
HAL Id: hal-03065790
https://hal.science/hal-03065790v1

Submitted on 14 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Meta-omics Provides Insights into the Impact of
Hydrocarbon Contamination on Microbial Mat

Functioning
Johanne Aubé, Pavel Senin, Patricia Bonin, Olivier Pringault, Céline

Jeziorski, Olivier Bouchez, Christophe Klopp, Remy Guyoneaud, Marisol Goñi

To cite this version:
Johanne Aubé, Pavel Senin, Patricia Bonin, Olivier Pringault, Céline Jeziorski, et al.. Meta-omics
Provides Insights into the Impact of Hydrocarbon Contamination on Microbial Mat Functioning.
Microbial ecology, 2020, 80 (2), pp.286-295. �10.1007/s00248-020-01493-x�. �hal-03065790�

https://hal.science/hal-03065790v1
https://hal.archives-ouvertes.fr


 1 

Meta-omics provides insights into the impact of hydrocarbon contamination on 1 

microbial mats functioning 2 

Johanne Aubéa*, Pavel Senina,b, Patricia Boninc, Olivier Pringaultd, Céline Jeziorskie, 3 

Olivier Boucheze, Christophe Kloppb, Rémy Guyoneauda, Marisol Goñi-Urrizaa# 4 

a Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM,  Environmental 5 

Microbiology, Pau, France 6 

b Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, 7 

Castanet-Tolosan, France 8 

c Aix Marseille Univ, Université de Toulon, CNRS/INSU/IRD, Mediterranean Institute of 9 

Oceanography (MIO), UM 110, Marseille, France 10 

d UMR 9190 MARBEC IRD-Ifremer-CNRS, Université de Montpellier, Place Eugène 11 

Bataillon, Montpellier, France 12 

e GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France 13 

Keywords: microbial mats, metabolism, metagenomics, metatranscriptomic, functioning, 14 

diversity 15 

 16 

# Address correspondence to Marisol Goñi-Urriza, marisol.goni@univ-pau.fr 17 

ORCID ID: 0000-0001-7694-6511  18 

 19 

Present address 20 

* IFREMER, CNRS, Université de Bretagne Occidentale, Laboratoire de Microbiologie des 21 

Environnements Extrêmes – UMR6197, Plouzané, France. 22 

23 

mailto:marisol.goni@univ-pau.fr


 2 

  24 

Abstract 25 

Photosynthetic microbial mats are stable, self-supported communities. Due to their 26 

coastal localization, these mats are frequently exposed to hydrocarbon contamination and are 27 

able to grow on it. To decipher how this contamination disturbs the functioning of microbial 28 

mats, we compared two mats: a contaminated mat exposed to chronic petroleum 29 

contamination and a reference mat. The taxonomic and metabolic structures of the mats in 30 

spring and fall were determined using metagenomic and metatranscriptomic approaches. 31 

Extremely high contamination disturbed the seasonal variations of the mat. ABC transporters, 32 

two-component systems and type IV secretion systems related genes were overabundant in 33 

the contaminated mats. Xenobiotic degradation metabolism was minor in the metagenomes of 34 

both mats and only the expression of genes involved in Polyciclic Aromatic hydrocarbon 35 

degradation was higher in the contaminated mat. Interestingly, the expression rates of genes 36 

involved in hydrocarbon activation decreased during the 1-year study period, concomitant 37 

with the decrease in easily degradable hydrocarbons, suggesting a transient effect of 38 

hydrocarbon contamination. Alteromonadales and Oceanospirillales hydrocarbonoclastic 39 

bacteria appeared to be key in hydrocarbon remediation in the contaminated mat. Overall, the 40 

contaminated microbial mat was able to cope with hydrocarbon contamination and displayed 41 

an adaptive functioning that modified seasonal behaviour. 42 

 43 
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Introduction 44 

Photosynthetic microbial mats growing in coastal areas are among the most diverse and 45 

complex marine ecosystems [1]. The overall metabolism of a microbial mat is driven by solar 46 

light as the main energy source. Microbial activities generate physical and chemical gradients 47 

in the mat that maintain the structure and activity of the mat’s community [2], leading to a 48 

stable, self-supported mat. Microbial mats are highly dynamic and are subjected to strong 49 

fluctuations at the diel or seasonal scales [2]. The extensive genetic and metabolic diversity of 50 

photosynthetic microbial mat-inhabiting organisms enable development in a wide variety of 51 

environments, including hot springs, hypersaline and alkaline environments and polar ponds 52 

[1, 3–6]. Due to their localization in coastal zones, microbial mats are frequently subjected to 53 

hydrocarbon contamination [7, 8]. The response of microbial mats to petroleum 54 

contamination has been studied in microcosm experiments and under natural conditions after 55 

acute pollution events (accidental or laboratory experiments). Microbial mats can cope with 56 

contamination and develop a robust community adapted to petroleum levels [8, 9]. The few 57 

studies that have focused on chronic oil pollution have concluded that the structure of 58 

microbial mats is related to the level of contamination [8] and that contaminated mats can 59 

degrade hydrocarbons [10, 12]. Generally, noticeable changes in composition [8, 10] of high 60 

contaminated mats are reported, and some studies described lower diversity in higher 61 

contaminated mats [13], but not overabundance of hydrocarbonoclastic microorganisms have 62 

been observed. Nevertheless, when these contaminated mats were submitted to fresh oil 63 

pollutions, an immediate induction of RHD genes involved in polyaromatic hydrocarbon 64 

degradation was observed, accompanied with an efficient degradation of crude oil [10]. This 65 

metabolic response (associated with a community structural shift [12]) was however quickly 66 

reversed, highlighting a fast, adaptive and efficient response of the metabolically active 67 

bacterial population. Oil contamination also impacts typical seasonal behaviour of 68 
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photosynthetic microbial mats, by strongly inhibiting primary production and respiration in 69 

spring, but with no significant impact in fall [20]. As consequences, the typical 70 

overabundance of Cyanobacteria in fall compared to spring could not be observed in the 71 

higher contaminated mat [19]. These studies were performed using taxonomic and/or 72 

metabolic gene markers, such as ribosomal genes or genes involved in hydrocarbon 73 

degradation [9–14].  74 

High-throughput sequencing of metagenomes and metatranscriptomes has provided an 75 

unprecedented overview of the functional capacities and gene expression of microbial 76 

communities confronting environmental stresses. As the presence and expression of genes 77 

involved in hydrocarbon degradation (including complete metabolic pathways) have been 78 

observed in oil spill-contaminated seawaters [15–17] and soils [18, 19], applying these 79 

sequencing techniques to contaminated microbial mats will provide new insights on the 80 

adaptation of microbial mats to hydrocarbon contamination.  81 

The aim of this paper was to elucidate the impact of long-term petroleum 82 

contamination on the functioning of microbial mats. Two photosynthetic microbial mats 83 

located in the Berre lagoon, a brackish lagoon bordering the Mediterranean Sea in the South 84 

of France, were investigated in this work. These mats feature similar physical and chemical 85 

parameters (salinity, temperature, solar irradiation, etc.) [20] but have been subjected to 86 

differing hydrocarbon contamination levels. Specifically, the contaminated mat received 87 

hydrocarbon inputs from a petrochemical industry site for more than 80 years. By applying 88 

metagenome and enriched mRNA metatranscriptome sequencing, we described the key 89 

metabolic pathways of both microbial mats. Comparing the contaminated mat with the 90 

reference mat revealed the role of petroleum pollution in microbial community functioning. A 91 

deeper analysis of metabolism related to hydrocarbon-degradation pathways was also 92 

performed.  93 
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Material and methods 94 

Sampling sites and procedure 95 

Berre lagoon is located on the Mediterranean French coast. Microbial mat samples 96 

were collected from two sites in the lagoon: a reference station located in the bird reserve 97 

“Les salins du Lion” (SL) (43.452570 N 5.230085 E)  and a contaminated station located in a 98 

retention basin receiving hydrocarbon-contaminated rainfall water from a petrochemical 99 

industry site (EDB1) (43.484946 N 5.188452 E) [8, 21]. At this latter site, the hydrocarbon 100 

content reaches 96 µg/g [8]. In addition to this chronic contamination, an accidental oil spill 101 

occurred in September 2009 due to the overflow of a hydrocarbon-polluted water retention 102 

pond [22], which increased the hydrocarbon content. Three sampling exercises were 103 

performed: one in spring (April 2012) and two in fall (September 2011 and 2012), which were 104 

named Apr12, Sept11 and Sept12, respectively. A piece of mats (around 1.5 m2), including 105 

the top two centimetres of sediment were collected at mid-day as described in [19]. 106 

Subsamples for molecular analyses were stored at -80°C. A description of main physical-107 

chemical characteristics and hydrocarbon composition of both sites can be found at Table S1.  108 

Whole meta-genome and meta-transcriptome sequencing and bioinformatics procedures 109 

DNA and RNA were co-extracted in triplicate using an RNA PowerSoil Total RNA 110 

Isolation Kit (MO BIO Laboratories, Inc.) coupled with an AllPrep DNA/RNA Mini Kit 111 

(QIAGEN) for DNA and RNA separation. RNA was digested with an RNase-Free DNase Set 112 

(QIAGEN) for DNA removal, and RNA quality was checked as described by Aubé and 113 

coworkers [20]. Genomic DNA libraries were constructed using a NEXTflex PCR-free DNA 114 

Sequencing Kit from BioScientific PCR-free kit following the manufacturer's protocol. RNA-115 

seq libraries were prepared according to Illumina’s protocol on a Tecan EVO200 liquid 116 

handler. An Illumina TruSeq Stranded mRNA sample prep kit was used to analyse RNA after 117 
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mRNA enrichment using an Epicentre Ribo-Zero rRNA removal kit. RNA was fragmented to 118 

generate double-stranded cDNA. Ten cycles of PCR were used to amplify libraries following 119 

manufacturer’s instructions (Illumina TruSeq Stranded mRNA library prep kit, Cat. No. RS-120 

122-2101), and the libraries were precisely quantified by qPCR using a KAPA Library 121 

Quantification Kit. RNA-seq and gDNA sequencing were performed with an Illumina 122 

HiSeq2500 instrument using a paired-end read length of 2100 bp with an Illumina TruSeq 123 

SBS sequencing kit v3. 124 

The Trim Galore! utility was used for read quality control 125 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Possible adapter sequences 126 

based on the Illumina TruSeq Adapter index were removed from the reads. Data filtering was 127 

performed with cutadapt [23] and FASTX-Toolkit 128 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html) by trimming reads with a Q score of less 129 

than 15 at the 3’ end, trimming unidentified dNTP (N) at the read ends and discarding reads 130 

with Ns>10%. Reads shorter than 50 bp with low-quality bases (Q<20) were also discarded. 131 

For functional and taxonomic annotations, all filtered reads (DNA and mRNA) were aligned 132 

to the KEGG gene database [24] using LAST aligner v392 [25]. Each read was then annotated 133 

using the single-directional best hit information method [26] with an identity cut-off of 60% 134 

and a score of 96. Eukaryotic sequences were removed from the dataset. Statistics of the reads 135 

at each bioinformatics analysis step are shown in the supplementary material (Table S2).  136 

Statistical analysis 137 

Before statistical analysis, random sampling of filtered data was performed to obtain 138 

the same number of reads per sample (i.e. the minimum number of sequences in metagenomic 139 

or metatranscriptomic samples (Table S2)) and the means of the pseudo-triplicates were 140 

calculated to perform statistical tests. Taxonomic biomarkers of hydrocarbon contamination 141 

were detected using the LEfSe algorithm [27]. The first analysis step was a non-parametric 142 
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Kruskal-Wallis (KW) sum-rank test to detect taxa and functional pathways with significant 143 

differential abundances. Biological consistency was subsequently investigated using a 144 

pairwise Wilcoxon test. Finally, linear discriminant analysis (LDA) was used to estimate the 145 

effect size of each differentially abundant taxon. Alpha values of 0.05 were used for the KW 146 

and Wilcoxon tests, and a threshold of 2 was used for the logarithmic LDA scores. Gene and 147 

transcript abundances for functional data were compared using a two-group White's non-148 

parametric t-test in STAMP [28] by KEGG subsystem. To account for the variation of 149 

transcriptional activity, the gene expression rate was calculated as described by Stewart el al 150 

[29]. Hydrocarbon content were analysed by principal component analysis (PCA) using the 151 

FactoMineR package [30]; variables with cos2 below 0.5 on each factorial plane are not 152 

shown on the corresponding correlation circles of the PCA. 153 

Accession number 154 

The sequence data are available in the Sequence Read Archive of the National Center 155 

for Biotechnology Information under accession number SRP063590. 156 

 157 
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Results and discussion 158 

Microbial mats are highly stratified systems, in which microorganisms’ metabolism 159 

supports their physical and chemical structure. In return, physical and chemical conditions of 160 

the mats favours microbial specific metabolisms: structure and function are thus slightly 161 

dependent. The goal of the present study was to determine if pollution changes metabolic 162 

profiles and its consequences on coastal mat’s structure and functioning.  163 

Structure of microbial mat communities 164 

The metagenomes and metatranscriptomes of the microbial mats were annotated using 165 

the KEGG database. Between 24.70% and 46.86% of the metagenome and metatranscriptome 166 

sequences, respectively, aligned to the KEGG database (Table S2). The community 167 

composition based on the taxonomic affiliations of protein-encoding genes revealed a 168 

structure similar to that described by 16S rRNA gene affiliations [20] and to those of other 169 

mats [31, 32]; i.e. Proteobacteria, Cyanobacteria, and Bacteroidetes were dominant (Fig. 1) 170 

with metagenomes mean relative abundance of 48.1%, 16.0% and 15.5% respectively. The 171 

high similarity between the structure described here and those described in previous studies 172 

on the same mats based on 16S rDNA sequences [8, 19], supported the robustness of the 173 

annotation approach.  Oscillatoriales dominated among Cyanobacteria. The relative 174 

abundance of Cyanobacteria was highest in the EDB1 Sept12 metagenomes and 175 

metatranscriptomes, with a greater abundance of Rivulariaceae (Table S3). Among the 176 

Deltaproteobacteria (10.8% of the metagenomes mean relative abundance) most of the 177 

sequences were affiliated with sulphate reducers in the order Desulfobacterales (Table S3). 178 

The sequences related to Gammaproteobacteria (15.0% of the metagenomes mean relative 179 

abundance) were affiliated with Alteromonadales and Chromatiales; most of the 180 

Chromatiales were purple sulphur bacteria. Among the Alpha and Betaproteobacteria (17.1% 181 
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and 4.3% of the metagenomes mean relative abundance), Rhodobacterales and 182 

Burkholderiales dominated, respectively. Consistent with observations in the Guerrero Negro 183 

hypersaline microbial mats and Highborne Cay mat (The Bahamas) [33, 34], Archaea were in 184 

the minority in the microbial communities, accounting for 1% to 3% of total reads and mainly 185 

represented by the methanogens Methanomicrobia. Thus, both mats are classical mats with 186 

dominance of photosynthetic bacteria and bacteria involved in the sulphur cycle (sulphate 187 

reducers and sulphur oxidizers [2]). 188 

The community structures described using metatranscriptomic data differed from 189 

those described by metagenomic data (Fig. 1). Remarkably, transcripts related to 190 

Cyanobacteria highly dominated the communities in both mats, accounting for 36.5% to 78% 191 

of the reads, highlighting the major role of Cyanobacteria compared to other functional 192 

groups in the mats [34, 35].  193 

As microbial mat functioning is dependent on the seasonal period [36], sampling was 194 

performed in spring and fall to assess the seasonal variation of the structure and activity of the 195 

mats. The reference mat showed typical seasonal variations characterized by 1) an increase of 196 

Cyanobacteria in fall (around 13% of metagenomic data in spring and 19% in fall, Table S3); 197 

and, 2) an increase of the sulphur related microorganisms in spring.  This increase was 198 

observed either at metagenomic (from near 14% in fall to 19% in spring) or at 199 

metatranscriptomic level (a mean of 6% in fall and 21% in spring, Table S3) and mainly 200 

concerned Desulfobacterales and Chromatiales. On the contrary, no seasonal variations were 201 

observed in the contaminated mat: Cyanobacteria highly dominated the community in Sept12 202 

but not in Sept11 samples, and a continuous decrease of the relative abundance of 203 

microorganisms related to sulphur cycle, either at metagenomics or metatranscriptomic level, 204 

was observed in the contaminated mat (Table S3).  205 
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Metabolism of microbial mat communities 206 

A total of 7,009 different KEGG ortholog groups (KOs) were detected in the 207 

metagenome, and 6,470 KOs were detected in the metatranscriptome. Among the annotated 208 

reads, around 44% of the microbial mat metagenomes matched genes involved in pathways 209 

associated with metabolism (Fig. 2); including 10.2–11.1% related to genes involved in 210 

carbohydrate metabolism (547 KOs); and 9.9–10.8% related to amino acid metabolism (420 211 

KOs). Energy metabolism-related sequences represented only 4.1–4.5% of the metagenomes 212 

but up to 49.9% of the metatranscriptomes (389 and 381 KOs for genes and transcripts, 213 

respectively). Among them, photosynthesis metabolism-related genes (i.e. genes encoding 214 

proteins of photosystems I and II (P700 and P680) and phycobiliproteins (phycocyanin, 215 

allophycocyanin and phycoerythrin subunits)) exhibited maximum expression rates of 1094. 216 

Genes related to nitrogen and sulphur metabolism exhibited high expression rates as well. 217 

Sequences related to nitrogen metabolism were mainly involved in nitrogen fixation (i.e. 218 

nitrogenase enzyme complex); among them, nifH exhibited expression rates as high as 5.85. 219 

The sequences related to the sulphur cycle were involved in sulphate reduction: adenylyl-220 

sulphate reductase and sulphite reductase (AprAB and DsrAB) exhibited maximum 221 

expression rates of 8.83 (data not shown).  222 

While reference mat showed a typical seasonal behaviour, contaminated mat did not 223 

show the same behaviour. In this case, the comparison of metabolic potentials of both mats in 224 

order to define which of them are related to the contamination is challenging. For further 225 

analysis on hydrocarbon contamination impact on microbial mat functioning, all the samples 226 

for each mat (reference or contaminated) have been averaged. This approach could probably 227 

dissimulate some metabolisms, but eliminates the errors originating from a seasonal divergent 228 

functioning. 229 
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 230 

Metabolic and taxonomic differences between sites with focus on metabolic pathways 231 

associated with xenobiotic degradation 232 

Microbial communities from coastal environments impacted by punctual oil input 233 

have been intensively studied (e.g. [16, 37, 38]), and a decrease in microbial diversity 234 

associated with dominance of hydrocarbon-degrading marine bacteria is generally observed 235 

following an oil spill [39]. By contrast, in this study, dominance of hydrocarbonoclastic 236 

bacteria in the contaminated mat compared to the reference mat was not observed, consistent 237 

with previous studies of chronically contaminated sites [8, 40]. At the taxonomic level, 36 and 238 

3 differentially abundant taxa were detected based on metagenomic and metatranscriptomic 239 

data, respectively (Fig. 3). At the metagenomic level, the main difference was a decrease in 240 

the relative abundance of some phylogenetic groups (Fig. 3a), suggesting a sensitivity of those 241 

groups to contamination. At the transcriptomic level (Fig. 3b), few taxa appear characteristic 242 

of each mat.  Only Parvularculales within Alphaproteobacteria, were characteristic taxa of 243 

the contaminated mat. Alphaproteobacteria are key contributors to the later stages of oil 244 

degradation [41]. However, hydrocarbon degradation is strain specific; phylogenetic 245 

description based on taxonomic genes such as 16SrRNA (especially when this description is 246 

performed at high phylogenetic levels such as the order) has low explanatory value, since two 247 

strains belonging to the same taxon can be or not hydrocarbonoclastic. Using short reads 248 

approaches, affiliation of sequences below the genus, or even the family is often unattainable. 249 

The greatest differences in metabolic potential at the metagenomics level were related 250 

to signal transduction and membrane transport. These pathways were significantly more 251 

abundant in the hydrocarbon-contaminated microbial mat, whereas nucleotide metabolism 252 

and replication and repair pathways were significantly more abundant in the reference mat 253 
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(Fig. 4). The contaminated mat was enriched with genes involved in two component systems 254 

(signal transduction, TCS) of the OmpR family (involved in copper ion efflux and manganese 255 

transport as a response of Mn starvation) and NtrC family (involved in nitrogen availability) 256 

(Table S4). The TCS are known to modify microbial physiology in response to multiple 257 

environmental signals and thus playing a role in biogeochemical cycles. Indeed, marine 258 

bacteria have varied TCS systems, and it has been proposed that lacks of TCS could be a 259 

hallmark of oligotrophy in marine systems [42]. Contaminated mat is probably enriched with 260 

TCS as an adaptive response to contamination. The overabundance of membrane transport 261 

related genes concern the ABC transporters and the type IV (T4SS) secretion systems. 262 

Recently, Xu et al. [43] described an enrichment in ABC transporters and TCS after dibutyl 263 

phthalate contamination in soils. They also observed an acceleration of nitrogen, carbon and 264 

sulfate metabolisms and suggested that ABC transporters and TCS were the culprits of this 265 

metabolic activation.  266 

The T4SS are found in Gram negative bacteria, and are capable of secrete a wide 267 

variety of substances across the bacterial membranes including toxic bacterial effectors that 268 

result in cell death of rival bacteria and eukaryote [44]. T4SS is ancestrally related to bacterial 269 

DNA conjugation systems, and the  T4SS-mediated genetic horizontal transfer is considered 270 

as a major contributor to bacterial genomic mobility [45]. Altogether, enrichment of ABC 271 

transporters and T4SS appears as a mechanism to control the community structure and the 272 

metabolic potential in the contaminated microbial mat. 273 

Although less pronounced, xenobiotic biodegradation and metabolism pathways were 274 

significantly more abundant in the contaminated mat than in the reference mat. At the 275 

metatranscriptomic level, no differences in xenobiotic biodegradation and metabolism nor in 276 

the others level1 KEGG metabolic pathways were observed between the two mats (p-277 

value>0.05 or difference in mean proportions <0.05%).  278 
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To further characterize the hydrocarbon degradation potential of the mats, genes 279 

involved in hydrocarbon molecule activation were retrieved from the whole dataset (Fig. 5a, 280 

Table S5). These genes are specifically associated with hydrocarbon degradation, whereas 281 

those involved in intermediate reactions can be shared with other metabolic pathways 282 

(http://www.genome.jp/kegg/pathway.html). The gene encoding alkane 1-monooxygenase 283 

(alkB) (the single representative of genes involved in the fatty acid degradation pathway, 284 

Table S5), which is responsible for alkane activation, was more abundant (Wilcoxon test, p-285 

value = 0.03125) than the genes involved in degradation of aromatic compounds (Fig. 5a), as 286 

observed after the Deepwater Horizon oil spill [16]. The relative abundance and taxonomic 287 

identification of alkB were similar between the contaminated and reference mats (Fig. 5a and 288 

S1). Although the alkB gene has been widely used to investigate alkane degradation [46–49] 289 

and as a marker of petroleum degradation potential [16], its direct relationship with petroleum 290 

hydrocarbon degradation is questionable, especially in chronically contaminated 291 

environments [14]. In fact, alkB is involved in the degradation of alkanes of both biogenic and 292 

petrogenic origin. Biogenic alkanes are the consequence of organic matter degradation and are 293 

ubiquitous in nature [50]. As for alkB, the relative abundance of all the genes involved in the 294 

degradation of aromatic hydrocarbons was similar in both mats (Fig. 5a).  295 

Analysis at the metatranscriptomic level revealed significant higher expression of 296 

genes involved in PAH activation in the contaminated mat (Fig. 5b). However, the expression 297 

of all the genes involved in HC activation in the contaminated mats decreased over time (Fig. 298 

6a). Interestingly, this decrease was concomitant with changes in hydrocarbon composition 299 

during the sampling exercises (Fig. 6b). Short-chain alkanes (<C28), medium-weight PAHs, 300 

and heavy PAHs dominated the hydrocarbons in the first, second, and last exercises, 301 

respectively. The contaminated mat was therefore enriched in recalcitrant molecules in the 302 

last exercise [20], reaching a composition similar to that previously observed at this site [8]. 303 
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Overall, these results (chemical modification and a decrease in the expression rates of 304 

hydrocarbon activation-involved genes) suggest a progressive degradation of the more easily 305 

degradable hydrocarbons released by the overflow spill in September 2009.  306 

A decrease in relative abundances was evident for fatty acid degradation activation 307 

genes, namely alkB (Fig. 7a). The taxonomic affiliations of the alkB transcripts suggest 308 

Alteromonadales-related bacteria as the main alkane degraders in the first sampling exercise, 309 

consistent with a previous study of the Berre lagoon in which Marinobacter aquaeolei was 310 

the dominant alkB phylotype [14]. The relative abundance of alkB transcripts decreased over 311 

time in parallel with the decrease in lower-molecular-weight alkanes. Transcripts involved in 312 

PAH degradation also decreased, albeit to a lesser extent, with Oceanospirillales-related 313 

bacteria as the main actors (Fig. 7b). 314 

Conclusion 315 

Both mats displayed a typical structure and functioning, with dominance of 316 

Cyanobacteria and sulphur cycle related microorganisms.. Genes involved in environmental 317 

information processing were overabundant in the contaminated mat compared to the reference 318 

one.  However, xenobiotic degradation metabolisms represented a minor part of the 319 

metagenome and metatranscriptome, and no overabundance of hydrocarbonoclastic bacteria 320 

was observed in the contaminated mat. The expression levels of genes associated with 321 

hydrocarbon degradation pathways varied between the mats and among sampling exercises. 322 

In the contaminated mat, the expression of genes responsible for hydrocarbon activation was 323 

related to hydrocarbon composition, suggesting degradation of easily degradable molecules. 324 

The studied mat appeared robust enough to cope with hydrocarbon contamination but its 325 

seasonal behaviour was affected. 326 
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Figure captions:  482 

 483 

Fig. 1 Metagenome (DNA based) and metatranscriptome (mRNA based) taxonomic structure 484 

at the class level based on the affiliation of sequences. The figure shows the fraction of reads 485 

that hits with the KEGG database. Data represent the mean of triplicates. EDB1: highly 486 

contaminated mat; SL: reference mat. The dashed lines separate from the bottom to the top: 487 

Cyanobacteria, Proteobacteria and Bacteroidetes  488 

Fig. 2 Metabolic structure of the metagenome and metatranscriptome of both microbial mats 489 

based on KO assignation and pathways of sequences (relative abundance). Data represent the 490 

mean of triplicates. EDB1: highly contaminated mat; SL: reference mat. The dashed lines 491 

separate the energy metabolic pathways. 492 

Fig. 3 LEfSe analysis of the microorganisms differentially abundant (metagenomes; a) and active 493 

(metatranscriptomes; b) in contaminated (EDB1, red) and reference (SL, green) microbial mats. 494 

Roots of cladograms stand for the domain, and concentric circles represent the following 495 

taxonomic levels until the order. Only class with p-value below 0.05 are shown. 496 

 497 

Fig. 4 Comparison (White's non-parametric t-test in STAMP) of functional gene annotations of 498 

metagenomes using KEGG pathways (level 1). Plots compare the hydrocarbon contaminated 499 

mat (EDB1) in black to the reference (SL) in white. Only pathways with p-value below 0.05, 500 

with difference in mean proportions above 0.05% are shown. 501 

Fig. 5 Extended error plots comparison of the hydrocarbon degradation-related genes or 502 

transcripts in the metagenome (a) and metatranscriptome (b) data. Only the genes involved in 503 

the activation of the hydrocarbon molecules were considered (Table S5). The plot compares the 504 

hydrocarbon contaminated mat (EDB1) in black to the reference (SL) in white. 505 

 506 
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Fig. 6 Expression level of genes involved in hydrocarbon degradation (Table S5) in mats (a); 507 

in black, contaminated site (EDB1) in white, reference (SL) mat. Principal Component biplot 508 

(PCA) based on hydrocarbon contents in EDB1 (b): A, Anthracene; ANA, Acenaphtene; ANY, 509 

Acenaphtylene; BA, Benzo(a)anthracene; BAP, Benzo(a)pyrene; DBA, 510 

Dibenz(a,h)anthracene; F, Fluorene; FL, Fluoranthene; IN, Indeno(1,2,3-cd)pyrene; P, 511 

Phenanthrene; PY, Pyrene. C11-C16, sum of alkanes from C11 to C16; C17-C22, sum of 512 

alkanes from C17 to C23; C24-C28, sum of alkanes from C24 to C28. The parameters with a 513 

cos2 below 0.5 are not shown (Benzo(g,h,i)perylene; Chrysene; Naphtalene; 514 

Benzo(b+k)fluoranthene). 515 

 516 

Fig. 7 Relative abundance (%) and affiliation of transcripts involved in the activation of fatty 517 

acids (alkB transcripts in our study, exclusively) (a) and polycyclic aromatic hydrocarbon (b) 518 

degradation pathways. Figure shows the fraction of reads that hits with the KEGG database. 519 

Data represent the mean of the triplicates. 520 


