithm 1 Resolution procedure for the coupled problem
Require: vi, i = 0
1: procedure NewtonRaphsonLoop()
2: repeat
3: for all faces of Γ do
4: if corresponding contact element is active then
5: face’s label ← CONTACT
6: else
7: face’s label ← NONE
8: end if
9: end for
10: for all faces with nodes from inlet or outlet do //Dirichlet B.C.
11: DepthFirstSearch(face, FLOW)
12: end for
13: for all faces of Γ do
14: Construct Rc and Kc for corresponding contact element using (37)

//ALM permits to have contact elements in non-active zone
15: if face’s label = FLOW then
16: Construct Rf and Kf for corresponding fluid-flow element using (44)
17: if two-way coupling then
18: Construct Rfsi and Kfsi for corresponding FSI element using (48)
19: end if
20: end if
21: end for
22: if two-way coupling then
23: IdentifyTrappedZones()
24: for all trapped fluid elements do
25: Construct Rtf and Ktf for trapped-fluid element using (51)
26: end for
27: end if
28: Solve system (56) for ∆vi
29: vi+1 ← vi + ∆vi
30: i← i+ 1
31: until (59) is validated
32: end procedure
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Figure 6: Partitioning of the interface into active contact (a), fluid-flow (b) and trapped fluid zones (c),
according to which every face of the surface Γ is assigned a label from the following list: {CONTACT, FLOW,
TRAP1, TRAP2, TRAP3, TRAP4, ...}.

19



Computational framework for monolithic coupling for thin fluid flow in contact interfaces

Algorithm 2 Depth-first search (DFS)
1: procedure DepthFirstSearch(face, LABEL)
2: if face’s label = NONE then
3: face’s label ← LABEL
4: for all neighbours of face do
5: DepthFirstSearch(neighbour, LABEL)
6: end for
7: end if
8: end procedure

Algorithm 3 Trapped fluid zones identification procedure
1: procedure IdentifyTrappedZones()
2: for all trapped fluid elements do //the same list is used for all load steps
3: if element did not exist at the previous converged load step then
4: delete trapped fluid element
5: else
6: empty element’s list of faces
7: end if
8: end for
9: for all faces do

10: if face’s label = NONE then
11: if face’s label at the previous converged load step = TRAP+id then
12: id ← corresponding trapped fluid element’s id
13: DepthFirstSearch(face, TRAP+id)
14: else
15: Create new trapped fluid element
16: id ← new number of trapped fluid elements
17: DepthFirstSearch(face, TRAP+id)
18: end if
19: end if
20: end for
21: for all faces do
22: if face’s label = TRAP+id then
23: append face to corresponding element’s list of faces
24: end if
25: end for
26: for all trapped fluid elements do
27: if element did not exist at the previous converged load step then
28: Compute mean fluid pressure from the previous converged load step

//the initial pressure is the average fluid pressure over all faces of this element
29: end if
30: end for
31: end procedure
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At every iteration of the Newton-Raphson method we perform the following steps, summarized in Algorithm 1,
which can be easily adjusted to one-way and two-way coupling approaches. We start by identifying active
contact elements using the criterion presented in Subsection 4.1, i.e. a contact element is considered active if
at least one of its nodes is active. Accordingly, each face which corresponds to an active contact element is
assigned the label CONTACT, see Fig. 6(a). Next, in order to locate the fluid-flow domain, we perform connected-
component labelling of faces which are not in active contact using the depth-first search (DFS) (Shapiro,
1996), see Fig. 6(b) and Algorithm 2. Note that this recursive procedure is started from faces which feature
fixed pressure due to Dirichlet boundary conditions at least in one node. Once every face in the fluid-flow
domain is marked by the label FLOW, we continue the connected-component labelling of remaining non-contact
faces to identify separately each trapped fluid zone (label TRAP+id, where id is the number of the trapped
pool). The corresponding procedure is summarized in Algorithm 3, see also Fig. 6(c).
Since the behaviour of each trapped fluid pool depends on the volume of this pool at the moment of its
formation, and also on the corresponding average pressure of the fluid inside, a modification of the standard
connected-component labelling algorithm is necessary to track creation and evolution of trapped fluid zones.
In particular, for each observed trapped fluid pool two cases are possible: some (or all) faces of this zone
could have belonged to a trapped fluid zone identified at the end of the previous (converged) loading step, or
the considered zone could correspond to a new trapped fluid pool formed at the current loading step. In the
former case, the trapped fluid zone inherits the data (the initial volume and the fluid pressure) from the zone
identified at the previous load step. In the latter case, the current volume of a newly created pool is stored
and the initial pressure is computed as the mean of the fluid flow pressure values calculated at the end of the
previous load step. Note that our study presented in Section 5.1 shows that the fluid flow pressure in a zone
which would become trapped at the following load step is very close to being uniform (in case of reasonable
change in load between steps).
It is important to note, that in a simulation with an increasing external load, the splitting of a single trapped
fluid pool into multiple zones is possible, which will not be recognized by the presented algorithm, i.e. these
multiple pools will still be treated as one volume of trapped fluid. However, the effect of such a simplification
on the transmissivity of rough contact interfaces, studied in Section 5.2, based on the observed results, is not
expected to be significant. The opposite process, i.e. the merging of multiple trapped fluid zones into single
one is also not covered by the presented algorithm. However, this process would require elimination of the
contact area between separate pools, while the study of the trapped fluid problem presented in (Shvarts and
Yastrebov, 2018a) shows that a considerable reduction of the contact area corresponds to a significantly higher
external load than the one needed for the complete sealing of the interface. Nevertheless, aforementioned
special cases can be included into the presented framework without considerable difficulties. At the same
time, the opening of a trapped zone as described in (Shvarts and Yastrebov, 2018a) coupled to a fluid flow in
the interface would necessarily result in a transient process and cannot be accurately taken into account in
the quasi-static framework presented here.
Finally, at each iteration we compute the number of local status changes with respect to the previous iteration
(or previous converged load step in case of the first iteration). At the i-th iteration this value is calculated as:

Si =
m∑
j=1

{
1, sij 6= si−1

j

0, sij = si−1
j ,

(61)

where m is the total number of faces of the surface Γ, sij is the label of the j-th face, corresponding to the i-th
iteration, and, accordingly, si−1

j is the label of the same face at the previous iteration (or previous converged
load step if i = 1). The label, according to the Algorithm 1, is from the list {CONTACT, FLOW, TRAP1, TRAP2,
TRAP3, ...}. At the post-processing stage the number of local status changes permits to study the convergence
of the Newton-Raphson method and verify the proposed resolution procedure.

5 Examples and discussions

In this section we present examples which show the capabilities of the proposed framework. We highlight the
difference between the solutions obtained under one-way and two-way coupling approaches, and, in particular,
we demonstrate the effect of the trapped fluid on the coupled problem. Additionally, we demonstrate
the robustness of the resolution method showing the residual-wise and the status-wise convergence of the
Newton-Raphson method, and also compare two different methods of the contact area computation.
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Figure 7: Finite-element mesh with 128 × 128 faces in the contact interface which was used to solve the
problem of the fluid flow across a channel with an “atoll” island. Note that the amplitude of the surface profile
is exaggerated to highlight its features, while in the actual simulation the following geometrical parameters
were used: d = 0.02 mm, λ = 2 mm, L = 1 mm, B = 1.4 mm, Ra = 0.33 mm.

5.1 Fluid flow across a wavy channel with an “atoll island” and trapped “lagoon”

We start by presenting an example of a fluid flow in the contact interface which includes also the effect of
fluid entrapment. We consider the fluid flow across an extruded wavy channel with an added ring-shaped
elevation of the surface at the centre of the channel. Once this surface is gradually brought in contact with a
rigid flat, the elevation forms a contact patch in a shape of an “atoll”, which encircles a “lagoon” where the
fluid gets ultimately trapped, see Fig. 7. The surface of the solid is given by the formula:

z(x, y) = d

[
A(x, y) cos 2πx

λ
− 1
]
, (62)

A(x, y) = 1− 2 (x− λ/2)2 + (y − L/2)2

R2
a

e
1− (x−λ/2)2+(y−L/2)2

R2
a ,

where d and λ are the amplitude and the wavelength of the channel profile, respectively, L is the length of
the channel, and Ra is the radius of the “atoll”. Note that the centre of the “lagoon” is at (λ/2, L/2), and
the atoll’s elevation is equal to the the elevation of the crest on the periphery of the simulated geometry. In
the finite-element mesh the number of regularly spaced nodes on each side of the surface is N = 129.
On vertical faces of the solid we apply zero normal displacement: uy|y=0 = uy|y=L = 0 and ux|x=0 =
ux|x=λ/2 = 0, while the bottom face is displaced vertically towards the rigid flat within 100 load steps of
equal size until the fluid channel is completely sealed. We consider throughout the whole loading process a
constant fluid pressures prescribed at the inlet: p|y=0 = pin and the outlet p|y=L = pout, complimented by
conditions of zero flux at the remaining part of the boundary of the fluid domain Γf: q0|x=0 = q0|x=λ/2 = 0.
Note that due to these boundary conditions, lines x = 0 and x = λ/2 become lines of symmetry of the
problem under study. The inlet fluid pressure is set to pin = 10 MPa and the outlet pout = 0.

22



Computational framework for monolithic coupling for thin fluid flow in contact interfaces

The geometrical parameters are given in the caption of Fig. 7. For the solid we consider material parameters
typical for a soft matter which can be used in sealing applications: Young’s modulus E = 1 GPa and Poisson
ratio ν = 0.4 (effective elastic modulus is E∗ = E/(1 − ν2) ≈ 1.19 GPa), while fluid parameters are of a
typical mineral oil with initial bulk modulus K0 = 2 GPa and K1 = 9.25 (Kuznetsov, 1985). Note that due
to considered zero-flux boundary conditions and the form of the Reynolds equation (4a), the fluid pressure
field and induced tractions do not depend on the actual value of the fluid viscosity, therefore, we used an
arbitrary value of µ = 1.0 Pa · s.
Results of the simulation are summarized in Fig. 8, note that only three of 100 load steps are shown. The full
animated solution can be found in Supplementary material (Shvarts et al., 2021). At the beginning of the
loading, see Fig. 8(a), the atoll’s contact zone grows from two opposite (inlet and outlet) sides, therefore the
fluid is not yet trapped and can freely flow through the forming “lagoon”. At the same time a contact zone
on the crest at x = 0 also starts to grow from the outlet side. Note that all contact zones are not symmetric
with respect to the line y = L/2 (which would be the case if one-way coupling was studied for the same
set-up), since the fluid pressure applied to the surface of the solid is maximal at the inlet and is monotonically
decreasing towards the outlet. The fluid pressure inside the lagoon before its closure is almost uniform and is
higher than the mean value between the inlet and outlet fluid pressures. This is also an effect of considering
the two-way coupling, since the fluid pressure distribution from the inlet to the outlet is concave (contrary
to a linear distribution along the OY axis in the case of one-way coupling), as was also shown in (Shvarts
and Yastrebov, 2018b). At the second stage, see Fig. 8(b), corresponding to higher external load, two atoll’s
zones of contact merge and form a non-simply connected patch, which encircles a non-contact area inside the
lagoon with trapped fluid. Under increasing external pressure, see Fig. 8(c), the contact area continues to
grow, reducing the area corresponding to the fluid flow. At the same time, the area of the trapped fluid zone
is decreasing much slower due to a higher fluid pressure in the lagoon than in the fluid-flow zone, which can
be observed in the figure by comparing the value of stress component σzz at Γfsi (bottom of the channel) and
at Γtf (bottom of the lagoon).

5.1.1 Comparison of the interface transmissivity between one- and two-way coupling
approaches

In order to compare one- and two-way coupling approaches and demonstrate the effect of the trapped fluid,
we compute an integral value: the transmissivity of the interfaces for a given external load, which is a measure
of the volume of the fluid passing through the interface in a unit time under a unit pressure drop. We use the
following definition of the effective transmissivity:

Keff = − 12µQL
d3(pout − pin), (63)

where Q is the mean flux over the area λ/2× L, i.e.

Q = 2
λL

λ/2∫
0

L∫
0

qy dxdy, (64)

and qy = −g3/(12µ) ∂p/∂y is the fluid flux in the y-direction.
In Fig. 9(a) we show that the transmissivity of the interface for a given external load is lower under the
one-way coupling, which neglects the effect of fluid pressure on the surface of the solid, than in the two-way
coupling. Accordingly, the critical pressure needed to seal the channel is ≈17% higher if the two-way coupling
is considered, which is an agreement with (Shvarts and Yastrebov, 2018b), where we found the critical sealing
pressure to be an affine function of the inlet pressure for the case of a wavy channel without trapped fluid
zone. Moreover, once a trapped fluid pool is formed, it provides additional load-bearing capacity, since its
pressure is increasing with the increasing external load. Therefore, the observed critical sealing pressure is
further increased, becoming ≈20% higher than the value obtained under the one-way coupling. Note also
that in the same figure we plotted the curve of the transmissivity evolution under one-way coupling shifted
by an external pressure offset pin/2. This offset represents a simple estimation of the additional fluid-induced
load-bearing capacity, which is accounted for in the two-way coupling approach (we recall that pout = 0). The
shifted curve coincides with the transmissivity of the two-way coupling in the region of intermediate loads
and underestimates the transmissivity closer to the complete sealing, predicting only ≈11% higher critical
load. Moreover, the simple estimation of the load-bearing capacity cannot take into account the effect of the
trapped fluid, which was shown to further increase the transmissivity in the numerical simulation.
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Figure 8: Fluid flow across a wavy channel with an “atoll” island. Three different load steps are presented:
(a) beginning of the loading, contact occurs only at the crest of the channel’s profile and at two opposite sides
of the atoll, therefore the fluid is not trapped yet (applied pressure is pext/E∗ ≈ 0.007); (b) the two, initially
separated, atoll’s contact zones merge and fluid is trapped (pext/E∗ ≈ 0.015); (c) under the increasing load,
the trapped fluid is further pressurized (pext/E∗ ≈ 0.037). For each loading step in the left column the bulk
view of the solid is shown, with colour representing the σzz component of the stress tensor, moreover, fluid
flow lines with the colour representing the normalized fluid flux intensity q/qmax are added. In the right
column the interface view is given, with colour representing the normalized fluid pressure in the flow p/pin,
the contact patches are shown in grey colour and the trapped fluid zone is purple. Note that the trapped
fluid pressure corresponding to the loading step (b) is ptf/pin ≈ 1.2, step (c): ptf/pin ≈ 4.5. The full animated
solution can be found in Supplementary material (Shvarts et al., 2021).
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Figure 9: (a) The evolution of the effective interface transmissivity Keff under increasing external load
comparing three simulations: one-way coupling approximation, two-way coupling neglecting the effect of
trapped fluid and two-way coupling accounting for the trapped fluid. Additionally, the results of the one-
way coupling simulation are shown shifted by an offset of the external load equal to pin/2. (b) Effective
transmissivity as a function of the real contact area fraction for the same three simulation as in (a). In both
sub-figures the star symbols denote the event of fluid entrapment.

Additionally, in Fig. 9(b) we plot the effective transmissivity as a function of the fraction of real contact area
for the same three simulation as in Fig. 9(a). Here, curves for one- and two-way coupling neglecting the
effect of the trapped fluid almost coincide, which is also in agreement with previous results (Shvarts and
Yastrebov, 2018b). However, the curve corresponding to the case accounting for trapped fluid is different
from two other cases and shows ≈8% smaller contact area at the complete sealing. It is important to note,
that this difference is not equal to the area of the trapped zone At/A0 ≈ 0.11 (which is out of contact), but
reflects the “resistance” to the contact area growth caused by the pressurized trapped fluid. Note also that
here the refined approach to the contact area computation (see Section 4.1.1) was used.

5.1.2 Convergence of the Newton-Raphson method

We demonstrate in Fig. 10 the residual-wise and the status-wise convergence of the Newton-Raphson method
corresponding to one particular load step, during which two atoll’s contact patches merge and encircle the
trapped fluid zone. Note that this step is the most challenging of the whole sequence from the convergence
point of view, since the highest number of local status changes is observed during this step. We present for
comparison results obtained in 2 simulations with different values of the fluid inlet pressure: pin = 2 MPa, see
Fig. 10(a), and pin = 10 MPa, see Fig. 10(b), while for both cases pout = 0. We also used in both simulations
the following tolerance thresholds for the three residuals: εu = 10−6, ελ = εp = 10−12 (MPa).
According to presented results, while the local status of faces keeps changing between iterations, see (61),
the residual-wise convergence is not in general quadratic. Note that a high peak of the number of status
changes, corresponding to the 2nd iteration in both cases, is caused by the first detection of the trapped fluid
zone. However, the number of status changes monotonically decreases after the 2nd iteration. Eventually, the
quadratic residual-wise convergence is achieved when the number of status changes reaches zero value in case
of pin = 10 MPa (and even one iteration before that for pin = 2 MPa), implying that the correct partition
of the interface for the given external load has been found. In case of a lower fluid pressure, see Fig. 10(a),
the error drops below the specified tolerance after 6 iterations. However, in case of higher fluid pressure, see
Fig. 10(b), more iterations are needed to find the correct status for each face. Note also that the quadratic
residual-wise convergence is observed only for displacement DOFs and the Lagrange multipliers, while the
norm of the fluid-flow residual ||Rf

p|| by this iteration is already below the convergence threshold εp and even
close to the double machine precision ≈10−16.
We would like to comment on the choice of the augmentation parameter ε required for the solution of the
contact sub-problem (see Section 4.1), which in theory does not affect the solution, but may have effect on the
convergence. From our experience, the choice of ε is problem-dependent, and for a given set-up, a numerical
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Figure 10: Residual-wise (top) and status-wise (bottom) convergence of the Newton-Raphson method
corresponding to a load step during which the trapped fluid zone is formed. Results presented for 2
simulations with different values of the fluid inlet pressure: (a) pin = 2 MPa and (b) pin = 10 MPa. Residual-
wise convergence is shown in terms of the relative criterion for the residual corresponding to the displacement
DOFs and the absolute criterion for the other two residuals, see (59). The status-wise convergence is shown
for the number of status changes defined in (61). Note that the evolution of the number of status changes
from the 3rd iteration until the last one is shown in insets for each considered case.

experiment might be required to find an optimal value. Following (Cavalieri and Cardona, 2013), we suggest
ε = 0.01E∗/h3 (where h is the smallest length of an edge in the mesh) as the initial choice, which can be
later adjusted depending on the observed effect on the convergence. Note that in all considered examples in
this study we used ε = 108 N/mm5.
Moreover, our study showed an unusual dependence of results on the augmentation parameter, which was,
however, rather weak. A small oscillation of the surface traction field appeared in the solution at the border
between the contact and the fluid flow and/or trapped fluid zones, see Fig. 8(c), it can be also observed
in Fig. 6-8 in (Shvarts and Yastrebov, 2018b). We speculate that the reason for this oscillation is the
piecewise-continuous interpolation of the contact Lagrange multipliers (27), while in theory the contact
pressure field has less regularity, see Section 3.1. Therefore, it is expected that the use of dual shape
functions (Popp et al., 2013) for interpolation of Lagrange multipliers can remove this oscillation. At the
same time our studies showed that the oscillation is decreased if the value of the augmentation parameter is
increased. Unfortunately, the augmentation parameter ε cannot be arbitrarily high, since it may lead to poor
conditioning of the global tangent matrix. However, the discussed artefact does not affect the solution in the
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Figure 11: Sketch of the second problem under study: contact between a deformable solid with a periodic
representative rough surface (a), brought in contact with a rigid flat (b), in presence of the thin fluid flow in
the free volume between the two surfaces (c). Note that the amplitude of the surface roughness is exaggerated,
while in the actual simulation we used a surface with root mean squared (rms) of heights Sq = 1 µm and rms
of the height gradient Sdq ∼= 0.055. The lateral size of the studied square surface is L = 1 mm, while the
vertical size of the FEM mesh B = 1.4 mm is the same as in the first example.

whole domain, and therefore does not undermine the consistency of the proposed method. Nevertheless, it
presents an interesting topic of a future investigation.

5.2 Fluid flow through a representative rough contact interface

The second example is a problem of contact between a deformable solid with a representative rough surface
and a rigid flat in presence of thin fluid flow in the free volume between the two surfaces, see Fig. 11 for
the sketch of the problem set-up. A physically relevant simulation of a rough surface requires a very fine
discretization, which becomes a bottleneck in FEM studies. Therefore, a commonly used approach is to
model a part of the surface, which is small enough to make the computation possible, and at the same time
large enough to act as a representative surface element, see (Yastrebov et al., 2011) for details.
Furthermore, the spectrum of surface roughness should be sufficiently rich to be physically representative
at least to a certain extent, i.e. the frequency cut-offs in the model spectrum need to be chosen with some
physical motivation and kept at values for which the continuum mechanics remains to be a valid approximation,
see, for example (Luan and Robbins, 2005; Solhjoo et al., 2019). Using the filtering approach (Hu and
Tonder, 1992) also discussed in (Yastrebov et al., 2015), we generated a periodic surface of a period L with
the following parameters: smallest wavenumber kl = 8π/L (which corresponds to the longest wavelength
λl = L/4), highest wavenumber ks = 64π/L (corresponding to the shortest wavelength λs = L/32), number
of points on each side of the surface is N = 257, Hurst exponent is H = 0.8. Similarly to the first example, we
consider throughout the whole loading process a constant fluid pressures prescribed at the inlet: p|y=0 = pin
and the outlet p|y=L = pout. However, following the approach of a representative surface element, here we
consider periodic boundary conditions at two other sides of the fluid domain: p|x=0 = p|x=L. On lateral
vertical faces of the solid adjacent to the inlet and the outlet zones we apply the boundary conditions of zero
normal displacement uy|y=0 = uy|y=L = 0, while on two other faces we prescribe the periodic boundary
condition: u|x=0 = u|x=L. The bottom face of the solid is displaced vertically towards the rigid flat within
100 equally-sized load steps until all channels connecting the inlet and the outlet are closed. We use here
the same material properties as in the previous example, while the geometrical parameters are given in the
caption of Fig. 11.
Results of the simulation with the fluid inlet pressure pin = 4 MPa and zero outlet pressure are presented
in Fig. 12, note that only 3 load steps out of 100 are shown. The full animated solution can be found
in Supplementary material (Shvarts et al., 2021). At the first shown step (a) trapped fluid zones are not
yet observed, however, they appear during further loading. Interestingly, atoll-type zones, which were
studied previously in the model geometry, appear naturally in case of a representative rough interface,
see Fig. 12(b) and (c), at the last presented step the number of these zones reaches ntf = 54. It is also
important to note, that the spatial distribution of the fluid pressure on its way from the inlet to the outlet
changes drastically with the increasing external load. In Fig. 12(a) the pressure decreases rather gradually
and smoothly over the whole interface, with a more rapid change closer to the outlet, which is an effect
of considering the two-way coupling. However, under a higher external load, see Fig. 12(b), we observe a
certain “clusterization” of the fluid pressure field, which becomes divided into zones partially surrounded by
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Figure 12: Fluid flow through the contact interface between a deformable solid with representative rough
surface and a rigid flat. Three different load steps with increasing external pressure are presented: (a)
pext/E

∗ ∼= 0.002, (b) pext/E∗ ∼= 0.007, (c) pext/E∗ ∼= 0.013. For each loading step in the left column the
bulk view of the solid is shown, with colour on the surface representing σzz component of the stress tensor,
moreover, fluid flow lines with the colour representing the normalized fluid flux intensity q/qmax are added.
In the right column the interface view is given, with colour representing the normalized fluid pressure in the
flow p/pin, the contact patches are shown in grey colour and all trapped fluid zone are purple (note that the
fluid pressure in each trapped zone is different and is increasing with the increasing external loading). At the
step (b) 9 trapped fluid zones are present (ntf = 9), the highest trapped fluid pressure is ptf/pin ∼= 3.6, at the
step (c) ntf = 54, highest pressure ptf/pin ∼= 6.4. The full animated solution can be found in Supplementary
material (Shvarts et al., 2021).
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Figure 13: (a) The evolution of the effective interface transmissivity under increasing external load comparing
one- and two-way coupling approaches. Additionally, the results of the one-way coupling simulation are
shown shifted by an offset of the external load equal to pin/2. (b) Effective transmissivity as a function of the
real contact area fraction for three coupling approaches: one-way, two-way (neglected trapped fluid) and
two-way (accounting for trapped fluid).

contact patches. Within these “clusters” the fluid pressure varies little and the intensity of the fluid flow is
low, however, the fluid pressure gradient in narrow channels connecting these “clusters” is high. Under the
external pressure close to the complete sealing of the interface, see Fig. 12(c), the major part of the fluid-flow
domain is under the inlet pressure, while almost all remaining part is under the outlet pressure, and virtually
all pressure drop is happening over a narrow constriction connecting these two zones, which is in agreement
with theoretical predictions (Persson and Yang, 2008) and previous numerical simulations (Dapp and Müser,
2016), performed under the one-way coupling approach.

5.2.1 Comparison of the interface transmissivity

Similarly to the first example, we compare the effective transmissivity of the contact interface between
the representative surface element and a rigid flat in case of one-way and two-way coupling approaches.
Considering the random surface roughness we compute the effective transmissivity as

Keff = − 12µQL
S3
q (pout − pin) , (65)

where Q = 〈qy〉 is the mean flux over the apparent contact area A0 = L× L, and Sq =
√
〈(z − 〈z〉)2〉 is the

rms of surface heights, where

〈•〉 = 1
L2

L∫
0

L∫
0

• dxdy. (66)

In this study we consider pin = 5 MPa, while pout is zero.
In Fig. 13(a) we present the evolution of the transmissivity under increasing external load. As in the previous
example, we observe a higher transmissivity of the interface (for the same given external pressure) in case of
the two-way coupling than under the one-way approach. Accordingly, the critical external pressure necessary
to completely close the interface for the fluid flow is ≈17% higher if the two-way coupling is considered.
However, in the given example the critical load is virtually the same whether the effect of the trapped fluid
is considered or not. Additionally, in Fig. 13(a) we plot the curve corresponding to the one-way coupling
shifted by an offset of the external load pin/2, which represents a simple estimation of the fluid load-bearing
capacity in the two-way coupling approach. This estimation is in good agreement with the results of the
two-way coupling simulation, except for the beginning of the loading. However, a simple estimation cannot
predict the effect of the two-way coupling on another parameter important for sealing applications: the ratio
of the real contact area A to the apparent one A0 = L× L, computed at the moment when the fluid flow
through the interface stops, i.e. the so-called percolation threshold.
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Figure 14: Comparison of two different methods of the real area computation, (38) and (39). Results of
simulations using three different meshes are presented (with 128× 128, 256× 256 and 512× 512 face elements
on the surface). For comparison, the real contact area is also calculated using correction technique based on
post-processing of the contact area (Yastrebov et al., 2017). The spatial distribution of the contact area for
highlighted points is shown in Fig. 15 under corresponding letters (a–f).

Previous numerical studies (Dapp et al., 2012; Dapp and Müser, 2016) based on the one-way coupling
approach show that for randomly rough self-affine surfaces A/A0 ≈ 0.42 at the percolation. In Fig. 13(b)
we plot the effective transmissivity with respect to the fraction of the real contact area, comparing one-way
and two-way coupling (the latter is considered with and without trapped fluid). The percolation threshold
observed under the one-way coupling approach is A/A0 ≈ 0.40, which is in agreement with the aforementioned
studies. However, if the two-way coupling is considered even without trapped fluid, our results show a
decrease of the percolation threshold: A/A0 ≈ 0.36. Moreover, if the effect of numerous trapped fluid pools is
taken into account, the percolation threshold is further decreased down to A/A0 ≈ 0.34. It is important to
note, that the discussed difference in the real contact area is not equal to the sum of all trapped fluid zones
(which are out of contact), but represents how the pressurized trapped fluid resists the contact area growth.
Note also that here we used the refined approach to the contact area computation, discussed in Section 4.1.1,
while the comparison of the two methods of the area computations will be presented below.
Thus, both considered examples: with model geometry and with the representative random rough surface,
demonstrate the capability of the developed framework for a robust simulation of a two-way coupling between
fluid and solid mechanics equations. A pronounced difference of obtained results with respect to those
obtained by a one-way coupling indicates the importance of using two-way coupling for physically relevant
simulations.

5.2.2 Real contact area computation

The real contact area and its morphology are important not only for the study of the percolation in the sealing
applications, but represent the key quantity determining the interfacial behaviour in many other physical
problems, see (Vakis et al., 2018; Bowden and Tabor, 2001; Pei et al., 2005) for examples. The evolution of
the ratio of real contact area to the apparent one under increasing external load determines friction, wear,
adhesion, as well as electric and heat transfer through contact interfaces. Therefore, it is important to ensure
the accurate estimation of the contact area in numerical simulations, see also (Yastrebov et al., 2017).
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Figure 15: Comparison of the real contact area morphology for approximately the same external load
(pext/E∗ ≈ 0.006) for three simulations with different mesh sizes: N = 129 (left column), N = 257 (middle
column), N = 513 (right column); active contact area is shown in black, out-of-contact is white. For each
case the active contact area is identified using a straightforward approach, i.e. by active element (top row),
and the refined approach, i.e. by the area associated with the Gauss point closest to an active node (bottom
row). A magnification of a small zone of the interface, same for all six cases, is shown in the inset of each
sub-figure, with grey-coloured grid representing boundaries of contact elements.

We perform a mesh convergence study, comparing the values of the real contact area obtained in simulations
with three different meshes: with 128 × 128, 256 × 256 and 512 × 512 face elements on the surface Γ,
respectively. It is important to note that the spectrum of the surface roughness is preserved exactly the same
for all considered meshes. Using the same approach as was discussed in the previous section, we generated
a surface with the following parameters: smallest wavenumber kl = 8π/L (longest wavelength λl = L/4),
highest wavenumber ks = 128π/L (shortest wavelength λl = L/64), Hurst exponent H = 0.8. The generated
roughness with 513 × 513 points is mapped on the corresponding mesh. In order to obtain the surface
geometry with coarser discretization (257× 257 and 129× 129 points), a point-wise sampling was used, which
is easy to perform, since the generated finite-element mesh has a regular quadrilateral grid on the surface.
We present in Fig. 14 the comparison of the two methods of the real contact area computation, discussed
in Section 4.1.1. The results show a significant difference between the three meshes in case of the contact
area computation based on summing up of areas of active contact elements (38): the convergence seems
to take place, but it is very slow. On the contrary, a refined approach to contact area computation, based
on summing up for each element contribution to the contact area only from a Gauss point nearest to an
active node (39), leads to a virtually mesh-independent calculation of the real contact area. For additional
comparison, we plot for each of the simulations the contact area obtained using the correction technique
based on post-processing of the contact area using the data on the contact perimeter, proposed in (Yastrebov
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et al., 2017) and recently applied in (Carneiro et al., 2020). The results of this calculation also demonstrate
convergence towards the curve corresponding to the refined approach of the contact area computation. The
latter approach, however, is showing the best accuracy.
In Fig. 15 we show the comparison of the real contact area morphology for three simulations with different
mesh sizes at approximately the same external load (though not exactly the same since in these simulations
we use the displacement control rather than the load control). For each mesh, both approaches of contact
area identification are demonstrated: the straightforward one in (a,b,c), and the refined one in (d,e,f). The
comparison demonstrates that the refined approach provides almost the same real contact area A/A0 ≈ 0.20
for all three meshes, which is very close to the prediction of the correction technique for the finest mesh
discussed above. At the same time, the results of the straightforward approach are only slowly converging
towards this value of the real contact area with the increasing mesh size, and significantly overestimate it
when coarser meshes are used.
However, one may erroneously expect the result of the straightforward approach for the mesh with N = 257
and N = 513 to be close to those of the refined approach for the mesh with N = 129 and N = 257, respectively
(compare (b) with (d) and (c) with (e) in Fig. 15) since the computation of the real contact area is performed
with equal “quanta” of contact area, i.e. the element’s area on a regular mesh is equal to the area associated
with one Gauss point on a twice coarser mesh. Nevertheless, these computations do not coincide since even if
the “quantum” of the contact area is the same in (b) and (d) or (c) and (e) the criterion for summing them up
is different. Namely, in (d) and (e) a quarter of an element is considered active if and only if the nearest node
is active, while in (b) and (c), respectively, the same “quantum” of the contact area is added up if any node
attached to a given element is active, see also Fig. 3. Consequently, the difference in the criterion between the
two approaches accounts for the overestimation of the real contact area under the straightforward approach.
Therefore, even if during the numerical simulation a contact element is considered as active if at least one
node is active (which is required for a consistent partitioning of the interface into contact, fluid-flow and
trapped fluid zones), the refined approach for computing contact area permits to readily obtain physically
more relevant values at the post-processing stage.

6 Conclusions

In this paper we proposed a monolithic finite-element framework aimed at solving a problem of thin fluid flow
in a contact interface between a deformable solid and a rigid flat subject to a normal load. This framework
combines a mortar-like augmented-Lagrangian-based contact resolution algorithm, fluid-flow elements for
solving the Reynolds equation for incompressible viscous flow between immobile walls and fluid-structure
interface elements to apply fluid tractions on the surface of the solid. Additionally, the possibility of fluid
entrapment in “pools” delimited by contact patches and its consequent pressurization is considered using
a model of compressible fluid with pressure-dependent bulk modulus. This model of the trapped fluid is
included into the numerical framework using a superelement formulation applied separately for each trapped
fluid zone. Furthermore, the proposed framework is suitable for both one- and two-way coupling approaches.
One of the main difficulties of simulating the fluid flow in contact interfaces is associated with the dependency
of the extent of fluid-flow domain and the trapped fluid zones on the solution of the contact problem, which
can be enhanced by a sophisticated morphology of the contact area resulting from deterministic or random
features of the surface geometry. In the developed framework, this complexity is handled by an on-flight
procedure of partitioning the interface into contact, fluid-flow and trapped fluid zones, performed at each
iteration of the Newton-Raphson method using connected-component labelling of the interface graph. The
standard algorithm based on the depth-first search was further elaborated to take into account formation and
evolution of trapped fluid zones.
To validate the robustness of the proposed monolithic formulation and the efficiency of the resolution
algorithm, we considered a model problem with the fluid flow through an extruded wavy channel with an
“atoll”-shaped elevation of the profile, which forms one trapped fluid zone. In particular, we studied DOF-wise
and status-wise convergence during the most challenging step of the whole loading sequence, corresponding
to the creation of the trapped fluid zone. According to the obtained results, the number of status changes
is monotonically decreasing after the 2nd iteration, and once the correct partition of the interface is found
(i.e. the number of status changes between two Newton-Raphson iterations becomes zero), the quadratic
convergence is achieved. Furthermore, simulations of a thin fluid flow through a contact interface between
a solid with a representative rough surface and a rigid flat were demonstrated. Obtained results are in a
general agreement with existing theoretical predictions and previous numerical simulations, performed using
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the one-way coupling approximation. However, the proposed framework permits to highlight the difference
between the one-way and two-way coupling approaches, including the effect of the trapped fluid, and shows a
quantitative difference in the results. Additionally, we considered a refined approach of the post-processing
contact area computation, which demonstrated a practically mesh-independent result.
Using ready-to-implement formulations for all elements of the coupled problem and resolution algorithms
presented in this paper, it is now possible to use the developed framework for a wide range of numerical
studies featuring experimentally measured and generated surface geometries. One of possible applications of
the framework is the quantification of the effect of the two-way coupling, including the phenomena of fluid
entrapment, on the transmissivity of contact interfaces between solids with rough surfaces. Our preliminary
results demonstrate that for particular geometries and material parameters the accurate account for the
two-way coupling can be especially important near the percolation point, which corresponds to the complete
sealing of the interface. However, the improvement of the existing understanding of coupled processes
occurring in contact interfaces is important not only for sealing engineering, but is also relevant for many
problems that involve thin fluid flow in narrow interfaces, appearing in biological and geophysical applications.
Finally, it is important to remark that the constructed framework could be considered as a step towards a
more general methodology capable of taking into account relative tangential motion of contacting surfaces.
A general computational framework for such problems at the roughness scale exists both in boundary and
finite element formulations, but only in the elasto-hydrodynamic regime where the actual contact between
surfaces is excluded. The case of mixed lubrication in which the boundary lubrication at contact zones
competes with the elasto-hydrodynamic lubrication in non-contact zones is handled differently without direct
simulation of contact zones (Patir and Cheng, 1978), while a unified coupled computational framework is still
missing (Vakis et al., 2018).
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A Components of the residual vector and tangent matrix

Here we provide detailed expressions for components of residual vectors and tangent matrices formulated
above for the contact element (Section 4.1), the thin fluid flow element (Section 4.2) and the fluid-structure
interface element (Section 4.3). For all notations used here please refer to the respective Sections.

A.1 Contact element

Rc
uj =

n∑
i=1

 λ̂i Iij
∂gj
∂uj

, λ̂i ≤ 0

0, λ̂i > 0,
(67a)

Rc
λi =

 g̃i, λ̂i ≤ 0
−1
ε
λi, λ̂i > 0,

(67b)

Kc
ukuj =

n∑
i=1

 ε Iij
∂gj
∂uj

Iik
∂gk
∂uk

, λ̂i ≤ 0

0, λ̂i > 0,
(67c)

Kc
λiuj = Kc

ujλi =

 Iij
∂gj
∂uj

, λ̂i ≤ 0

0, λ̂i > 0,
(67d)

Kc
λiλi =

 0, λ̂i ≤ 0
−1
ε
, λ̂i > 0,

Kc
λiλj = 0 if i 6= j. (67e)

33



Computational framework for monolithic coupling for thin fluid flow in contact interfaces

A.2 Fluid-flow element

Rf
pi =

1∫
−1

1∫
−1

(
n∑
k=1

Nk gk

)3
J−1

n∑
j=1
∇Njpj

(J−1∇Ni
)

det(J) dξdη, (68a)

Kf
pipj =

1∫
−1

1∫
−1

(
n∑
k=1

Nk gk

)3 (
J−1∇Ni

) (
J−1∇Nj

)
det(J) dξdη, (68b)

Kf
ulpi

= ∂gl
∂ul

1∫
−1

1∫
−1

3
(

n∑
k=1

Nk gk

)2

Nl

J−1
n∑
j=1
∇Njpj

(J−1∇Ni
)

det(J) dξdη. (68c)

A.3 Fluid-structure interface element

Rfsi
ui =

n∑
j=1

pj

1∫
−1

1∫
−1

nNiNj J dξdη +
n∑
k=1

gk
2

1∫
−1

1∫
−1

(
J−1

n∑
l=1
∇Nlpl

)
NiNk J dξdη, (69a)

Kfsi
ukui = 1

2
∂gk
∂uk

1∫
−1

1∫
−1

(
J−1

n∑
l=1
∇Nlpl

)
NiNk J dξdη, (69b)

Kfsi
plui

=
n∑
k=1

gk
2

1∫
−1

1∫
−1

(
J−1∇Nl

)
NiNk J dξdη. (69c)
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