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Abstract

We report on the evaporation of hexane from porous alumina and silicon membranes. These

membranes contain billions of independent nanopores tailored to an ink-bottle shape, where a

cavity several tens of nanometers in diameter is separated from the bulk vapor by a constriction.

For alumina membranes with narrow enough constrictions, we demonstrate that cavity evaporation

proceeds by cavitation. Measurements of the pressure dependence of the cavitation rate follow

the predictions of the bulk, homogeneous, classical nucleation theory, definitively establishing the

relevance of homogeneous cavitation as an evaporation mechanism in mesoporous materials. Our

results imply that porous alumina membranes are a promising new system to study liquids in a

deeply metastable state.
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A porous material imbibed with a liquid can dry by two processes: recession of a liquid-

vapor interface [1] or formation of vapor bubbles within the material by cavitation [2, 3].

Fundamental understanding of which of these processes is effective is crucial for many ap-

plications, ranging from characterizing porous materials [2, 3] to controlling the shrinkage

of concrete [4]. In particular, this requires establishing whether cavitation occurs in the

bulk of pores or on their surface, and, in the first case, whether pores are large enough for

homogeneous classical nucleation theory[5] (CNT) to hold or whether confinement has to be

considered [6–9].

Results from previous studies lead to contradictory conclusions. As illustrated by Fig.1,

evaporation by cavitation is expected for pores presenting an ink-bottle geometry, where

a wider cavity is separated from the outside vapor by a constriction narrow enough for

capillarity to block the liquid-vapor interface at the cavitation pressure (Fig. 1(c)) [2, 10].

Homogeneous-like cavitation has thus been reported in materials with interconnected pores

presenting cavities separated by constrictions, realizing such an ink-bottle geometry. These

materials are either ordered (SBA-16 mesoporous silica [8, 10, 11], zeolites [12]) or disordered

(cements [12],Vycor [13, 14], controlled porous glasses [15, 16]). In all cases, the evidence

for cavitation is only indirect, relying on the interpretation of light or x-ray scattering data

or, more often, on the observation of a sharp drop in the evaporation isotherm at a given

pressure which is then compared to some model, usually CNT. However, in these materials,

the pores have a very small diameter (several nanometers). Attractive interaction with walls

should then affect the cavitation threshold, making the identification of cavitation through

comparison to CNT ambiguous.

In contrast, two experiments performed on nanoporous silicon membranes with ink-bottle

pores directly evidenced a two-step shape of the evaporation isotherm of nitrogen around

77 K, consistent with a cavitation mechanism, but at a much larger pressure than predicted

by the CNT [17, 18]. This increase is suggestive of heterogeneous cavitation [18], in strong

contrast with the results reported for the more complex geometries above. Moreover, a

similar discrepancy has been found for the cavitation of dibromomethane in Vycor [19].

These results cast doubt on the very principle of using extensions of homogeneous CNT [2, 9]

to predict the cavitation threshold in nanoporous materials.

In this paper, we elucidate this paradoxical situation by studying evaporation of hexane

from silicon and alumina membranes with pores’ transverse size in the range 20-60 nm,
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large enough to allow a direct comparison to bulk CNT [9]. For both membranes, we

directly evidence that cavity evaporation proceeds at a well-defined pressure, consistent

with cavitation. For silicon membranes, however, the evaporation pressure strongly depends

on the cavity geometry, inconsistent with homogeneous cavitation. In contrast, for alumina

membranes, we accurately check the activated nature of the evaporation process, and show

that it is quantitatively described by bulk CNT. This definitively demonstrates the relevance

of homogeneous cavitation as an evaporation mechanism in porous materials.

a cb

FIG. 1. Cavitation in an ink-bottle geometry. (a) Straight cylindrical pore opened to a vapor

reservoir, which empties through recession of the liquid-vapor meniscus. The smaller the pore

diameter, the smaller the evaporation pressure. (b,c) Two possible evaporation mechanisms for a

cavity ended by a cylindrical constriction. In panel(b), the constriction empties at its equilibrium

pressure, triggering further evaporation in the wider cavity through meniscus recession; in panel

(c), if the constriction is narrow enough for its evaporation pressure to lie below the cavitation

threshold, the cavity empties by cavitation, while the constriction remains filled with liquid.

Our samples are fabricated using a two step procedure [20]. We first synthesize '1 cm2

nanoporous alumina (poAl) and silicon (poSi) membranes with parallel pores, by electro-

etching of highly p-doped silicon [21] or anodization of aluminum wafers [22]. In both cases,

the pores, about 100 µm long, are closed on one side of the membrane and open on the other.

As illustrated in Fig. 2(a), the poAl pores are well organized with a narrow distribution

in diameter around an average value of several tens of nanometers, tunable through the

anodization conditions [23, 24]. We study two alumina membranes with pore lengths l = 57

3



and 76 µm determined by scanning eectron microscopy (SEM). Their respective average

pore diameters are d = 60 nm and d = 25 nm determined by combining the interpore

distance measured by SEM with the membrane porous volume deduced from adsorption

isotherms. In contrast, the poSi pores have a polygonal cross section (Fig. 3(c)), with a

wider distribution of transverse sizes d around a mean value increasing with the sample

porosity [21] . Most poSi samples have a 70% porosity corresponding to d in the range

13-40 nm (〈d〉 = 26 nm) and l between 5 and 60 µm. In a second step, we deposit alumina

at the pore mouth to obtain the desired ink-bottle geometry. For the 60 nm poAl and

poSi samples, we use successive evaporations of 2 nm of aluminum followed by oxidation.

For the 25 nm poAl sample, we used continuous atomic layer deposition (ALD) based on

the chemical reaction between trimethylaluminum and water. SEM images show that both

methods yield alumina constrictions smaller than 10 nm in diameter [25]. This upper bound

is consistent with the maximal constriction diameter for observing cavitation, estimated to

be 6 nm using Refs. 28–30 [20].

Condensation and evaporation of hexane in these samples were studied in optical cells,

regulated at a temperature slightly below the ambient temperature, with a stability of about

1 mK. A capillary line connecting the cell to a tank of hexane at saturated vapor pressure

immersed in a temperature-controlled bath is used to fill or empty the membrane through a

precision microvalve at a very small flow rate. The vapor pressure PV in the cell is measured

by a pressure gauge. The amount of fluid in the pores is determined through the change ∆n

of the membrane optical index measured by white light interferometry (WLI) [26, 31].

Figure 2 shows the successive sorption isotherms measured for the 60 nm poAl mem-

brane as the pore aperture is progressively reduced. Here, PV is converted to PL =

(RT/vL) ln(PV /Psat), the pressure of the liquid in equilibrium with the vapor under the

assumptions of ideal gas and incompressible liquid (R is the gas constant, T the tempera-

ture and vL the liquid molar volume). Condensation takes place at a well-defined pressure,

independent of the pore aperture as expected for pores closed at one end. For the native

membrane, evaporation occurs at a slightly lower pressure, probably due to some pore

corrugation [27, 32–34]. Progressively reducing the pore aperture shifts the evaporation to

much lower pressures, in agreement with the expectation that evaporation is controlled by

meniscus recession in constrictions (Fig. 1(b)). It also broadens the pressure range over

which evaporation takes place, showing that the constrictions are distributed in diameter,

4



200 nm

b

a

c

meniscus
receding

ca
vi

ta
tio

n

FIG. 2. Cavitation in an alumina membrane. Starting from a native alumina membrane with

60 nm-diameter pores (a), successive 2-nm-thick alumina layers are deposited at the mouth of the

pore, reducing the pore aperture (b: 8 layers). Sorption isotherms of hexane are measured at 18◦C

(c) as described in the text. The membrane fluid content is deduced from ∆n, the change of the

membrane optical index with respect to the empty state. The (superimposed) dashed curves are

the condensation isotherms, and the continuous lines are the evaporation isotherms, for increasing

deposits of alumina at the pore mouth (black is for native, green for 8 layers, blue for 10 layers,

and red for 12 layers). For intermediate coatings, the noise is due to a loss of contrast of the

interference pattern (resulting from a strong light scattering [20]). The sharp drop at -20 MPa is

the signature of cavitation.

either due to the initial pore diameter distribution and/or uneven deposition. The salient

observation is that, for all coated samples, a sharp drop of the liquid content is observed at

the same pressure, Pcav ' -20 MPa, irrespective of the aperture reduction. The fraction of

pores emptying at this pressure increases at each deposition step, and reaches nearly 100%

for the last step. Since, at this stage, the constrictions necessarily remain distributed in

diameter, the fact that the evaporation pressure is sharply defined demonstrates that evap-
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oration takes place within the cavities, with the constrictions remaining filled, in agreement

with the cavitation mechanism depicted in Fig. 1(c). We stress that, in contrast to most

experiments with porous materials, this evidence is direct, and does not rely on comparing

the evaporation pressure value to any model.

We observe a similar behavior in poSi ink bottles prepared in the same way as poAl

(Fig. 3(a)). However, in this case, the limiting evaporation pressure Pevap is much larger,

around -10 MPa. In order to confirm this difference, we perform complementary experiments

on duplex-layer poSi membranes, similar to those previously used for studying nitrogen

evaporation [18]. A bottom layer with large pores – the cavities – is connected to the vapor

reservoir through a top layer with narrow pores – the constrictions – (Fig. 3(c)). These

constrictions are much longer than those obtained by alumina deposition, allowing WLI to

simultaneously monitor the fluid content in the constrictions and the cavities [26]. As shown

in Fig.3b, and similarly to Refs.17, 18, cavities empty before the constrictions. When the

length l and diameter d of the cavities are identical to those for the alumina-coated poSi

sample (〈d〉 = 26 nm, l = 20µm), we find Pevap ' –9.5 MPa, close to the –10 MPa obtained

in the latter case, showing that this value is intrinsic of the cavity layer.

On the face of these results, we could be tempted to conclude, as in Ref.18, that evap-

oration in poSi samples proceeds by heterogeneous cavitation on the cavity surface [35].

However, this is surprising as hexane is believed to perfectly wet most types of surfaces and

should nucleate homogeneously. Moreover, as detailed in the Supplemental Material, Pevap

in poSi can be changed from –6 MPa to –12 MPa by varying the cavity diameter and length.

This large change seems inconsistent with a heterogeneous cavitation mechanism where the

cavitation pressure would only weakly depend on the pore surface. An alternative scenario,

suggested by recent NMR studies [39, 40], could be that the cavities of the bottom layer

communicate with one another and are connected to the vapor by a small number of wide

channels through the top layer (the total volume of these channels being too small to be de-

tected by WLI). In this case, the bottom layer would empty by a percolation mechanism[1],

consistent with the observation of a sharply defined evaporation pressure. Testing such a

scenario would require further studies.

In contrast, for poAl, repeating the experiment of Fig.2 with pores of smaller diameter

(d ' 25 nm) yields nearly the same value ' −20 MPa for Pcav although the pore volume Vp

differs by a factor close to 3 between the two membranes. This observation is consistent with
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FIG. 3. Evaporation in porous silicon ink bottles: (a) Isotherms for an alumina-coated poSi sample

(left part of panel c). Superimposed dashed lines correspond to condensation and solid lines to evap-

oration. Black: lines are poSi as prepared (〈d〉 = 26 nm, pore length l = 20µm); green/blue/red

lines are poSi coated by 2/6/8 alumina layers. For as-prepared poSi, the condensation isotherm

is much less steep than in the case of poAl, reflecting the wider distribution of pore diameters.

(b) Isotherms obtained on a duplex-layer sample formed by successively electro-etching a top layer

with small pores 〈d〉= 12 nm and a bottom layer with large pores 〈d〉= 26 nm (right part of panel

c). The contributions of the two layers are plotted separately in black for the top layer and in red

for the bottom layer. (c) binarized transmission electron microscopy (TEM) images of the cross

section of cavities (〈d〉 = 26 nm, red) and of the constrictions of the duplex sample (〈d〉 = 12 nm,

black.
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homogeneous cavitation, for which Pcav depends only weakly on the available volume. It is

also consistent with the absence of confinement effect in this diameter range, as estimated

from the model of Ref.9 [20].

-20.5 -20 -19.5 -19

P
L
  (MPa)

1014

1016

1018

C
av

ita
ta

io
n 

ra
te

 
   

(m
-3

s-1
)

25 nm pores

60 nm pores

0
107 , 

bulk

0
          , 

bulk
 0.914

0
450 , 

bulk
 0.950

0 1 2t (h)
10-2

1

53.65 mbar

54.90

54.24

53.08
52.5

FIG. 4. Cavitation rate Γ as a function of liquid pressure PL for poAl membranes with average

pore diameters d = 60 nm and d = 25 nm at 19◦C. Here, Γ is measured from the exponential decay

of the number of filled pores following a quench of the pressure reservoir from 60 mb down to a

lower pressure ranging between 52 and 55 mbar, as illustrated in the inset for the 60-nm mem-

brane. The fraction of filled pores φ is measured through the logarithm of the optical transmission

and normalized to its value at time t=0, corresponding to a 10% transmission(see Supplemental

Information). The cavitation rate per unit volume Γ is deduced by dividing the decay rate by the

pore volume, which is computed using d = 56 nm and d = 27 nm. These values lie within the error

bars of the measured values above, and are such that Γ(PL) is identical for the two membranes.

Lines corresponding to the CNT predictions for different values of the attempt rate or the surface

tension (see text).

In order to test whether cavitation in poAl is quantitatively described by CNT, we mea-

sure its nucleation rate Γ(PL). A specific feature of our experimental system is that the mem-
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branes contain a very large number of independent pores, of the order of several 1010/cm2.

This feature allows us to determine the cavitation rate in a single-shot experiment, in con-

trast to acoustically driven [41] or thermally controlled [42] bulk cavitation experiments,

where the cavitation statistics is determined over thousands of cycles. To this aim, starting

from a slightly larger pressure, we quench the reservoir pressure to a stable value correspond-

ing to PL around -20 MPa, and monitor the temporal decay of the number of filled pores by

measuring the light transmission through the membrane. The totally empty or filled mem-

brane, being nearly homogeneous on the scale of the light wavelength, only weakly scatters.

In contrast, when stochastic cavitation takes place, the pores randomly empty, giving rise to

local fluctuations of the refractive index and strong light scattering, resulting in a reduced

transmission. This effect can be directly evidenced by illuminating the membrane with a

wide collimated light beam and precisely quantified by measuring the transmission of a laser

beam [20].

We have performed such experiments for the two alumina membranes. As expected for a

stochastic process, the number of filled pores decreases exponentially with time with a time

constant τ (inset of Fig. 4 for the 60-nm membrane). Repeating this quench at different

depths yields τ(PL), from which we deduce the cavitation rate per unit time and unit volume

Γ(PL) = (Vp τ(PL))−1.

Figure 4 shows that Γ(PL) increases by nearly 3 orders of magnitude when changing PV,

hence PL, by only 5%. This large increase exemplifies the exponential dependence of the

relaxation time on the energy barrier.

To our knowledge, these results are the first evidence for the stochastic and activated

nature of cavitation in nanoporous materials. The relaxation rate can be compared to the

CNT prediction [5] Γ = Γ0 exp(−Eb/kBT ), where Γ0 is an attempt rate and the energy

barrier Eb is given by:

Eb =
16πσ3

3(PV − PL)2
(1)

where σ is the surface tension. Different expressions for Γ0 [5, 43] lead to Γ0 = 2.1038 m−3 s−1

within a factor of 10. As shown by Fig.4, using this value and the bulk surface tension (0.185

J/m2 at 19◦C [44]) leads to predicted rates that are about 107 too small over the full pressure

range, corresponding to a predicted cavitation pressure 15% larger than observed. Keeping

Γ0 = 2.1038 m−3 s−1, an approximate agreement with experiments requires us to reduce the
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surface tension σ by about 9% with respect to its bulk value. A similar difference has been

measured in the case of bulk cavitation of heptane and ascribed to a reduction of the surface

tension due to the large curvature of the critical germ [45]. However, adjusting only Γ0 or σ

does not allow us to match the experimental Γ vs PL data over the full pressure range. Such

a match requires that we combine a 5% reduction of σ with an increase of Γ0 by a factor of

order 500. This requirement might point to the fact that the above expressions of the CNT

attempt rate are underestimated.

To summarize, we show that cavitation of hexane in porous alumina ink bottles with

cavity diameters of several tens of nanometers closely follows the predictions of the bulk,

homogeneous, classical nucleation theory. This result confirms that homogeneous cavitation

is a relevant mechanism in nanoporous systems, as assumed by previous studies on materials

with interconnected pores. Our approach opens the way to performing similar experiments

with pores of smaller diameter (below 10 nm) in order to quantitatively test extensions of

CNT in the presence of confinement. In contrast, we confirm earlier experiments, finding

that porous silicon ink bottles empty more easily than expected from CNT . More studies will

be required to understand whether this is due to heterogeneous cavitation or to a nonideal

structure of poSi.

Finally, our work opens new prospects for fundamental studies of cavitation. In contrast

to cavitation acoustically driven at MHz frequencies, our experiments are essentially static,

allowing us to precisely measure the relaxation rate at a given pressure. Also, in contrast

to the so-called artificial-tree technique [46], where cavitation is probed in macroscopic

cavities closed by a single porous layer, nanoporous membranes with independent nanopores

tolerate the existence of a small density of leaky constrictions. PoAl membranes are thus a

promising system to address points of current debate, such as the influence of superfluidity

of liquid helium on its cavitation [47], or the origin of the much larger cavitation pressure

observed for water in the artificial-tree geometry [48] as compared to that observed in quartz

inclusions [49]. Beyond these examples, by allowing us to decrease the liquid pressure down

to its tensile limit, these membranes open a new route to study liquids in deeply metastable

states.

This paper is dedicated to the memory of our late co-author and colleague A. Grosman.

We thank K. Davitt for her critical reading. We acknowledge the financial support of Agence

Nationale de la Recherche through the project CavConf, ANR-17-CE30-0002, including

10



the funding of F. S. and M. B., and of Université Grenoble Alpes, which funded V.D.
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