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Paul-Emile Paradan∗
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Abstract

Let Z be the real part of a Kähler Hamiltonian manifoldM . The O’Shea-Sjamaar’s
Theorem tells us that the moment polytope ∆p(Z) corresponds to the anti-invariant
part of the Kirwan polytope ∆u(M). The purpose of the present paper is to explain
how to parameterize the equations of the facets of ∆p(Z) in terms of real Ressayre’s
pairs of Z.
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1 Introduction

Let UC be a connected complex reductive group equipped with a complex-conjugate invo-
lution σ. Let U be the maximal compact subgroup of UC that is associated with a Cartan
involution commuting to σ : so U is invariant under the involution and we denote by K
the connected component of the fixed point subgroup Uσ. At the level of Lie algebras we
have a decomposition u = uσ ⊕ u−σ where u±σ = {X ∈ u, σ(X) = ±X}.

Let G be the connected component of the closed subgroup of UC fixed by σ : it is a
real reductive subgroup that is stable under the Cartan involution. Hence we have the
isomorphism K × p → G, (k,X) 7→ keX where p = iu−σ.

We consider now a proper Kähler Hamiltonian U -manifold (M,Ω, J). By that we
mean :

• UC acts holomorphically on the complex manifold (M, J),

• the Kähler form Ω is U -invariant,

• there is a U -equivariant proper moment mapping Φu : M → u∗ satisfying the relation

(1) d〈Φu,X〉 = −Ω(XM ,−), ∀X ∈ u.

Here XM (m) = −X ·m = d
dt |t=0e

−tXm is the vector field generated by X ∈ u.

In this paper we will give a particular attention to the K-equivariant map

Φp : M → p∗

defined by the relations 〈Φp, β〉 = 〈Φu, iβ〉, ∀β ∈ p. If we denote by j : p → u−σ the
isomorphism X 7→ iX, we have Φp = j∗ ◦ π ◦ Φu, where j∗ : (u−σ)∗ → p∗ is the dual map
and π : u∗ → (u−σ)∗ is the canonical projection. Thanks to (1), we see that βM is the
gradient vector field of the function 〈Φp, β〉 for any β ∈ p.

We suppose now that the Kähler Hamiltonian U -manifold (M,Ω, J) possesses a real
structure, that is an anti-holomorphic involution τ : M → M satisfying the following
conditions : τ∗(Ω) = −Ω and

• τ(g ·m) = σ(g) · τ(m),

• Φu(τ(m)) = −σ(Φu(m)),
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for any (g,m) ∈ UC ×M .
Consider the submanifold Z = {m ∈ M, τ(m) = m} : if Z is non-empty, it is a

Lagrangian submanifold of (M,Ω), not necessarily connected, stable under the action of
the real reductive group G. In this context, we have the following important result [17].

Theorem 1.1 (O’Shea-Sjamaar)

Φu(M)
⋂

(u−σ)∗ = Φu(Z) ≃
j∗

Φp(Z).

Let us rephrase this theorem in terms of moment polytopes. Let a ⊂ p be a
maximal abelian subspace, and choose a σ-invariant maximal torus T of U with Lie al-
gebra t containing ia. We can define Weyl chambers1 t∗+ ⊂ t∗ and a∗+ ⊂ a∗ such that
t∗+ ∩ (u−σ)∗≃j∗a

∗
+ (see the Appendix in [17]).

We consider the moment polytopes

∆u(M) = Φu(M) ∩ t∗+ and ∆p(Z) = Φp(Z) ∩ a∗+.

The O’Shea-Sjamaar’s theorem can be rephrased by saying that the intersection ∆u(M)∩
(u−σ)∗ coincides with ∆p(Z) through the linear isomorphism j∗.

The Convexity Theorem [1, 5, 10, 21] tells us that ∆u(M) is a closed convex locally
polyhedral subset. Thanks to Theorem 1.1, we see that ∆p(Z) is also a closed convex
locally polyhedral subset. In a previous article [18], we explained how to parameterize the
facets of ∆u(M) in terms of Ressayre’s pairs, a notion that N. Ressayre introduces in the
algebraic setting [22].

The goal of this article is to show that we can adapt this notion in the real setting
in order to parameterize the facets of ∆p(Z). A future article [19] will be devoted to the
study of examples.

Since the founding article of R. Richardson and P. J. Slodowy [20] where they showed
that the Kempf-Ness theorem extends to representations of real reductive groups, many
authors have studied extensions of geometric invariant theory to the real framework [6, 8,
15, 4, 3].

Let us cite the work of J. Lauret [12] and Heinzner-Schwarz-Stötzel [7] where they
obtain a stratification theorem à la Kirwan-Ness for real reductive group actions on real
manifolds. In the present work, the existence of real stratifications will be the main tool
to parameterize the facets of the moment polytope ∆p(Z). As we are working in a less
general framework than that of [7], we propose another proof of their result based on the
Kirwan-Ness stratification of the ambiant complex manifold (see §3.4). This method will
allow us to show that these real stratifications admit an open and dense stratum. This
key point provides a simple proof of O’Shea-Sjamaar’s theorem in the Kähler setting (see
§3.5).

1u∗/U ≃ t∗+ and p∗/K ≃ a∗+
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2 Statement of the main result

For the rest of this section, we suppose that Z 6= ∅ and we fix a connected component Z
of Z : it is a Riemannian manifold equipped with an action of the groups K and G.

2.1 A refinement of O’Shea-Sjamaar’s Theorem

The following result is proved in §3.5.

Theorem 2.1 The following relations hold :

• ∆u(M) ∩ (u−σ)∗ ≃
j∗

∆p(Z),

• ∆p(Z) = ∆p(Z).

The equality ∆p(Z) = ∆p(Z) was already obtained by L. O’Shea and R. Sjamaar when
M is a polarized algebraic variety (see Corollary 5.11 in [17]).

2.2 Admissible elements

We start by introducing the notion of admissible elements. The group
Hom(U(1), T ) admits a natural identification with the lattice ∧ := 1

2π ker(exp : t → T ) of
the vector space t. A vector γ ∈ a is called rational if iγ belongs to the Q-vector space tQ
generated by ∧.

The stabilizer subgroups of m ∈ M relatively to the K and G actions are denoted
respectively by Km and Gm : their Lie algebras are denote by km and gm. We will take a
particular attention to the subspace pm = {X ∈ p,X ·m = 0} ⊂ gm. If γ ∈ a, we denote
by Zγ the submanifold where the vector field z 7→ γ · z vanishes.

Definition 2.2 Let us define

dimp(X ) := min
z∈X

dim(pz)

for any subset X ⊂ Z. A non-zero element γ ∈ a is called admissible if γ is rational, and
if dimp(Z

γ)− dimp(Z) ∈ {0, 1}.

2.3 Real Ressayre’s pair

The aim of this section is to introduce the notion of real Ressayre’s pair on the G-manifold
Z.

For any z ∈ Z, the infinitesimal action of g on Z defines a real linear map

ρz : g −→ TzZ(2)

X 7−→ X ·m

that is equivariant under the action of the stabilizer subgroup Gz .
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Definition 2.3 Consider a symmetric endomorphism L(γ) of an euclidien vector space
E. We associate the eigenspace Eγ=a = {v ∈ E,L(γ)v = av} to any a ∈ R. We have
the decomposition E = Eγ>0 ⊕ Eγ=0 ⊕ Eγ<0 where Eγ>0 =

∑

a>0 E
γ=a, and Eγ<0 =

∑

a<0 E
γ=a.

Let Σ be the set of (non-zero) roots relative to the action of a on g. The choice
of the Weyl chamber a∗+ induces a set Σ+ of positive roots, and thus a decomposition
g = n−⊕ k′⊕ a⊕n where n =

∑

α>0 gα, n− =
∑

α<0 gα and k′ is the centralizer subalgebra
of a in k.

Definition 2.4 We denote by Q ⊂ G the (minimal) parabolic subgroup with Lie algebra
q := k′ ⊕ a⊕ n.

Consider (x, γ) ∈ Z × a such that x ∈ Zγ . The infinitesimal action of γ defines
symmetric endomorphisms L(γ) : TxZ → TxZ and L(γ) : g → g satisfying L(γ) ◦ ρx =
ρx ◦ L(γ). Thus the morphism (2) induces a real linear map

(3) ργx : nγ>0 −→ (TxZ)γ>0.

Definition 2.5 Let γ ∈ a be a non-zero element, and let C ⊂ Zγ be a connected compo-
nent. The data (γ, C) is called an infinitesimal real Ressayre’s pair of Z if ∃x ∈ C,
such as ργx is an isomorphism. If furthermore we have dimp(C)− dimp(Z) ∈ {0, 1}, and γ
is rational, we call (γ, C) a regular infinitesimal real Ressayre’s pair of Z.

Remark 2.6 When U = T is abelian, a couple (γ, C) is an infinitesimal real Ressayre’s
pair when the vector bundle (TZ|C)

γ>0 is equal to the “zero” bundle.

Let us now introduce a more restrictive notion, that of real Ressayre’s pair.
Let γ ∈ a be a non-zero element. The fonction 〈Φp, γ〉 : Z

γ → R is locally constant.
Let C = C1 ∪ · · · ∪ Cp ⊂ Zγ be a union of connected components such that 〈Φp, γ〉 is
constant on C: we denote by 〈Φp(C), γ〉 its value. We consider the real Bialynicki-Birula’s
submanifold2

(4) C− := {z ∈ Z, lim
t→∞

exp(tγ)z ∈ C}.

We see that for any x ∈ C, (TxZ)γ≤0 = TxC
−. Consider now the real parabolic subgroup

Pγ ⊂ G defined by

(5) Pγ = {g ∈ G, lim
t→∞

exp(tγ)g exp(−tγ) exists}.

2See §3.1.
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The submanifold C− is invariant under the action of Pγ , hence we can consider the manifold
Q×Q∩Pγ C

− and the smooth map

qγ : Q×Q∩Pγ C− → Z

that sends [q, x] to qx. We immediately see that for any x ∈ C, the tangent map Tqγ |x is
an isomorphism if and only if ργx is an isomorphism.

Definition 2.7 Let γ ∈ a be a non-zero element, and let C ⊂ Zγ be a union of connected
components such that 〈Φp, γ〉 is constant on C. The data (γ, C) is called a real Ressayre’s
pair of Z if the following conditions hold

• The image of qγ contains a dense open subset of Z.

• There exists a Q ∩ Pγ-invariant, open and dense subset U ⊂ C−, intersecting C, so
that qγ defines a diffeomorphism Q×Q∩Pγ U ≃ QU .

If furthermore we have dimp(C) − dimp(Z) ∈ {0, 1}, and γ is rational, we call (γ, C) a
regular real Ressayre’s pair.

Remark 2.8 When U = T is abelian, a couple (γ, C) is a real Ressayre’s pair when the
real Bialynicki-Birula’s submanifold C− is open and dense in Z.

2.4 Main result

The main result of this article is the following theorem.

Theorem 2.9 For ξ ∈ a∗+, the following statements are equivalent:

1. ξ ∈ ∆p(Z).

2. ξ ∈ ∆p(Z).

3. For any regular infinitesimal real Ressayre’s pair (γ, C) of Z, we have 〈ξ, γ〉 ≥
〈Φp(C), γ〉.

4. For any regular real Ressayre’s pair (γ, C) of Z, we have 〈ξ, γ〉 ≥ 〈Φp(C), γ〉.

Remark 2.10 In the previous theorem, the result still holds if we drop the “regular”
hypothesis on (γ, C).
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3 Kirwan-Ness stratifications : complex and real settings

Let us now choose a rational U -invariant inner product on uC that is invariant under the
involution σ (see the Appendix). By rational we mean that for the maximal torus T ⊂ U
with Lie algebra t, the inner product takes integral values on the lattice ∧ := 1

2π ker(exp :
t → T ). Let us denote by ∧∗ ⊂ t∗ the dual lattice : ∧∗ = hom(∧,Z). We associate to the
lattices ∧ and ∧∗ the Q-vector space tQ and t∗Q generated by them: the vectors belonging
to tQ and t∗Q are designed as rational.

The invariant scalar product on u induces an identification u∗ ≃ u, ξ 7→ ξ♭ such as
tQ ≃ t∗Q. To simplify our notation, we will not distinguish between ξ and ξ♭: for example

we write Mλ for the submanifold fixed by the subgroup generated by λ♭.
We come back to the setting of a Kähler Hamiltonian U -manifold (M,Ω, J) with proper

moment map Φu : M → u∗ and an anti-holomorphic involution τ . We fix a connected
component Z of the real part Z = M τ .

3.1 Bialynicki-Birula’s submanifolds

Let us consider an element λ ∈ u and a connected component C of the complex submanifold
Mλ := {m ∈ M,γ · m = 0}. As in the introduction, we define the subset C− := {m ∈
M, limt→∞ exp(−itλ)m ∈ C} and the projection pC : C− → C that sends m ∈ C− to
limt→∞ exp(−itλ)m ∈ C. We have the following well-know fact [2, 11].

Proposition 3.1 C− is a locally closed complex submanifold of M , and the projection
pC : C− → C is an holomorphic map.

Suppose now that λ ∈ u−σ, so λ = iβ with β ∈ p. The complex submanifoldMλ = Mβ

is then stable under the involution τ . Suppose that Zβ = Mβ ∩Z is non-empty and let C
be a connected component of Zβ. There exists a unique connected component C ⊂ Mλ

containing C : the complex submanifold C is then stable under the anti-holomorphic
involution τ , and C is a connected component of Cτ . We notice that for any t ∈ R,
and any m ∈ M we have τ(exp(−itλ)m) = τ(exp(tβ)m) = exp(tβ)τ(m). It shows that
the complex Bialynicki-Birula’s submanifolds C− is stable under τ , hence (C−)τ = {z ∈
M τ , limt→∞ exp(tβ)m ∈ Cτ} is a locally closed submanifold of M τ .

Corollary 3.2 C− = {z ∈ Z, limt→∞ exp(tβ)m ∈ C} is a locally closed submanifold of Z,
and the projection pC : C− → C is a smooth map.

3.2 Stratification in the complex setting

Let

fu :=
1

2
(Φu,Φu) : M −→ R

denote the norm-square of the moment map. Notice that fu is a proper function on M .
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Definition 3.3 The Kirwan vector field κu is defined by the relation

κu(m) = Φu(m) ·m, ∀m ∈ M.

We consider the gradient grad(fu) of the function fu relatively to the Riemannian
metric Ω(−, J−). We recall the following well-known facts [23].

Proposition 3.4 1. The gradient of fu is grad(fu) = J(κu).

2. The set of critical points of the function fu is crit(fu) = {κu = 0}.

3. We have the decomposition Φu(crit(fu)) =
⋃

λ∈BΦ
Uλ where the set Bu ⊂ t∗+ is dis-

crete. Bu is called the set of types of M .

4. We have crit(fu) =
⋃

λ∈Bu
critλ where critλ = crit(fu)∩Φ−1

u (Uλ) is equal to U(Mλ∩
Φ−1
u (λ)).

Let ϕt
u : M → M be the flow of −grad(fu); since fu is proper, ϕt

u exists for all times
t ∈ [0,∞[, and according to a result of Duistermaat [13] we know that any trajectory of
ϕt
u has a limit when t → ∞. For any m ∈ M , let us denote m∞ := limt→∞ ϕt

u(m).
The construction of the Kirwan-Ness stratification goes as follows. For each λ ∈ Bu,

let Mλ denote the set of points of M flowing to critλ : Mλ := {m ∈ M ;m∞ ∈ critλ}. From
its very definition, the set Mλ is contained in {m ∈ M,fu(m) ≥ 1

2‖λ‖
2}. The Kirwan-Ness

stratification is the decomposition [9], [16]:

M =
⋃

λ∈Bu

Mλ.

When 0 belongs to the image of Φu, the strata M0 corresponds to the dense open
subset of analytical semi-stable points : M0 = {m ∈ M ;UC m ∩Φ−1

u (0) 6= ∅}.
Let us now explain the geometry of Mλ for a non-zero type λ. Let Cλ be the union of

the connected components of Mλ intersecting Φ−1
u (λ). Then Cλ is a Kähler Hamiltonian

Uλ-manifold3 with proper moment map Φλ := Φu|Cλ
− λ.

The Bialynicki-Birula’s complex submanifold

C−
λ := {m ∈ M, lim

t→∞
exp(−itλ) ·m ∈ Cλ}

corresponds to the set of points of M flowing to Cλ under the flow of −grad〈Φu, λ〉, as
t → ∞. The limit of the flow defines a projection C−

λ → Cλ. Notice that C−
λ is invariant

under the action of the parabolic subgroup P u
λ ⊂ UC :

(6) P u
λ = {g ∈ UC, lim

t→∞
exp(−itλ)g exp(itλ) exists}.

3Uλ is the stabilizer subgroup of λ.

8



Consider now the Kirwan-Ness stratification of the Kähler Hamiltonian Uλ-manifold Cλ.
Let Cλ,0 be the open strata of Cλ corresponding to the 0-type:

Cλ,0 = {x ∈ Cλ; (Uλ)C x ∩ Φ−1
λ (0) 6= ∅}.

Let C−
λ,0 denote the inverse image of Cλ,0 in C−

λ .

Theorem 3.5 (Kirwan [9]) Let M be a Kähler Hamiltonian U -manifold with proper
moment map Φu : M → u∗. For each non zero type λ, Mλ is a UC-invariant complex
submanifold, and UC ×P u

λ
C−
λ,0 → Mλ, [g, z] 7→ g · z is an isomorphism of complex UC-

manifolds.

Kirwan gave a proof when M is a compact Kähler Hamiltonian K-manifold. When M
is non-compact but the moment map is proper, a proof is given in [7] (see also [23]).

The following standard facts are going to be very important in the real setting. Let λs

be the orthogonal projection of 0 on the closed convex polytope ∆u(M).

Proposition 3.6 a) λs is the unique element of Bu with minimal norm.

b) Mλs is a connected, open, dense and UC-invariant subset of M .

c) If λ 6= λs, then the strata Mλ has an empty interior.

3.3 Stratification in the real setting : first step

In this section we suppose that our Kähler Hamiltonian U -manifold (M,Ω, J) admit an
anti-holomorphic involution τ compatible with the complex-conjugate involution σ on
UC. The main purpose of this section is to show that the Kirwan-Ness stratification
M =

⋃

λ∈Bu
Mλ induces a stratification on the real part Z of M . In this section we

suppose that the manifold Z is non-empty : notice that the real dimension of any connected
component of Z is equal to the complex dimension of M .

Let us denote by σ+ : t∗+ → t∗+ the involution of the Weyl chamber that is defined by
the relations : −σ(Uξ) = −Uσ(ξ) = Uσ+(ξ) for any ξ ∈ t∗+.

Recall that ϕt
u : M → M denotes the flow of −grad(fu).

Proposition 3.7 1. For any (m, t) ∈ M × R≥0, we have τ(ϕt
u(m)) = ϕt

u(τ(m)).

2. If m∞ = limt→∞ ϕt
u(m), then τ(m∞) = (τ(m))∞ for all m ∈ M .

3. For any λ ∈ Bu, we have

• τ(Mλ) = Mσ+(λ),

• Mλ ∩ Z 6= ∅ only if σ(λ) = −λ.

4. If λ 6= λs, then the locally closed submanifold Mλ ∩ Z has an empty interior in Z.
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5. σ(λs) = −λs.

6. Mλs ∩ Z is a dense open subset of Z.

7. If Z is a connected component of Z, then Mλs ∩Z is a dense open subset of Z, and
the critical set critλs intersects Z.

Proof : The first point is a direct consequence of the fact that, for any m ∈ M , the
tangent map Tmτ : TmM → Tτ(m)M sends J(κu(m)) to J(κu(τ(m))). The second point
follows from the first one.

By definition m ∈ Mλ ⇔ Φu(m∞) ∈ Uλ. Then if m ∈ Mλ, we have

Φu((τ(m))∞) = Φu(τ(m∞)) = −σ(Φu(m∞)) ∈ −Uσ(λ) = Uσ+(λ).

Hence the identity τ(Mλ) = Mσ+(λ) is proven. Let m ∈ Mλ ∩ Z. Thanks to 2. we know
that m∞ ∈ Φ−1

u (Uλ) ∩ Z : it implies that Φu(m∞) ∈ Uλ ∩ (u−σ)∗ and then σ(λ) = −λ
(see §4.1). The point 3. is settled.

Let λ 6= λs, and consider the decomposition of the (locally closed) complex submanifold
Mλ into connected components : Mλ = Y1∪· · ·∪Yp. IfMλ∩Z 6= ∅, thenMλ is stable under
the involution τ : there exists a permutation ǫ ∈ Sp of order two such that τ(Yk) = Yǫ(k),
and

Mλ ∩ Z =
⋃

ǫ(k)=k

Yτ
k .

Since dimC(Yk) < dimC(M),∀k (see point c) in Proposition 3.6), we see that dimR(Y
τ
k ) <

dimR(Z) for all k such that ǫ(k) = k. We can then conclude that the locally closed
submanifold Mλ ∩Z has an empty interior in Z. If Z is a connected component of Z, we
prove similarly that Mλ ∩ Z has an empty interior in Z.

Consider the decomposition Z = (Mλs ∩ Z)
⋃⋃

λ6=λs
(Mλ ∩ Z), and the proper map

fu : M → R≥0 that we restrict to Z. If we denote Z<R = Z ∩ {fu < R}, we have

Z<R = Mλs ∩ Z<R

⋃ ⋃

λ6=λs,‖λ‖2≤2R

Mλ ∩ Z<R.

Since Mλ ∩Z<R has an empty interior in Z<R, we see that Mλs ∩Z<R is dense in Z<R for
any R ≥ 0. Then Mλs ∩ Z is dense in Z, and Mλs ∩ Z is open in Z because Mλs is open
in M . In particular Mλs ∩Z 6= ∅ : hence σ(λs) = −λs. We have proven the points 5. and
6..

If Z is a connected component of Z, the decomposition Z = (Mλs∩Z)
⋃⋃

λ6=λs
(Mλ∩Z)

shows similarly that Mλs ∩ Z is a dense open subset of Z. If x ∈ Mλs ∩ Z then x∞ ∈
critλs ∩ Z. We have proven point 7.. ✷
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3.4 Stratification in the real setting : second step

We have a stratification Z = (Mλs ∩ Z)
⋃⋃

λ6=λs
σ(λ)=−λ

(Mλ ∩ Z) into locally closed submani-

folds, that we are going to interpret in terms of the G-action on Z and the gradient map
Φp|Z : Z → p∗. Let fp :=

1
2(Φp,Φp) : M → R.

Definition 3.8 • If β ∈ j∗(Bu ∩ (u−σ)∗), we define Zβ = M(j∗)−1(β) ∩ Z.

• Let Bp = {β ∈ j∗(Bu ∩ (u−σ)∗),Zβ 6= ∅} ⊂ a∗+.

• Let us denote j∗(λs) by βs.

At this stage we have a stratification Z =
⋃

β∈Bp
Zβ into submanifolds. First let us

check that Bp parametrizes the set of critical points of the function fp|Z . Recall that point
7. in Proposition 3.7 tell us that 0 ∈ Bp ⇔ (Φp|Z)

−1(0) 6= ∅ ⇔ Φ−1
u (0) 6= ∅

Lemma 3.9 The set of critical points of the function fp|Z admits the decomposition

crit(fp|Z) =
⋃

β∈Bp

K(Zβ ∩ Φ−1
p (β)).

Proof : We have fu = 1
2 (Φuσ ,Φuσ) + fp, and Φuσ : M → (uσ)∗ vanishes on Z. Hence

crit(fp|Z) = crit(fu) ∩Z. Since crit(fu) =
⋃

λ∈Bu
U(Mλ ∩Φ−1

u (λ)), we obtain crit(fp|Z) =
⋃

λ∈Bu
Dλ with Dλ = U(Mλ ∩ Φ−1

u (λ))
⋂

Z. We see that Dλ = ∅ if λ /∈ Bu ∩ (u−σ)∗,

otherwise Dλ = K(Zj∗(λ) ∩ Φ−1
p (j∗(λ))) if λ ∈ Bu ∩ (u−σ)∗. ✷

Consider the case where 0 ∈ Bp.

Lemma 3.10 If 0 ∈ Bp then Z0 =
{

z ∈ Z, G z ∩ Φ−1
p (0) 6= ∅

}

.

Proof : By definition, Z0 = M0∩Z =
{

z ∈ Z, z∞ ∈ Φ−1
u (0))

}

. Herem∞ = lim
t→∞

ϕt
u(m),

where ϕt
u : M → M denotes the flow of −grad(fu). When z ∈ Z, we know that ϕt

u(z) ∈
Z,∀t ≥ 0, and moreover the tangent vector

d

dt
ϕt
u(z) = −grad(fu)(ϕ

t
u(z)) = −grad(fp)(ϕ

t
u(z))

belongs to the subspace g ·ϕt
u(z) = {X ·ϕt

u(z),X ∈ g}. We see then that ϕt
u(z) ∈ Gz for all

t ≥ 0. SinceZ∩Φ−1
u (0) = Z∩Φ−1

p (0), we have proved that Z0 ⊂
{

z ∈ Z, G z ∩ Φ−1
p (0) 6= ∅

}

.
On the other hand, for any z ∈ Z,

Gz ∩Φ−1
p (0) 6= ∅ =⇒ UC z ∩ Φ−1

u (0) 6= ∅ =⇒ z ∈ M0.

The proof is complete. ✷
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Let β ∈ Bp be a non-zero element and let λ = j∗(β) ∈ Bu. The strata Mλ is isomorphic
to UC ×P u

λ
C−
λ,0. We see that Cβ := Cλ ∩ Z is the union of the connected components of

Zβ intersecting Φ−1
p (β). Similarly, C−

β := C−
λ ∩ Z corresponds to real Bialynicki-Birula’s

submanifold {z ∈ Z, limt→∞ etβz ∈ Cβ}. In the same way, Cβ,0 := Cλ,0 ∩ Z is the open
and dense subset of Cβ formed by the elements z ∈ Cβ such that Gβ z ∩ Φ−1

p (β) 6= ∅ (see
Lemma 3.10). Finally, C−

β,0 := C−
λ,0∩Z is the equal to the pullback of the open subset Cβ,0

through the projection C−
β → Cβ.

The complex parabolic subgroup P u
λ ⊂ UC is stable under the complex-conjugate

involution σ and the fixed point subgroup (P u
λ )

σ is equal the real parabolic subgroup Pβ

of G defined by (5). We can now conclude that the strata Zβ := Mλ ∩ Z admits the
following description.

Proposition 3.11 Let β ∈ Bp be a non-zero element. The map [g, z] 7→ gz induces a
diffeomorphism

(7) G×Pβ
C−
β,0

∼
−→ Zβ.

The existence of a stratification Z =
⋃

β∈Bp
Zβ where each strata is described through

the isomorphism (7) was already obtained by P. Heinzner, G.W. Schwarz and H. Stötzel
in a much more general setting [7]. Nevertheless we obtain in this particular framework a
crucial information for the continuation: only one stratum has a non-empty interior, the
open stratum Zβs attached to the element βs ∈ Bp of minimal norm.

3.5 Proof of the refined O’Shea-Sjamaar’s theorem (in the Kähler case)

Suppose that Z 6= ∅. Point (6) of Proposition 3.7 shows that 0 ∈ ∆u(M) if and only
if 0 ∈ ∆p(Z). Let us explain how O’Shea-Sjamaar’s identify ∆u(M)

⋂

(u−σ)∗ ≃ ∆p(Z)
follows directly from this observation thanks to the shifting trick.

The fact that j∗(∆u(M)
⋂

(u−σ)∗) contains ∆p(Z) is immediate.
Take now λ ∈ ∆u(M)

⋂

(u−σ)∗, and consider the Kähler Hamiltonian U -manifold N =
M × U(−λ). As σ(λ) = −λ, the map (−σ) leaves U(−λ) invariant and defines an anti-
holomorphic involution τλ : U(−λ) → U(−λ) by the relations τλ(−gλ) = −σ(g)λ. By
definition ZN = Z ×K(−λ) is the real part of N and Point (6) of Proposition 3.7 shows
that 0 ∈ ∆p(ZN ) because 0 ∈ ∆u(N). We have proven that j∗(λ) ∈ Φp(Z) ∩ a∗+. The
proof of the identity ∆u(M)

⋂

(u−σ)∗ ≃ ∆p(Z) is complete.
The refinement of O’Shea-Sjamaar’s theorem is a consequence Point (7) of Proposition

3.7 which says that if 0 ∈ ∆u(M) then the open subset M0 of analytical semi-stable points
intersects any connected component Z of Z. But if x ∈ Z ∩M0, then x∞ ∈ Z ∩ Φ−1

p (0).
In other words, 0 ∈ ∆u(M) if and only if 0 ∈ ∆p(Z). Like before, the shifting trick shows
that j∗(∆u(M)

⋂

(u−σ)∗) = ∆p(Z).
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4 Geometric properties

4.1 Symmetric coadjoint orbits

Let λ̃ ∈ t∗. The coadjoint orbit Uλ̃ admits a complex structure compatible with its
symplectic structure which can be visualized through the isomorphisms Uλ̃ ≃ U/Uλ̃ ≃
UC/P

u

λ̃
. Here P u

λ̃
⊂ UC is the complex parabolic subgroup defined by (6). Notice that the

Lie algebra of P u

λ̃
is

Lie(P u

λ̃
) = tC ⊕

∑

α∈R(u,t)
(α,λ̃)≤0

(uC)α.

The conjugate linear involution σ : uC → uC leaves tC invariant and sends the weight
space (uC)α to (uC)−σ(α). That permits to see that the image of the parabolic subgroup
P u

λ̃
through σ is the parabolic subgroup P u

−σ(λ̃)
.

Suppose now that coadjoint orbit Uλ̃ intersects (u−σ)∗. If λ̃ is taken in the Weyl
chamber, it is possible only if σ(λ̃) = −λ̃, and in this case we have Uλ̃ ∩ (u−σ)∗ = Kλ̃.
The map ξ ∈ u∗ 7→ −σ(ξ) ∈ u∗ leaves Uλ̃ invariant and it defines an anti-holomorphic
involution τ : Uλ̃ → Uλ̃. The parabolic subgroup P u

λ̃
is stable under σ, so that the

involution τ : UC/P
u

λ̃
→ UC/P

u

λ̃
can also be defined by τ([g]) = ([σ(g)]).

The submanifold fixed by the involution τ : Uλ̃ → Uλ̃ is Kλ̃, and the isomorphism
Uλ̃ ≃ UC/P

u

λ̃
descends to an isomorphism Kλ̃ ≃ G/G ∩ P u

λ̃
.

Let j∗ : p∗ → (u−σ)∗ be the K-equivariant isomorphism. Let λ ∈ a∗ such that
j∗(λ) = λ̃. Then Kλ̃ ≃ Kλ ≃ G/Pλ where Pλ = G ∩ P u

λ̃
is the real parabolic subgroup of

G defined by (5).
Let ξ be an element belonging to the interior of the Weyl chamber a∗+ : we have

(α, ξ) > 0 for any restricted root α ∈ Σ+. In this case the orbit K(−ξ) admits a natural
identification with the quotient G/Q since the (minimal) parabolic subgroup Q coincides
with P−ξ (see Definition 2.4).

4.2 Construction of real Ressayre’s pairs

Let ξ be an element in the interior of the Weyl chamber a∗+ that does not belongs to
the moment polytope ∆p(Z). Let ξ′ be the orthogonal projection of ξ on ∆p(Z) and let
γξ = ξ′ − ξ ∈ a∗ ≃ a.

Lemma 4.1 The set (Φp|Z)
−1(ξ′) is contained in the submanidold Zγξ .

Proof : Let us check that ‖ξ′−ξ‖2 is the minimal value of the function ‖Φp−ξ‖2 : Z → R. If
z ∈ Z then Φp(z) = kη, with k ∈ K and η ∈ ∆p(Z) : ‖Φp(z)−ξ‖2 = ‖η‖2+‖ξ‖2−2(kη, ξ).
Since (kη, ξ) ≤ (η, ξ),∀k ∈ K, we get

‖Φp(z)− ξ‖2 ≥ ‖η‖2 + ‖ξ‖2 − 2(η, ξ) = ‖η − ξ‖2 ≥ ‖ξ′ − ξ‖2.
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Then if z ∈ Φ−1
p (ξ′), the differential of ‖Φp − ξ‖2 vanishes at z. But

d‖Φp − ξ‖2|z = 2d〈Φp, γξ〉|z = 2(γξ · z,−).

Thus γξ · z = 0. ✷

Let Cγξ be the union of the connected components of Zγξ intersecting (Φp|Z)
−1(ξ′).

The next result is the main tool to exhibit real Ressayre’s pairs on the G-manifold Z.

Theorem 4.2 The data (γξ, Cγξ) is a real Ressayre’s pair on Z.

The rest of this section is dedicated to the proof of Theorem 4.2.

Let ξ̃ be the element of t∗+ ∩ (u−σ)∗ such that ξ = j∗(ξ̃). Since ξ /∈ ∆p(Z), we know

that ξ̃ /∈ ∆u(M). Let ξ̃′ be the orthogonal projection of ξ̃ on ∆u(M). We work with the
proper Kähler Hamiltonian U -manifold

N := M × U(−ξ̃) ≃ M × UC/P
u

−ξ̃
.

The submanifold ZN := Z×K(−ξ̃) ≃ Z×G/Q is a connected component of its real part.
Let ΦN

u : N → u∗ be the moment map relative to the action of U on N .
We following result precises Lemma 4.1.

Lemma 4.3 • ‖gξ̃′ − ξ̃‖ ≥ ‖ξ̃′ − ξ̃‖, ∀g ∈ U , and the equality holds if and only if
gξ̃′ ∈ Uξ̃ · ξ̃

′.

• The function ‖ΦN
u ‖ : N → R reaches its minimum on U(Φ−1

u (ξ̃′)× {−ξ̃}).

• We have σ(ξ̃′) = −σ(ξ̃′). In other words, we have ξ′ = j∗(ξ̃′) where ξ′ is the
orthogonal projection of ξ on ∆p(Z).

Proof : The first point is a classical result of Hamiltonian geometry: we briefly recall
the arguments. We have ‖gξ̃′− ξ̃‖ = ‖ξ̃′‖2+ ‖ξ̃‖2− 2φ(gξ̃′) where φ is the ξ̃-th component
of the moment map on Uξ̃′. The function φ has a unique local maximum on the coadjoint
orbit Uξ̃′ which is reached on an orbit of the stabilizer subgroup Uξ̃ (see [1, 5]). Finally,

it is not hard to check that the point ξ̃′ belongs to this orbit.
If n = (m,kξ̃) ∈ N , we write Φu(m) = gη with η ∈ ∆u(M). Then

‖ΦN
u (n)‖ = ‖gη − kξ̃‖ ≥ ‖η − ξ̃‖ ≥ ‖ξ̃′ − ξ̃‖

and the equality ‖ΦN
u (n)‖ = ‖ξ̃′ − ξ̃‖ holds if and only if η = ξ̃′ and k−1g ∈ Uξ̃. It follows

that the critical set critλs = {n, ‖ΦN
u (n)‖ = ‖ξ̃′ − ξ̃‖} is U(Φ−1

u (ξ̃′)× {−ξ̃}). ✷
Thanks to point 8) of Proposition 3.7, we know that critλs ∩ ZN is non-empty. If

g(m,−ξ̃) ∈ critλs ∩ ZN then gm ∈ Z and Φu(m) = ξ̃′ which implies that Φu(gm) belongs
to Uξ̃′ ∩ (u−σ)∗. It follows that σ(ξ̃′) = −σ(ξ̃′) (see §4.1). ✷
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Thanks to the previous lemma we know that the minimal type of N = M × UC/P
u

−ξ̃

is the non-zero element γ̃ξ := ξ̃′ − ξ̃ ∈ (t−σ)∗: we denote by γξ := j∗(γ̃ξ) = ξ′ − ξ the
corresponding element of a∗ ≃ a. We will now use Proposition 3.11 in order to describe
the open and dense strata (ZN )γξ of ZN .

The critical set associated to the minimal type γ̃ξ is (Φ
N
u )−1(Uγ̃ξ) = U(Φ−1

u (ξ̃′)×{−ξ̃}).
Let CN,γ̃ξ be the connected component of N γ̃ξ containing (ΦN

u )−1(Uγ̃ξ) : we have

CN,γ̃ξ = Cγ̃ξ × (Uγ̃ξ)C/((Uγ̃ξ )C ∩ P u

−ξ̃
),

where Cγ̃ξ is the connected component ofM γ̃ξ containing Φ−1
u (ξ̃′). The intersection CN,γ̃ξ∩

ZN decomposes as follow

CN,γ̃ξ ∩ ZN = Cγξ ×Gγξ/Gγξ ∩Q,

where Cγξ is the union of the connected components of Zγξ intersecting Φ−1
p (ξ′), and

Gγξ ⊂ G is the subgroup that stabilizes γξ. The real Bialynicki-Birula’s submanifold is
then (CN,γ̃ξ ∩ ZN )− = C−

γξ
× Pγξ/Pγξ ∩Q.

Let us consider the map

(8) pγξ : G×Pγξ

(

C−
γξ

× Pγξ/Pγξ ∩Q
)

−→ Z ×G/Q.

defined by pγ([g; z, [p]]) = (gz, [gp]). Proposition 3.11 tells us that the image of pγξ is a
dense G-invariant subset of Z × G/Q and that there exists a dense Pγξ -invariant subset
U of C−

γξ
× Pγξ/Pγξ ∩ Q, intersecting Cγξ × Gγξ/Gγξ ∩ Q, and such that pγξ induces a

diffeomorphism G×Pγξ
U ≃ GU .

In order finish the proof of Theorem 4.2, we have to compare the map pγξ defined by
(8) and the map qγξ : Q×Q∩Pγξ

C−
γξ

→ Z.

Consider the canonical isomorphism C−
γξ
×Pγξ/Pγξ∩Q ≃ Pγξ×Pγξ

∩QC
−
γξ
. More generaly,

for any Pγξ -invariant open subset U ⊂ C−
γξ

× Pγξ/Pγξ ∩ Q we have an isomorphism U ≃

Pγξ ×Pγξ
∩Q U where U is the open Pγ ∩Q-invariant subset of C−

γξ
defined by the relation

U := {x ∈ C−
γξ
; (x, [e]) ∈ U}. Note that U intersects Cγξ × Gγξ/Gγξ ∩ Q if and only if U

intersects Cγξ .
Now, we notice that qγξ defines a diffeomorphism Q ×Q∩Pγξ

U ≃ QU if and only
if pγξ defines a diffeomorphism G ×Pγξ

U ≃ GU . That can be seen easily through the
commutative diagram

G×Pγξ
U

pγξ

��

∼ // G×Q (Q×Q∩Pγξ
U)

1×qγξ

��

Z ×G/Q
∼ // G×Q Z.

The previous diagram shows also that pγξ has a dense image if and only if qγξ has a dense
image. The proof of Theorem 4.2 is then complete. ✷
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4.3 Principal-cross-section Theorem

We propose here a principal-cross-section Theorem in the spirit of [14] that holds on the
K-manifold Z. Since ∆p(Z) is a closed convex polyhedral subset of a∗+, there exists a
unique open face s of a∗+ such that

• ∆p(Z) ∩ s 6= ∅,

• ∆p(Z) ⊂ s.

Notice that ∆p(Z)∩ s is dense in ∆p(Z). Recall that the linear isomorphism j∗ : (t∗)−σ →
a∗ induces a bijection t∗+ ∩ (t−σ)∗ ≃ a∗+.

Lemma 4.4 1. There exists a unique open face s̃ of the Weyl chamber t∗+ such that
s̃ ∩ (t−σ)∗≃j∗s.

2. The stabilizer subgroup Kξ does not depend of ξ ∈ s : it is denoted by Ks.

3. The stabilizer subalgebra gξ does not depend ξ ∈ s : it is denoted by gs. We have the
decomposition : gs = ks ⊕ ps where ks is the Lie algebra of Ks.

Proof : Any ξo ∈ t∗+ belongs to the open face τ(ξo) ⊂ t∗+ defined as follows : ξ ∈ τ(ξo)
if and only if ξ ∈ t∗+ and (α, ξ) = 0 ⇐⇒ (α, ξo) = 0 for any α ∈ R(u, t). Now, it is an easy
matter to check that the face τ(ξo) does not depend on ξo ∈ (j∗)−1(s) ⊂ t∗+ ∩ (t−σ)∗ : this
face, denoted by s̃, satisfies the relation s̃ ∩ (t−σ)∗≃j∗s.

All points in the open face s̃ have the same connected stabilizer Us̃. If we take ξ̃ ∈
s̃∩ (t−σ)∗, we see that Uξ̃ = Us̃ is invariant under σ and that K ∩Us̃ = K ∩Uξ̃ is equal to

Kξ where ξ = j∗(ξ̃) ∈ s. The second point is settled and the third point is leaved to the
readers. ✷

The following slice
Ts = {z ∈ Z,Φp(z) ∈ s}.

is the key object of our principal-cross-section Theorem.

Theorem 4.5 1. Ts is a Ks-invariant submanifold of Z.

2. The map K ×Ks
Ts → Z, [k, y] 7→ ky is a diffeomorphism onto a K-invariant open

and dense subset of Z.

3. For any x ∈ Ts, we have [ks, ps] ⊂ px ⊂ ps.

Proof : We consider the following open subset of u∗s̃ :

Vs̃ := Us̃

{

ξ ∈ t∗+, Uξ ⊂ Us̃

}

.

The pull-back Ys̃ = Φ−1
u (Vs̃) is the symplectic cross-section at s̃. It is an Us̃-invariant

symplectic manifold of M such that the map U ×Us̃
Ys̃ −→ M, [g, y] 7→ gy defines a

diffeomorphism onto the open and dense subset UYs̃.
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Lemma 4.6 1. Vs̃ ⊂ u∗s̃ is invariant under the map −σ.

2. The submanifold Ys̃ is stable under the involution τ .

3. The intersection Ys̃ ∩ Z is equal to Ts.

4. The intersection UYs̃ ∩ Z is equal to KTs.

5. KTs is open and dense in Z.

Proof of the lemma : Recall that K ′ is the connected component of the centraliser
subgroup ZK(a). Let w′

0 be the longuest element in the Weyl group W ′ = NK ′(T )/T .
Then the linear map σ+(ξ) = −w′

0σ(ξ) of t
∗ preserves the Weyl chamber t∗+, and for any

ξ ∈ t∗+ ,we have −σ(Uξ) = U(σ+(ξ)). Let k
′ ∈ K ′ be a representant of w′

0.
Notice that the subgroup Us̃ is stable under σ since −σ fixes the elements of s̃∩ (t−σ)∗.

Take η ∈ Vs̃: so η = gξ where g ∈ Us̃ and ξ ∈ t∗+ satisfies Uξ ⊂ Us̃. We have −σ(η) =
σ(g)k′σ+(ξ), where σ(g)k

′ ∈ Us̃ because K
′ ⊂ Us̃. Now we see that the stabilizer subgroup

Uσ+(ξ) is equal to Ad(k′) ◦ σ(Uξ): as Uξ ⊂ Us̃, we obtain Uσ+(ξ) ⊂ Us̃. The first point is
proved and the second point follows directly from the first.

The inclusion Ts ⊂ Ys̃ ∩ Z is immediate. Let us check the reverse inclusion. Let
z ∈ Ys̃ ∩ Z and η = Φu(z) ∈ Vs̃ ∩ (u−σ)∗. Taking the decomposition η = gξ as before,
we see that gξ ∈ Uξ ∩ (u−σ)∗ = Kξ : there exists k ∈ K such that gξ = kξ or in other
words g−1k ∈ Uξ ⊂ Us̃. But g ∈ Us̃ and so k ∈ Us̃ ∩K = Ks. At this stage we know that
Φp(k

−1z) = j∗(ξ) ∈ a∗+. On one hand we know that ξ ∈ s̃ because j∗(ξ) ∈ ∆p(Z) ⊂ s.
On the other hand we know Uξ ⊂ Us̃. It shows that ξ belongs to s̃, and hence k−1z ∈ Ts.
Since k ∈ Ks we can conclude that z belongs to Ts. The third point is settled.

Thanks to the third point we know that the intersection UYs̃ ∩ Z contains KTs. Let
us prove that UYs̃ ∩ Z ⊂ KTs. Let (z, y, u) ∈ Z × Ys̃ × U such that z = uy. We write
Φu(y) = gξ, where g ∈ Us̃ and ξ ∈ t∗+ satisfies Uξ ⊂ Us̃. We see then that Φu(z) = ugξ
belongs to Uξ ∩ (u−σ)∗ = Kξ : there exists k ∈ K such that ugξ = kξ, so k−1ug ∈ Us̃.
We have proved that there exists g′ ∈ Us̃ such that u = kg′. The identity z = kg′y shows
then that g′y = k−1z ∈ Ys̃ ∩ Z = Ts. We have proved that z ∈ KTs.

KTs is open in Z since UYs̃ is open in M . Let z ∈ Z, and assume that λ = Φp(z)
belongs to the Weyl chamber a∗+. The local convexity theorem of Sjamaar (see [21][Theorem
6.5] and [17][Theorem 8.2]) tells us that for any K-invariant neighborhood U ⊂ Z of z, the
local moment polytope ∆p(U) = Φp(U) ∩ a∗+ is a neighborhood of λ in ∆p(Z). It implies
that U ∩ Ts 6= ∅ for any K-invariant neighborhood U ⊂ Z of z. The density of KTs in Z
is demonstrated. ✷

We can now complete the proof of Theorem 4.5.
The identity Ys̃ ∩ Z = Ts shows that Ts corresponds to the union of the connected

components of the submanifold (Ys̃)
τ contained in Z. Hence Ts is a submanifold of Z.

The last point of the Lemma shows that the diffeomorphism U×Us̃
Ys̃

∼
−→ UYs̃ induces

the diffeomorphism K ×Ks
Ts

∼
−→ KTs.
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Let us check the last point of Theorem 4.5. For any β ∈ p, the vector field z ∈ Z 7→ β ·z
is the gradient vector field of the function 〈Φp, β〉 : Z → R. Let x ∈ Ts : then β ∈ px if
and only if the differential d〈Φp, β〉|x : TxZ → R vanishes. Thanks to the second point of
Theorem 4.5, we know that TxZ = TxTs + k · x. For any X ∈ k, we have

d〈Φp, β〉|x(X · x) = 〈Φp(x), [β,X]〉

with Φp(x) ∈ s. Thus d〈Φp, β〉|x vanishes on k · x if and only if β ∈ ps. At this stage we
have that px ⊂ ps. The function Φp, when restricted to the submanifold Ts, takes value
in s. If we take β ∈ [ks, ps] ⊂ ps, the function 〈Φp, β〉 is constant equal to zero on Ts, thus
d〈Φp, β〉|x vanishes on TxTs. We have checked that [ks, ps] ⊂ px. ✷

5 Proof of Theorem 2.9

Let ∆p(Z) ⊂ a∗+ be the moment polytope of a connected component Z of the real part Z
(supposed non-empty) of a proper Kähler Hamiltonian U -manifold (M,Ω, J).

We define the following convex subsets of the chamber a∗+.

• ∆inf-RP is the set of points ξ ∈ a∗+ satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φp(C), γ〉, for
any infinitesimal real Ressayre’s pair (γ, C) of Z.

• ∆
reg

inf-RP is the set of points ξ ∈ a∗+ satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φp(C), γ〉, for
any regular infinitesimal real Ressayre’s pair (γ, C) of Z.

• ∆RP is the set of points ξ ∈ a∗+ satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φp(C), γ〉, for any
real Ressayre’s pair (γ, C) of Z.

• ∆
reg

RP is the set of points ξ ∈ a∗+ satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φp(C), γ〉, for any
regular real Ressayre’s pair (γ, C) of Z.

By definition, we have the commutative diagram, where all the maps are inclusions:

∆inf-RP� _

��

� � // ∆
reg

inf-RP� _

��

∆RP
� � // ∆

reg

RP·

In §5.1 and §5.2, we prove the inclusions ∆RP ⊂ ∆p(Z) ⊂ ∆inf-RP. It follows then that
∆p(Z) = ∆inf-RP = ∆RP.

In §5.3, we prove the inclusion ∆
reg

RP ⊂ ∆p(Z), and since ∆p(Z) = ∆inf-RP ⊂ ∆
reg

inf-RP ⊂
∆

reg

RP, we get finally that ∆p(Z) = ∆
reg

RP = ∆
reg

inf-RP. The proof of Theorem 2.9 is complete.
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5.1 ∆RP ⊂ ∆p(Z)

Let ξo ∈ a∗+ that does not belong to ∆p(Z). The aim of this section is to prove that
ξo /∈ ∆RP. In other words, we will show the existence of a real Ressayre’s pair (γ, C) of Z
such that 〈ξo, γ〉 < 〈Φp(C), γ〉.

Let r > 0 be the distance between ξo and ∆p(Z), and let ξ be an element in the interior
of the Weyl chamber a∗+ such as ‖ξ − ξo‖ < r

2 : so the distance between ξ and ∆p(Z) is
stricly larger than r

2 .
Let ξ′ be the orthogonal projection of ξ on ∆p(Z) and let γ = ξ′−ξ ∈ a∗ ≃ a. Let C be

the union of the connected components of Zγ intersecting Φ−1
p (ξ′). Thanks to Theorem

4.2, we know that (γ, C) is a real Ressayre’s pair on Z.
Using the fact that γ = ξ′ − ξ, we compute

〈ξo, γ〉 − 〈Φp(C), γ〉 = 〈ξo, γ〉 − 〈ξ′, γ〉

= 〈ξo − ξ, γ〉 − ‖γ‖2

≤ −‖γ‖(‖γ‖ − ‖ξo − ξ‖)

< 0 .

The last inequality comes from the fact that ‖ξo − ξ‖ < r
2 and that ‖γ‖ > r

2 since ‖γ‖
represents the distance between ξ and ∆p(Z).

5.2 ∆p(Z) ⊂ ∆inf-RP

Let ξ ∈ a∗+ belonging to ∆p(Z). The aim of this section is to prove that ξ ∈ ∆inf-RP.

Let ξ̃ be the corresponding element in t∗+ ∩ (u−σ)∗: in other words ξ = j∗(ξ̃). Consider

the Kähler Hamiltonian U -manifold N := M × U(−ξ̃) and the connected component
ZN := Z ×K(−ξ̃) of its real part.

Let ΦN
p : ZN → p∗ be the gradient map. We know that the strata

(ZN )0 =
{

n ∈ ZN , Gn ∩ (ΦN
p )−1(0) 6= ∅

}

is a G-invariant dense open subset of ZN .
Let (γ, C) be an infinitesimal real Ressayre’s pair on Z, and let CN := C×(Gγ/P−ξ∩Gγ)

be the corresponding connected component of Zγ
N . Notice that CN is invariant under the

action of the stabilizer subgroup Gγ .
Let C−

N := {n ∈ ZN , limt→∞ etγn ∈ CN} be the real Bialynicki-Birula’s submanifold.

Lemma 5.1 1. The set GC−
N has a non-empty interior in ZN .

2. C−
N ∩ (ZN )0 6= ∅.

Proof : The second point follows from the first one since (ZN )0 is a dense G-invariant
subset of ZN .
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Let x ∈ C so that nγ>0 ≃ (TxZ)γ>0. The point n = (x, [e]) ∈ CN belongs to the interior
of GC−

N if we show that g ·n+TnC
−
N = TnZN . Since TnC

−
N = (TnZN )γ≤0 it is sufficient to

check that (TnZN )γ>0 ⊂ g·n. We have the decomposition (TnZN )γ>0 = (TxZ)γ>0⊕gγ>0·
[e]. So for any v ∈ (TnZN )γ>0, there exists X ∈ gγ>0 so that v−X · (x, [e]) ∈ (TxZN )γ>0.
But nγ>0 ≃ (TxZ)γ>0, so there exists Y ∈ nγ>0 such as v −X · (x, [e]) = Y · x. The Lie
algebra n is contained in the Lie algebra of the parabolic subgroup P−ξ : hence Y · [e] = 0.
Finally we have proved that v = (X + Y ) · (x, [e]) ∈ g · n. ✷

The proof of the inclusion ∆p(Z) ⊂ ∆inf-RP follows from the next result.

Lemma 5.2 Let (γ, C) be an infinitesimal real Ressayre’s pair on Z. Then, the following
inequality holds 〈ξ, γ〉 ≥ 〈Φp(C), γ〉 for any ξ ∈ a∗+ belonging to ∆p(Z).

Proof : Let n ∈ C−
N ∩ (ZN )0, and let nγ ∈ CN be the limit limt→∞ etγn.

Let Pγ ⊂ G be the parabolic subgroup associated to γ (see (6)). Since G = KPγ , the
fact that n ∈ (ZN )0 means that Pγn∩(Φ

N
p )−1(0) 6= ∅. In other words, minz∈Pγn ‖Φ

N
p (z)‖ =

0 which implies 0 ≥ minz∈Pγn〈Φ
N
p (z), γ〉.

Consider now the function t ≥ 0 7→ 〈ΦN
p (etγz), γ〉 attached to z ∈ Pγn. Since

d
dt〈Φ

N
p (etγz), γ〉 = −‖γZN

‖2(etγz) ≤ 0, we have

(9) 〈ΦN
p (z), γ〉 ≥ 〈ΦN

p (etγz), γ〉, ∀t ≥ 0.

Let’s take p ∈ Pγ and z = pn. Then, the limit limt→∞ etγz is equal to gγnγ where
gγ = limt→∞ etγp e−tγ ∈ Gγ . If we take the limit in (9) as t → ∞, we get

〈ΦN
p (z), γ〉 ≥ 〈ΦN

p (gγnγ), γ〉 = 〈ΦN
p (CN ), γ〉 = 〈Φp(C), γ〉 − 〈ξ, γ〉, ∀z ∈ Pγn.

We obtain finally 0 ≥ minz∈Pγn〈Φ
N
p (z), γ〉 ≥ 〈Φp(C), γ〉 − 〈ξ, γ〉. ✷

5.3 ∆
reg

RP
⊂ ∆p(Z)

The aim of this section is the proof of the following

Theorem 5.3 Let ξ ∈ a∗+ satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φp(C), γ〉, for any regular
real Ressayre’s pair (γ, C) of Z. Then ξ ∈ ∆p(Z).

Our arguments go as follows: we will show that there exists a collection (γi, Ci)i∈I of
regular real Ressayre’s pairs for which we have

⋂

i∈I

{

ξ ∈ a∗+, 〈ξ, γi〉 ≥ 〈Φ(Ci), γi〉
}

= ∆p(Z).

The set I will be finite when Z is compact.
Before starting the description of the collection (γi, Ci)i∈I , recall the following fact

concerning admissible elements (see §4.2 in [18]).

Remark 5.4 Let γ ∈ a be a rational element such that K Zγ = Z. We have dimp(Z
γ) =

dimp(Z), thus γ is admissible.
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5.3.1 The real Ressayre’s pair (γs, Cs)

In this section, we show that a real Ressayre’s pair describes the fact that ∆p(Z) is
contained in s̄. Let us denote by hα ∈ a the coroot associated to a root α ∈ Σ : hα is the
rational element of [gα, g−α]∩ a satisfying 〈α,X〉 = (hα,X)b, ∀X ∈ a (see the Appendix).

Let Σ+ ⊂ Σ be the set of positive roots associated to the choice of the Weyl chamber
a∗+ : ξ ∈ a∗+ if and only if 〈ξ, hα〉 ≥ 0 for every α ∈ Σ+. Let Σ+

s ⊂ Σ+ be the set of positive
roots orthogonal to s : α ∈ Σ+

s if 〈ξ, hα〉 = 0 for every ξ ∈ s.

Definition 5.5 Consider the following rational vector

γs := −
∑

α∈Σ+
s

hα ∈ a.

Lemma 5.6 The element γs satisfies the following properties:

• 〈ξ, γs〉 ≤ 0 for any ξ ∈ a∗≥0.

• For any ξ ∈ a∗≥0, 〈ξ, γs〉 = 0 if and only if ξ ∈ s̄.

• γs acts trivially on the principal-cross-section4 Ts.

• 〈α, γs〉 < 0 for any α ∈ Σ+
s .

Proof : The first two points follow from the fact that 〈ξ, hα〉 ≥ 0 for any ξ ∈ a∗≥0 and
any positive roots α. The third point is due to the fact that γs ∈ [ks, ps]. For the last
point, see the Appendix. ✷

Let Cs be the union of the connected components of Zγs intersecting Ts. We start with
the following basic result.

Lemma 5.7 • γs is an admissible element.

• For any ξ ∈ a∗+, the inequality 〈ξ, γs〉 ≥ 〈Φp(Cs), γs〉 is equivalent to ξ ∈ s̄.

Proof : We know that Ts ⊂ Cs and that KTs is dense in Z. It follows that KCs = Z,
hence γs is an admissible element (see Remark 5.4). Now we consider the inequality
〈ξ, γs〉 ≥ 〈Φp(Cs), γs〉 for an element ξ ∈ a∗+. First we notice that 〈Φp(Cs), γs〉 = 0, and the
first two points of the previous Lemma tell us that 〈ξ, γs〉 ≥ 0 is equivalent to ξ ∈ s̄. ✷

Proposition 5.8 (γs, Cs) is a regular real Ressayre’s pair on Z.

Proof : Using the identification a ≃ a∗, we view γs as a rational element of s∗ orthogonal
to s. Take ξ′ ∈ ∆p(Z) ∩ s contained in the image Φp(Cs) and consider the elements
ξ(n) := ξ′ − 1

nγs for n ≥ 1. We notice that for n large enough

4See §4.3.

21



1. ξ(n) is a regular element of the Weyl chamber a∗+,

2. ξ(n) /∈ ∆p(Z),

3. ξ′ is the orthogonal projection of ξ(n) on ∆p(Z).

So we can exploit the results of §4.2 with the elements ξ(n) for n >> 1. Proposition 4.2
and Lemma 5.7 tell us that (γs, Cs) is a regular real Ressayre’s pair. ✷

5.3.2 The real Ressayre’s pairs (γ±l , C
±
l )

Let Rs ⊂ a∗ be the rational vector subspace generated by the face s. The closed convex
polytope ∆p(Z) generate an affine subspace Π of Rs. In this section we show that a finite
family of real Ressayre’s pairs describe the fact that ∆p(Z), viewed as a subset of Rs, is
contained in the affine subspace Π.

In this section we will use the identifications p∗ ≃ p, and a ≃ a∗ given by the invariant
scalar product (−,−)b (see the Appendix).

We start with the orthogonal decompositions p = a⊕ q and a = Rs⊕ Rs⊥. It follows

that ps = a⊕ qs. Let
−→
Π⊥ be the orthogonal of

−→
Π in Rs.

For any x ∈ Z, we define ax = {X ∈ a,X · x = 0}.

Lemma 5.9 1. For any x ∈ Ts, we have px = ax ⊕ qs with
−→
Π⊥ ⊕Rs⊥ ⊂ ax.

2. The equality
−→
Π⊥ ⊕ Rs⊥ = ax holds on an open subset of Ts, thus

(10) dimp(Z) = dim(
−→
Π⊥) + dim(Rs⊥) + dim(qs).

3. The subspaces
−→
Π⊥ and

−→
Π are rational.

Proof : Let us come back to the arguments used in the proof of Theorem 4.5. We know
that px ⊂ ps = a⊕ qs for any x ∈ Ts, thus px = ax ⊕ qs. An element β belongs to ax if and

only if the differential d〈Φp, β〉|x : TxTs → R vanishes. We see that for any β ∈
−→
Π⊥⊕Rs⊥

the map 〈Φp, β〉 : Ts → R is constant : we obtain then that
−→
Π⊥ ⊕ Rs⊥ ⊂ ax, ∀x ∈ Ts.

Since the image of the map Φp : Ts → Π is open in Π, there exists xo ∈ Ts such that

dΦp|xo : TxoTs →
−→
Π is surjective. It follows that

−→
Π⊥ ⊕ Rs⊥ = axo . The second point is

proved.
The vector subspaces Rs ⊂ a and Rs⊥ ⊂ a are rational. Let xo ∈ Ts such that

axo =
−→
Π⊥ ⊕ Rs⊥. The Lie algebra txo is a rational subspace of t, thus axo = i(txo ∩ t−σ)

is a rational subspace of a. If follows that
−→
Π⊥ = axo ∩ Rs is a rational subspace of a. ✷

Let (ηl)l∈L be a rational basis of
−→
Π⊥. We consider then the rational elements

γ±l := ±ηl + γs ∈
−→
Π⊥ ⊕ Rs⊥, l ∈ L.

Thanks to Lemma 5.9, we know that Ts ⊂ Zγ±
l , ∀l ∈ L. Let ξ′o ∈ ∆p(Z)∩s. For any l ∈ L,

we denote by C±
l the union of connected components of Zγ±

l intersecting Φ−1
p (ξ′o) ⊂ Ts.
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Lemma 5.10 • Any γ±l is an admissible element.

• The set of elements ξ ∈ Rs satisfying the inequalities

(11) 〈ξ, γ±l 〉 ≥ 〈Φp(C
±
l ), γ

±
l 〉, ∀l ∈ L

corresponds to the affine subspace Π.

Proof : Like in the proof of Lemma 5.7, we see that K · Zγ±
l = Z since Ts ⊂ Zγ±

l and
KTs is dense in Z. It follows that γs is an admissible element.

The element ξ′o belongs to Π. Since 〈ξ, γs〉 = 0,∀ξ ∈ Rs, the inequalities (11) are

equivalent to ±〈ξ − ξ′o, ηl〉 ≥ 0,∀l ∈ L: in other words ξ − ξ′o ∈
−→
Π, so ξ ∈ Π. ✷

Proposition 5.11 For any l ∈ L, (γ±l , C
±
l ) is a regular real Ressayre’s pair of Z.

Proof : The proof follows the lines of the proof of Proposition 5.8. The element ξ′o is
contained in the image Φp(C

±
l ). We consider the elements ξ±l (n) := ξ′o −

1
nγ

±
l for n ≥ 1.

We notice that for n large enough

1. ξ±l (n) is a regular element of the chamber a∗+,

2. ξ±l (n) /∈ ∆p(Z),

3. ξ′o is the orthogonal projection of ξ±l (n) on ∆p(Z).

So we can exploit the results of §4.2 with the elements a±l (n) for n >> 1. Proposition 4.2
and Lemma 5.10 tell us that (γ±l , C

±
l ) is a regular real Ressayre’s pair. ✷

5.3.3 The real Ressayre’s pairs (γF , CF )

In this section, we show that the polytope ∆p(Z), viewed as a subset of the affine subspace
Π, is the intersection of the cone Π∩a∗+, with a collection of half spaces of Π parametrized
by a family of real Ressayre’s pairs.

Definition 5.12 An open facet F of ∆p(Z) is called non trivial if F ⊂ s. We denote by
F(Z) the set of non trivial open facets of ∆p(Z).

Let F ∈ F(Z). There exists5 ηF ∈
−→
Π such as the affine space generated by F is

ΠF = {ξ ∈ Π, 〈ξ, ηF 〉 = 〈ξF , ηF 〉} for any ξF ∈ F . The vector ηF is chosen so that ∆p(Z)
is contained in the half space {ξ ∈ Π, 〈ξ, ηF 〉 ≥ 〈ξF , ηF 〉}.

By definition of the set F(Z), we have the following description of the polytope ∆p(Z)
:

(12) ∆p(Z) =
⋂

F∈F(Z)

{

ξ ∈ Π, 〈ξ, ηF 〉 ≥ 〈ξF , ηF 〉
}

⋂

a∗+.

5Here we see
−→

Π as a subspace of a through the identification a∗ ≃ a.
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The function 〈Φp, ηF 〉 : Ts → R is locally constant on T ηF
s and it takes it’s minimal

value on Φ−1
p (F ) ⊂ Ts, thus Φ

−1
p (F ) is an open subset of the submanifold T ηF

s . The map
Φp : Φ

−1
p (F ) → F is surjective, so it admits a regular value ξ′F ∈ F . For any x ∈ Φ−1

p (ξ′F ),

the tangent map TxΦp : TxT
ηF
s →

−→
F is surjective, thus

(13) ax = RηF ⊕
−→
Π⊥ ⊕ Rs⊥, ∀x ∈ Φ−1

p (ξ′F ).

Since the vector subspaces ax,
−→
Π⊥, Rs⊥ are rational, the vector ηF can be taken rational.

We consider now the rational elements

γF = ηF + γs, F ∈ F(Z).

Let CF be the union of the connected components of ZγF intersecting Φ−1
p (ξ′F ). The

identities (10) and (13) show that dimp(CF ) = dimp(Z) + 1.

Lemma 5.13 • γF is an admissible element, for any F ∈ F(Z).

• The set of elements ξ ∈ Π ∩ t∗≥0 satisfying the inequalities

(14) 〈ξ, γF 〉 ≥ 〈Φp(CF ), γF 〉, ∀F ∈ F(Φ)

corresponds to ∆p(Z).

Proof : The first point is due to the fact that ηF is rational and that dimp(CF ) =
dimp(Z) + 1. The last assertion is a consequence of (12). Notice that the relations
〈ξ, γF 〉 ≥ 〈Φp(CF ), γF 〉 and 〈ξ, ηF 〉 ≥ 〈Φp(CF ), ηF 〉 are equivalent for any ξ ∈ Π. ✷

Proposition 5.14 For any F ∈ F(Z), the couple (γF , CF ) is a real Ressayre’s pair on
Z.

Proof : The proof follows the lines of the proof of Proposition 5.8. Consider the
elements ξF (n) := ξ′F − 1

nγF for n ≥ 1. We notice that for n is large enough

1. ξF (n) is a regular element of the Weyl chamber,

2. ξF (n) /∈ ∆p(Z),

3. ξ′F is the orthogonal projection of ξF (n) on ∆p(Z).

So we can exploit the results of §4.2 with the elements ξF (n) for n >> 1. Proposition 4.2
and Lemma 5.13 tell us that (γF , CF ) is a regular real Ressayre’s pair on Z. ✷
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6 Appendix

In this paper, UC denote a connected complex reductive Lie group with maximal compact
subgroup U . Let σ be a complex-conjugate involution on UC leaving the sugbroup U
invariant. Let T be a maximal torus of U that is stable under σ : we suppose that the
vector subspace t−σ = {X ∈ t, σ(X) = −X} has a maximal dimension.

Take a faithful representation ρ : U → U(V ) where V is an Hermitian vector space. It
extends to a morphism ρ : UC → GL(V ), so that ρ(UC) is a closed subgroup stable under
the Cartan involution Θ : GL(V ) → GL(V ).

We consider the real bilinear map

(15) b : uC × uC −→ R

defined by b(X,Y ) = Re
(

Tr(dρ(X)dρ(Y )) + Tr(dρ(σ(X))dρ(σ(Y )))
)

. We see then that

• b(σ(X), σ(Y )) = b(X,Y ), ∀X,Y ∈ uC,

• b(uX, uY ) = b(X,Y ), ∀u ∈ UC, ∀X,Y ∈ uC,

• b(iX, iY ) = −b(X,Y ), if X,Y ∈ uC,

• b(X,Y ) ∈ Z, if X,Y ∈ ∧ := 1
2π ker(exp : t → T ).

In the article, we work with the following U -invariant scalar product on uC :

(X,Y )b = −b(X,Θ(Y ))

If V ⊂ uC is a real vector subspace, we have an isomorphism ξ ∈ V ∗ = hom(V,R) → ξ♭ ∈ V
defined by the relation

〈ξ,X〉 = (ξ♭,X)b, ∀(ξ,X) ∈ V ∗ × V.

Let G be the real reductive group equal to the connected component of (UC)
σ: its

maximal compact subgroup is K = G ∩ U . At the level of Lie algebras we have g = k⊕ p

where k = uσ and p = iu−σ. The bilinear map (15) defines a G-invariant bilinear map
b : g× g → R that is positive definite on p and negative definite on k. The commutativity
of the following diagram is frequently used in the body of the present paper :

(u−σ)∗

♭
��

j∗
// p∗

♭

��
u−σ p.

j
oo

We consider the restricted root system Σ = R(g, a) associated to a maximal abelian
subspace a ⊂ p and a system of positive roots Σ+ associated to a choice of Weyl chamber
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a∗+. Let s be a face of a∗+: the set of positive roots orthogonal to s is denoted by Σ+
s . We

consider
ρs :=

∑

α∈Σ+
s

α ∈ a∗

and the corresponding dual element (ρs)
♭ = −γs ∈ a (see §5.3.1 where the element γs is

used).

Lemma 6.1 We have 〈α, γs〉 < 0 for any α ∈ Σ+
s .

Proof : Let αo be a simple root of Σ+
s . Let sαo : a∗ → a∗ be the associated orthogonal

symmetry. For any β ∈ Σ+
s , standard computations give that sαo(β) ∈ Σ+

s if β is not
proportional to α, and sαo(β) = −β if β is proportional to α. It shows that sαo(ρs) =
ρs − 2Nαo for some integers N ≥ 1, thus (αo, ρs)b > 0. This implies that (α, ρs)b > 0 for
any α ∈ Σ+

s . ✷
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[4] C. Böhm and R. A. Lafuente : Real geometric invariant theory. arXiv preprint
arXiv:1701.00643. (2017).

[5] V. Guillemin and S. Sternberg : Convexity properties of the moment mapping. Invent. Math.
67, 491–513 (1982).

[6] P. Heinzner and G. W. Schwarz : Cartan decomposition of the moment map. Math. Annalen
337, 197–232 (2007).
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