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Abstract

We study the task of gathering k energy-constrained mobile agents in an
undirected edge-weighted graph. Each agent is initially placed on an arbi-
trary node and has a limited amount of energy, which constrains the distance
it can move. Since this may render gathering at a single point impossible,
we study three variants of near-gathering :

The goal is to move the agents into a configuration that minimizes either
(i) the radius of a ball containing all agents, (ii) the maximum distance
between any two agents, or (iii) the average distance between the agents.
We prove that (i) is polynomial-time solvable, (ii) has a polynomial-time 2-
approximation with a matching NP-hardness lower bound, while (iii) admits
a polynomial-time 2(1 − 1

k
)-approximation, but no FPTAS, unless P = NP.

We extend some of our results to additive approximation.
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1. Introduction1

The problem of gathering is one of the fundamental problems in dis-2

tributed computing with mobile entities, which includes mobile agents mov-3

ing in a graph or robots moving in a continuous geometric space. In both4

cases, the objective is to bring together multiple autonomous agents to a5

single point (not predetermined). Gathering helps in coordination between6

the mobile agents, sharing of information between the entities, reassignment7

of duties among the entities, and even for protection of the agents (a group of8

robots gathered together is easier to protect than those dispersed in a large9

area). Moreover, there are also theoretical reasons for studying gathering,10

as the problem of selecting a gathering point is akin to problems of leader11

election and consensus in distributed systems. However, in some cases, it12

may be impossible to solve the problem of gathering, e.g. due to limitations13

in the capabilities of the agents, or due to symmetries in their perception14

of the environment. In some cases it may be desirable for the agents to get15

close to each other without actually meeting [1].16

In this paper, we consider mobile agents moving on a graph, with severe17

limitations on their movements. We assume that the agents have limited18

energy resources and traversing any edge of the graph consumes some of19

this energy which can not be replenished. In other words, each agent has20

an initial energy budget which limits the total distance it can move in the21

graph. Under such constraints, it is not always possible to gather the agents22

at a single point. Thus, we consider the problem of moving the agents as23

close as possible to each other while respecting the movement constraints,24

defined below as the near-gathering problem.25

Near-Gathering. A collection of k mobile agents is initially located at an26

arbitrary set of nodes of an undirected edge-weighted graph G = (V,E, ω).27

Each agent i, i = 1, . . . , k, has an energy capacity bi, which represents the28

maximum distance the agent can move in the graph. The agents have global29

knowledge of the graph and are controlled by a central entity. The goal is to30

move the agents to a configuration where they are as close to each other as31

possible under their respective limitations of movement. Closeness criteria32

can be measured, e.g., as the size of the smallest region enclosing all the33

agents, or as the maximum or average pairwise distance between the agents.34

We look at each of these criteria and give a more precise definition of the35

problem below.36
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Our Model. We consider an undirected graph G = (V,E, ω), where each37

edge e ∈ E has a positive weight ω(e) > 0. As usual, the length of a path38

is the sum of the weights of its edges. We think of every edge e = {u, v}39

as a segment of infinitely many points, where every point in the edge is40

uniquely characterized by its distance from u, which is between 0 and w(e).41

We consider every such point to subdivide the edge {u, v} into two edges42

of lengths proportional to the position of the point on the edge. Thus, the43

distance d(p, q) between two points p and q (nodes or points inside edges)44

is the length of a shortest path from p to q in G (with edges subdivided by45

p, q, respectively). For a point p inside an edge e ∈ E we write p ∈ G and46

p ∈ seg(e).47

A collection of k mobile agents is initially located at an arbitrary set48

of nodes p1, . . . , pk ∈ V . Each agent i is equipped with an energy budget49

bi > 0 and can move along edges of the graph, for a distance of at most50

bi. In the Near-Gathering problem, the goal is to relocate every agent into51

a new position such that the resulting configuration minimizes one of the52

following objectives: (i) the radius of a smallest ball containing all agents, (ii)53

the maximum distance between any two agents, or (iii) the average distance54

between the agents (or, equivalently, the sum of all distances). We are further55

interested in two variants of the problem, where agents can: (I) only be56

relocated to reachable nodes of the graph, or (II) in a more general scenario,57

where the agents are allowed to be relocated to reachable points (i.e., nodes58

or points inside edges).59

Definition 1 (Near-Gathering).60

Instance: 〈G, k, (pi)i=1,...,k, (bi)i=1,...,k〉, where G = (V,E, ω) is an undi-61

rected edge-weighted graph, k denotes the total number of agents, pi denotes62

the initial position of agent i and bi denotes the total amount of energy agent i63

initially has at its disposal.64

Feasible solution: Any configuration C = (c1, . . . , ck) of agent end posi-65

tions ci, in which for each agent i, 1 ≤ i ≤ k, we have d(pi, ci) ≤ bi. In the66

node-stop variant, we additionally require ci ∈ V .67

Goals: (i) MinBall: Minimize Radius(C, c) of a smallest ball containing68

C around an optimally chosen center c, where Radius(C, c) = maxi d(c, ci).69

We consider both the scenario with node centers only, and the scenario with70

arbitrary point centers.71

(ii) MinDiam: Minimize Diam(C), where Diam(C) = maxi,j d(ci, cj).72

(iii) MinSum: Minimize Sum(C), where Sum(C) =
∑

i

∑
j d(ci, cj).73
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Related Work. The gathering problem has been studied in two very different74

scenarios (i) Gathering of mobile agents in a connected (finite or infinite)75

graph, and (ii) Gathering of mobile robots in a (bounded or unbounded)76

plane or other geometric spaces. In the context of distributed robotics or77

swarm robotics [2], the problem of gathering many robots at a single point78

has been studied as an agreement problem, where the main issue is feasibility79

of gathering starting from arbitrary configurations [3] or gathering without80

full knowledge of the configuration [4, 5]. The problem of convergence re-81

quires the robots to converge towards a point [6], without actually arriving at82

the gathering point. When the robots are not allowed to collide, the problem83

of moving the robots closer avoiding any collisions has been studied by Pagli84

et al. [1]. In all these studies, the robots can move freely in any direction.85

For mobile agents on the graph that are restricted to move along the edges,86

gathering has been studied under different models (see e.g. [7, 8]). In par-87

ticular, the gathering of two agents, often called rendezvous, has attracted88

a lot of attention, well documented in [9]. The problem of gathering with89

the objective of minimizing movements has been studied in [10]. However to90

the best of our knowledge, there have been no previous studies on gathering91

with fixed constraints (budgets) on energy required for movements.92

The model of energy-constrained agents was introduced in [11, 12] for93

single agent exploration of graphs. Duncan et al. [13] consider a similar94

model where the agent is tied with a rope of length b to the starting lo-95

cation. Multi-agent exploration under uniform energy constraint of b has96

been studied for trees [14, 15] with the objective of minimizing the energy97

budget per agent [16] or the number k of agents [17] required for exploration,98

while time optimal exploration was studied by Dereniowski et al. [18] under99

the same model. Demaine et al. [19, 20] studied problems of optimizing the100

total or maximum energy consumption of the agents when the agents need101

to place themselves in desired configurations (e.g. connected or independent102

configurations); they provided approximation algorithms and inapproxima-103

bility results. Similar problems have been studied for agents moving in the104

visibility graphs of simple polygons [21].105

For the model studied in this paper, where each agent has a distinct106

energy budget, the problem of Broadcast and Convergecast was studied in107

[22] who provided hardness results for trees and approximation algorithms108

for arbitrary graphs. The problem of delivering packages by multiple agents109

having energy constraints was studied in [23, 24, 25, 26]. All of these problems110

were shown to be NP-hard for general graphs even if the agents are allowed111

4



to exchange energy when they meet [27, 28].112

Our Contribution and Paper Organization. In Section 2, we establish a few113

preliminaries and prove that MinBall is solvable in polynomial-time. In114

Section 3 we give a 2-approximation algorithm for MinDiam, together with115

a matching NP-hardness lower bound; additionally we show that MinDiam116

is polynomial-time solvable on tree graphs. In Section 4, we prove that117

MinSum admits a 2(1− 1
k
)-approximation algorithm but no FPTAS, unless118

P = NP. We show that the analysis of the approximation ratio of the119

provided algorithm is tight.120

We conclude with remarks on future research opportunities, including121

preliminary approximation hardness results for additive approximation of122

MinDiam, in Section 5. All our results – with the exception of additive123

approximation – hold for both node-stop as well as arbitrary-stop scenarios.124

2. Preliminaries and Minimizing the Radius125

Preliminaries. We first point out some differences in the two scenarios we126

consider throughout this paper and our general approach on how to tackle127

and distinguish those. In the node stop scenario, where each agent i is only128

allowed to move to nodes v with distance d(pi, v) ≤ bi, there is a finite129

number of feasible configurations C. For the scenario with arbitrary final130

positions, where agents are also allowed to move to points p inside edges131

(as long as d(pi, p) ≤ bi), we discretize the set of configurations. In the132

MinBall variant of Near-Gathering, the discretization turns out to contain133

at least one optimum solution, for MinDiam and MinSum it will at least134

contain a configuration approximating an optimum solution within a factor135

of 2 or 2(1− 1
k
), respectively. To this end, we define sets of reachable nodes136

and “maximally reachable” in-edge points as follows:137

Definition 2 (Balls, Spheres). For an instance 〈G, k, (pi)i=1,...,k, (bi)i=1,...,k〉138

with initial agent positions pi and energy budgets bi, we define139

• B(i) := {v ∈ V | d(pi, v) ≤ bi}, i.e. the ball containing all nodes that140

agent i can reach from its initial position pi, and141

• S(i) := ∅ for node stops, and S(i) := {p ∈ G | d(pi, p) = bi} \ B(i) for142

arbitrary stops, i.e. the sphere of all in-edge points that agent i can143

reach from its initial position pi only by spending its whole budget bi.144
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In the same spirit, we can study MinBall-Gathering for centers c being145

restricted to nodes in V , or for the continuous set of center points being146

allowed to be placed both on nodes as well as the inside of edges of G. To147

discretize this set, it will be useful to define a set of midpoints, intuitively148

consisting of “points m lying in the middle of a trail between points p and q”:149

Definition 3 (Midpoints). Given a set S of points in G, denote by G′ =150

(V ′, E ′, ω′) the graph we get from G = (V,E, ω) by subdividing the edges in151

E with points from S, i.e. V ′ = V ∪ S. We define the midpoint set M(S) of152

points in G′ – and by bijection also of G – as:153

M(S) := {m ∈ V ′ | ∃ p, q ∈ S : d(p,m) = d(m, q)}
∪ {m ∈ seg(e) | e = {u, v} ∈ E ′, ∃ p, q ∈ S :

d(p, u) + d(u,m) = d(m, v) + d(v, q)} .

Lemma 1. The sets B(i), S(i) and M(S) can be computed in time polyno-154

mial in |V |, k and |V |, |S|, respectively.155

Proof. For each agent i, we find the ball B(i) of all reachable nodes by156

computing a single-source shortest paths tree from pi in O(|V |2). The sphere157

S(i) contains at most two points per edge e = {u, v} which can be found158

in constant time given knowledge of the edge weight ω(e) and the already159

computed node distances d(pi, u), d(pi, v). Overall the 2k many setsB(i), S(i)160

are of size O(|V |) and O(|V |2), respectively, and can be computed in time161

O(k|V |2).162

In order to compute the set M(S) of midpoints of a given set S of points163

in G, we first compute shortest-paths trees for all points p ∈ S to all nodes164

v ∈ V ′ in time O(|S| · |V ′|2) ⊆ O(|S|3 + |S| · |V |2). Then we check for165

each node v ∈ V ′ whether it is contained in M(S) by iterating over all166

pairs of points p, q ∈ S. Similarly, we check for each edge e = {u, v} ∈ E ′167

and all pairs of points p, q ∈ S in constant time (having already computed168

the distances d(p, u), d(p, v), d(q, u) and d(q, v)) whether and where there are169

any (at most 2) midpoints m ∈ seg(e) of p and q. Overall, M(S) is of170

size O(|S|2 · |V ′|2) ⊆ O(|S|4 + |S|2 · |V |2) and can be computed in time171

O(|S|4 + |S|2 · |V |2) as well.172

MinBall for node centers. Having defined balls and spheres of reachable173

points for the agents, we can immediately give an exhaustive search algo-174

rithm for MinBall for centers restricted to nodes. The main idea of Algo-175

rithm 1 is to fix a node in graph G as a gathering point and then for each176
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Algorithm 1 MinBall (node centers)
Input: An instance 〈G, k, (pi)i=1,...,k, (bi)i=1,...,k〉.
Output: Configuration C, center c ∈ V with minimum radius Radius(C, c).
1: for each v ∈ V do
2: Compute Cv := (cv1, . . . , c

v
k),

3: where cvi ∈ arg min{d(v, ci) | ci ∈ B(i) ∪ S(i)} is a point in
4: B(i)∪ S(i) minimizing the distance to v, breaking ties arbitrarily.
5: Compute Radius(Cv, v).
6: end for
7: Return arg min

Cv , v : v∈V
Radius(Cv, v).

agent i compute the minimum distance to this fixed center it can reach, given177

its starting position pi and its energy budget bi. Iterating over all possible178

center nodes, we find an optimal solution:179

Theorem 1 (MinBall, node centers). Algorithm 1 is a polynomial-time al-180

gorithm for MinBall with node centers.181

The polynomial running time of Algorithm 1 follows immediately from the182

fact that B(i), S(i) can be computed in polynomial time and have polynomial183

size by Lemma 1. As the algorithm iterates over all possible center nodes,184

we can establish correctness by characterizing optimum stopping positions:185

Lemma 2. There exists an optimum solution (O,o) for MinBall where186

every agent i either stops on the center o or on a point in B(i) ∪ S(i),187

independent of whether o is contained in
⋃

i(B(i) ∪ S(i)) or not.188

Proof. Assume that there is no such optimum solution and denote by C∗ =189

(c∗1, c
∗
2, . . . c

∗
k) and c∗ a solution with a minimum number of points c∗i /∈ B(i)∪190

S(i) ∪ {c∗} among all optimum solutions. We take any agent a with c∗a /∈191

B(a)∪S(a)∪{c∗}. By definition of B(a) and S(a), c∗a must be a point inside192

an edge for which d(pa, c
∗
a) < ba. Without loss of generality we may assume193

that a reached c∗a by moving along a shortest path from pa to c∗. Hence194

it still has energy left to move further along the shortest path towards c∗.195

We move agent a until it reaches a point in B(a) ∪ {c∗} or until its energy196

is depleted, in which case it will have reached a point in S(a). The new197

configuration has smaller or equal radius, and also a strictly smaller number198

of points c∗i /∈ B(i) ∪ S(i) ∪ {c∗}, contradicting the minimality of C∗. Hence199

there is always an optimum solution adhering to Lemma 2.200
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MinBall for arbitrary centers. We now extend our approach to find optimum201

MinBall solutions for arbitrary centers. As can be seen from Lemma 2,202

when testing for a fixed center c, in addition to checking the points in B(i)∪203

S(i) we should also consider whether agent i can reach c itself. As candidates204

for the center c we take all points in the midpoint setM(V ∪
⋃

i S(i)), yielding205

Algorithm 2:206

Theorem 2 (MinBall, arbitrary centers). Algorithm 2 is a polynomial-time207

algorithm for MinBall with arbitrary centers.208

As before, polynomial running time follows from the polynomial size of209

the candidate setM(V ∪
⋃

i S(i)). Building upon Algorithm 1 and Theorem 1,210

it remains to show that this set contains an optimum center:211

Lemma 3. There exists an optimum solution (O,o) for MinBall where212

the center o is contained in M(V ∪
⋃

i S(i)).213

Proof. Given any optimum configuration C = (c1, . . . , ck) with center c /∈214

M(V ∪
⋃

i S(i)) and agent stopping positions ci adhering to Lemma 2, we can215

directly construct an optimum solution (O,o) for which o ∈M(V ∪
⋃

i S(i)).216

Let G′ = (V ′, E ′, ω′) be the graph we get from G = (V,E, ω) by subdividing217

the edges in E with points from
⋃

i S(i).218

Let e = {u, v} ∈ E ′ be the edge-subdivision containing c, c ∈ seg(e),219

and denote by Au, Av the set of agents i with stopping positions ci = c that220

entered e via u or v, respectively. Without loss of generality, each agent221

i ∈ Au∪Av has reached c along a shortest pi-c-path and, since ci = c /∈ S(i),222

has a remaining energy of bi − d(pi, ci) > 0.223

We first assume that Au ∪ Av contains all k agents. In this case we224

move the center c and all agent stopping positions C to u, yielding a new225

center node c∗ := u ∈ V ∪
⋃

i S(i) and configuration C∗ = (c∗, . . . , c∗)226

with radius Radius(C∗, c∗) = 0. Note that for each agent i ∈ Au we have227

d(pi, c
∗) < d(pi, c) and for each agent j ∈ Av we have – since there is no228

point p ∈ seg({c, u}) with p ∈ B(j)∪S(j) – that d(pj, c
∗) ≤ bj. Hence C∗ is229

a feasible configuration and (C∗, c∗) an optimum solution.230

Otherwise denote by ca ∈ B(a) ∪ S(a) the agent stopping position with231

maximum distance d(ca, c) among all configuration points which have a short-232

est path to c containing u. Analogously, denote by cb ∈ B(b) ∪ S(b) the233

furthest agent stopping position among all configuration points which have234

a shortest path to c containing v. Since c /∈ M(V ∪
⋃

i S(i)), we know235
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Algorithm 2 MinBall (arbitrary centers), MinDiam (2–apx / on Trees)
Input: An instance 〈G, k, (pi)i=1,...,k, (bi)i=1,...,k〉.
Output: Configuration C, center c ∈ G with minimum radius Radius(C, c).
1: for each p ∈M (V ∪

⋃
i S(i)) do

2: Compute Cp := (cp1, . . . , c
p
k),

3: where either cpi = p if d(pi, p) ≤ bi, or otherwise
4: cpi ∈ arg min{d(p, ci) | ci ∈ B(i) ∪ S(i)} (breaking ties arbitrarily).
5: Compute Radius(Cp, p).
6: end for
7: Return arg min

Cp, p : p∈M(V ∪
⋃

i S(i))
Radius(Cp, p).

that d(c, ca) 6= d(c, cb). Thus we can move c together with all agent stop-236

ping positions ci = c (of agents i ∈ Au ∪ Av that have stopped on c) by237

a small distance of ε > 0 towards the further of the two positions ca, cb.238

This still gives a feasible solution (C∗, c∗) that has strictly smaller radius239

Radius(C∗, c∗) = max{d(c, ca), d(c, cb)} − ε, contradicting the optimality of240

(C, c). The cases where only ca or only cb is defined can be treated analo-241

gously.242

3. Minimizing the Diameter243

In this Section, we prove that Algorithm 2, which computes an optimum244

solution for MinBall, also computes a 2-approximation for MinDiam. As245

we will show, this is likely best-possible, as there is no polynomial-time (2−246

o(1))-approximation for MinDiam, unless P = NP. Nonetheless, for the247

special case of tree graphs, Algorithm 2 even computes an optimum solution248

for MinDiam. We start with the positive results:249

Theorem 3 (MinDiam, 2-apx). Algorithm 2 is a polynomial-time 2-approxi-250

mation algorithm for MinDiam.251

Proof. Let configuration C∗ = (c∗1, . . . , c
∗
k) with center c∗ be the MinBall252

solution computed by Algorithm 2. We denote the radius of (C∗, c∗) by r∗ =253

Radius(C∗, c∗) = maxj d(c∗, c∗j) and the diameter of C∗ by d∗ = Diam(C∗) =254

maxi,j d(c∗i , c
∗
j). Using the triangle inequality, we have for all configuration255

points c∗i , c∗j that d(c∗i , c
∗
j) ≤ d(c∗i , c

∗) + d(c∗j , c
∗) and thus d∗ ≤ 2 · r∗.256
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b1=6

o1

p3
b3=6

S(3)
o3

o2S(2)

2 3 3

6 39
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b3=1
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Figure 1: (left) MinDiam-instance with (unique) optimum solution O = (o1, o2, o3) of
diameter Diam(O) = 8, in which we have final positions o3 /∈ B(3) ∪ S(3) and o2 /∈
M(V ∪

⋃
i S(i)).

(right) Replacing Radius(Cp, p) in Lines 5&7 of Algorithm 2 with Diam(Cp) (yielding
configurations depicted by × vs �, with diameters 2 and 1, respectively) improves the
quality of a MinDiam solution for certain instances by a factor of 2.

Now let O = (o1, . . . , ok) be an optimum configuration for MinDiam with257

diameter dOpt := Diam(O) = maxi,j d(oi, oj). We choose an arbitrary point258

o ∈ O and compute the radius of a smallest ball around o containing O,259

ro := Radius(O, o) = maxj d(o, oj) ≤ dOpt. By Theorem 2, we have r∗ ≤ ro260

(even though o might not have been considered as a center candidate, see261

e.g. Figure 1 (left)). Combining all inequalities, we get262

d∗ ≤ 2 · r∗ ≤ 2 · ro ≤ 2 · dOpt,

hence C∗ is a 2-approximation for MinDiam.263

Theorem 4 (MinDiam, on Trees). Algorithm 2 is a polynomial-time algo-264

rithm for MinDiam on trees.265

Proof. First note that if there is a configuration O with maximum distance266

Diam(O) = 0, it also has radius Radius(O,o) = 0 for some center o, and thus267

will be found by Algorithm 2 as proven in Theorem 2. Otherwise the diameter268

Diam(O) of an optimum solution O is lower bounded by the largest diameter269

among all optimal solutions of the instance reduced to pairs of agents i, j:270

d∗ :=

max
i,j

min
qi∈B(i), qj∈B(j)

d(qi, qj) for the node stop scenario,

max
i,j

d(pi, pj)− bi − bj for arbitrary final positions.

We show that, indeed, Algorithm 2 computes a configuration C∗ with diam-271

eter Diam(C∗) = d∗. To this end, denote by a, b two agents giving rise to d∗,272
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and let qa ∈ B(a) ∪ S(a), qb ∈ B(b) ∪ S(b) be two points with d(qa, qb) = d∗.273

Since we consider tree graphs here, there is a unique shortest path from qa274

to qb and thus a unique midpoint c∗ ∈ G with d(c∗, qa) = d(c∗, qb) := d∗

2
.275

As c∗ is contained in M(V ∪
⋃

i S(i)), Algorithm 2 will use c∗ as a center276

point candidate for which it computes a configuration C∗ = (c∗1, . . . , c
∗
k). By277

definition, we have d(c∗, c∗a) = d(c∗, qa) = d∗

2
= d(c∗, qb) = d(c∗, c∗b).278

It is enough to show that for all other agents i we have d(c∗, c∗i ) ≤ d∗

2
,279

too. Assume for the sake of contradiction that this is not the case and that280

there is an agent i with d(c∗, c∗i ) > d∗

2
. Consider the shortest c∗i -c∗-path281

Pi, the shortest c∗a-c∗-path Pa and the shortest c∗b-c∗-path Pb. By definition282

of d∗ and c∗, the paths Pa and Pb must be interiorly disjoint, Pa ∩ Pb =283

{c∗}. Since Pi is a path on a tree ending in the same node c∗, it must284

be interiorly disjoint with at least one of the two paths Pa, Pb, without loss285

of generality with Pa. Because any two points in a tree are connected by286

a unique path, we have d(c∗i , c
∗
a) = d(c∗i , c

∗) + d(c∗, c∗a) > d∗ and thus also287

minqi∈B(i)∪S(i), qa∈B(a)∪S(a) d(qi, qa) > d∗, contradicting the maximality of d∗.288

Hence we have Diam(C∗) ≤ maxi,j d(c∗i , c
∗) + d(c∗, c∗j) = d∗.289

Replacing the computation of Radius(Cp, p) in Lines 5 and 7 of Algo-290

rithm 2 by a computation of Diam(Cp) can improve the quality of a Min-291

Diam solution by a factor of up to 2 for some instances, see for example292

Figure 1 (right). However, this does not translate to the worst-case approxi-293

mation guarantee, as one can see in the instance constructed in the following294

matching approximation hardness result.295

Theorem 5. There exists no deterministic polynomial-time
(
2−o(1)

)
-appro-296

ximation algorithm for MinDiam, unless P = NP. This holds even in un-297

weighted graphs with uniform budgets bi = 1, i = 1, . . . , k.298

We will prove Theorem 5 by a reduction from 3Sat along the following299

lines: First, given any 3Sat instance, we construct a MinDiam instance300

with variable agents and clause agents. Next, we present a structural result301

(Lemma 4), from which we can infer that each variable agent will always move302

to either a node representing its positive literal or a node representing its303

negative literal; similarly, we infer that each clause agent will move to a node304

representing a possible truth assignment of the respective clause. Finally,305

we prove Theorem 5 by showing that satisfiable 3Sat instances admit a306

MinDiam solution of diameter 1, while unsatisfiable 3Sat instances result307

in instances with optimum MinDiam solutions of diameter at least 2.308
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Reduction. Let φ be an arbitrary boolean formula in conjunctive normal309

form, where each clause contains 3 different literals, and let x1, . . . , xn be310

the n many variables and C1, . . . , Cm be the m many clauses of φ. We show311

that any polynomial-time (2− o(1))-approximation algorithm for MinDiam312

can be used to decide whether φ is satisfiable. From φ, we construct an313

instance 〈G, k, (pi)i=1,...,k, (b)i=1,...,k〉 with k agents of uniform budget b = 1314

and a graph G = (V,E, ω) with uniform edge weights ω = 1 in the following315

manner.316

Set of nodes V : Using T = true and F = false, we first define the set317

of all possible truth assignments of a clause C containing 3 literals, L :=318

{TTT,TTF,TFT,TFF,FTT,FTF,FFT,FFF}. Note that every clause C is319

satisfiable by exactly 7 of the 8 possible truth assignments in L (e.g. x1∨x2∨320

xn is satisfied by x1, x2, xn ∈ L \ {FFT}). Now, let V := Vx ∪ V` ∪ VC ∪ VL,321

where322

• Vx = {vi | 1 ≤ i ≤ n} are nodes corresponding to variables x1, . . . , xn,323

• V` = {vTi | 1 ≤ i ≤ n} ∪ {vFi | 1 ≤ i ≤ n} are nodes corresponding to324

literals, i.e. true-value and false-value assignments of the variables xi,325

• VC = {cj | 1 ≤ j ≤ m} are nodes corresponding to clauses C1, . . . , Cm,326

• VL = {clj | 1 ≤ j ≤ m, ∀l ∈ L} are nodes corresponding to all possible327

truth assignments of each clause Ci.328

Agents & reduction idea: On each of the nodes in Vx ∪ VC we place one329

agent with a budget of b = 1, for a total of n+m agents. The main idea is to330

initially space the agents by a pairwise distance of 3. We then let agents on Vx331

“pick the value assignment of the variables xi” by walking to their respective332

node in V`, whereas we let agents on VC “pick the truth assignment of the333

clauses Cj” by walking to their respective node in VL. Then a satisfiable334

assignment of φ exists, if and only if the variable agents and the clause335

agents “agree in their choice” which corresponds to an optimum MinDiam336

configuration O of diameter 1. Furthermore, any other configuration should337

have diameter ≥ 2. This gives rise to the338

Set of edges E := Ex` ∪ E`L ∪ ECL ∪ E`` ∪ ELL, where:339

• Ex` = {{vi, vTi }, {vi, vFi } | 1 ≤ i ≤ n : vi ∈ Vx, vTi , vFi ∈ V`} are edges340

connecting each variable node xi to its two literal nodes,341
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Figure 2: A part of an instance of MinDiam, constructed from the 3-SAT instance
C1 ∧ · · · ∧ Cm with variables x1, . . . , xn, displaying the connections between nodes
v1, v2, vn, c1 and cm. Notice that nodes cFFT1 and cFFFm are not connected to nodes c1
and cm, respectively. The location of mobile agents is denoted by squares (�).

• ECL = {{cj, clj} | 1 ≤ j ≤ m : cj ∈ VC , c
l
j ∈ VL, c

l
j satisfies Cj}342

are edges connecting each clause node cj with all nodes representing343

satisfying assignments for clause Cj,344

• E`L = {{v′i, clj} | i ≤ n, j ≤ m : v′i ∈ {vTi , vFi } ⊂ V`, c
l
j ∈ VL, such that345

either xi does not appear in Cj,346

or xi appears in Cj and v′i agrees with clj}347

are edges connecting unrelated literals and clause truth-assignments,348

as well as matching literals and clause truth-assignments.349

• E`` = {{u, v} | u, v ∈ V`} and ELL = {{u, v} | u, v ∈ VL} are edges350

pairwise connecting nodes in V`, and nodes in VL, respectively.351

Figure 2 shows a part of an instance of MinDiam which is constructed352

from an instance of 3Sat as described above. Before giving a proof of The-353

orem 5, we argue that no agent would stop in the middle of an edge:354

Lemma 4. For any configuration C′ = (c′1, . . . , c
′
k) with an agent i for which355

c′i /∈ V` ∪ VL, there exists another configuration C′′ = (c′′1, . . . , c
′′
k) with diam-356

eter Diam(C′′) ≤ Diam(C′) for which ∀i : c′′i ∈ V` ∪ VL.357
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v1

vT1 vF1
2n-clique

δ

b− δ

1

b

Figure 3: A configuration C where agent a(v1), depicted by �, stops at distance
δ from its starting node v1: Moving fully to vF

1 will only decrease the diameter
Diam(C).

Proof. Consider an agent a(vi) which corresponds to the variable xi and358

without loss of generality suppose that a(vi) chooses to move towards node359

vFi . Assume now, for the sake of contradiction, that agent a(vi) has stopped360

at distance 0 ≤ δ < b = 1 on the edge (vi, v
F
i ), subdividing the edge into361

two segments (vi + δ, vi) and (vi + δ, vFi ). (With δ = 0 indicating that a(vi)362

stayed on vi without moving at all). In this case, a(vi) has spent δ units of363

energy and has b− δ units of energy remaining (see Figure 3). Agent a(vi) is364

connected with the rest of the agents through two possible paths: The first365

one is through the segment (vi + δ, vFi ) of length b − δ > 0, the other one is366

through the path (vi + δ, vi), (vi, v
T
i ) of length δ + b ≥ 1.367

It is easy now to notice that if a(vi) moves to node vFi (recall that it has368

b− δ units of energy remaining to do so), its distance to the other agents can369

only be reduced, as the contribution of the distance through vFi is now 0 and370

the contribution through node vTi is now 1. The same argument holds for the371

agents that correspond to the clauses. Hence moving all agents completely372

down to V`, VL results in a configuration of non-increased diameter.373

Proof. (Theorem 5). Based on the preceding construction of MinDiam in-374

stances from 3Sat instances and the structural Lemma 4, we now give a375

proof of Theorem 5.376

⇒ We first show that if φ is satisfiable then there exists a configuration C377

of diameter Diam(C) = 1. Since φ is satisfiable we have a truth assignment378

to the variables which satisfies every clause of φ. For each variable xi, we let379

agent a(vi) move to node vTi if xi = true and to node vFi otherwise. Next, for380
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each clause Cj, we let agent a(cj) move to the node cli, which corresponds to381

the correct true/false-assignment picked by the three agents of the variables382

in Cj. Note that both types of moves can be done with an energy of b = 1.383

Let us examine the maximum distance of any two agents in this final config-384

uration. Notice that all agents {a(vi) | vi ∈ Vx} moved to nodes in V`. By385

construction, they are pairwise connected with an edge in E``. Similarly, the386

agents {a(cj) | cj ∈ VC} have moved to nodes in VL and are thus connected387

by edges belonging to ELL. It remains to compute the distance between the388

variable agents (located in V`) and the clause agents (in VL). Each agent389

a(cj) by construction has distance equal to 1 from the three agents on nodes390

that correspond to the truth assignment of the variables contained in clause391

Cj, namely through an edge of E`L. Moreover, each agent a(cj) has distance392

1 from the nodes that belong to V` which correspond to the truth assignment393

to variables that are not contained in clause cj. Therefore, the maximum394

distance between any two agents is equal to 1.395

⇐ We now show that if φ is not satisfiable then every solution to Min-396

Diam is of size greater than or equal to 2. According to Lemma 4, we may397

assume without loss of generality that no agent stops inside an edge nor398

stays on its starting position. If φ is not satisfiable, then for every possible399

truth assignment to the variables, there exists at least one clause in φ that is400

not satisfied. Let us note here that in any optimum solution to MinDiam,401

the final positions of the agents that are initially located in variable nodes402

corresponds to a truth assignment to the variables. Therefore, any final con-403

figuration will correspond to a truth assignment to the variables which will404

not satisfy φ. Consider now an arbitrary final configuration of an instance405

of MinDiam. For the corresponding truth assignment to the variables, let406

us assume that the clause that is not satisfied is Cy = (xr ∨ xs ∨ xt). We407

can show that similar arguments hold for any unsatisfied clause (irrespective408

of whether the literals in the clause are positive or negative). If Cy is not409

satisfied, this implies that agents a(vr), a(vs) and a(vt) are located in nodes410

vFr , vTs and vFt , respectively.411

Let us examine the maximum distance of any two agents in this final con-412

figuration. Recall that the set of edges ECL connects each clause node to413

nodes corresponding to all possible satisfying assignments for this clause. As414

a result, nodes cy and cFTF
y are not connected by an edge. Moreover, the415

shortest path between nodes cy and cFTF
y is equal to 2 (via edges in ECL and416

ELL). Therefore, agent a(cy) cannot reach node cFTF
y . Any other node cly,417

where l ∈ L \ {FTF}, to which agent a(cy) could relocate, corresponds to418

15



a truth assignment to xr, xs and xt where at least one of the variables has419

the opposite value of its assignment. Say that a(cy) chooses to move to node420

cTTF
y , then a(cy) will have a distance of 2 from agent a(vr) since a(vr) has421

moved to node vFr . Recall that node vFr is not connected by an edge to node422

cTTF
y , since xr appears in Cy but vFr does not agree with cTTF

y . Therefore,423

agents a(cy) and a(vr) will have a distance of 2.424

Since a polynomial-time (2−o(1))-approximation algorithm for MinDiam425

could distinguish between instances with an optimum solution with diameter426

1 and instances with an optimum solution with diameter 2, it would also be427

able to decide whether φ is satisfiable of not.428

4. Minimizing the Average Distance429

In this Section we describe and analyze an algorithm for minimizing the430

average pairwise distance between agents. We complement its approximation431

ratio of 2(1− 1
k
) with a tight analysis and rule out an FPTAS for MinSum.432

The main idea of the presented Algorithm 3 for MinSum is similar to the433

idea of Algorithm 2 for MinDiam. We fix a point p in the graph G as a434

gathering point and move each agent i as close as possible to p with respect435

to its energy constraint, breaking ties arbitrarily. Algorithm 3 exhaustively436

tests all points in V ∪
⋃

i S(i) as possible gathering points and selects the437

point p with a configuration C = (c1, . . . , ck) of minimum sum of pairwise438

distances between the agents, Sum(C) =
∑

i

∑
j d(ci, cj). The choice of the439

search space for gathering points is based on a characterization of optimum440

solutions, similar in look and proof to Lemmata 2 and 3:441

Lemma 5. There exists an optimum solution O for MinSum where every442

agent stops on a point in V ∪
⋃

i S(i).443

Proof. Assume for the sake of contradiction that in every optimum configu-444

ration C = (c1, . . . , cj), there is at least one agent j which stops on a point445

cj /∈ V ∪
⋃

i S(i). Define by O the set of all optimum solutions, and with446

O′ ⊆ O its subset of configurations with a minimum number of agents j447

such that cj /∈ V ∪
⋃

i S(i). We denote by C∗ = (c∗1, c
∗
2, . . . c

∗
k) a configu-448

ration with a maximum number of agents stopping on any common point449

c∗ /∈ V ∪
⋃

i S(i), among all optimum configurations of O′.450

Denote by A= the set of all agents j with stopping point c∗j = c∗. Since451

c∗ /∈ V ∪
⋃

i S(i), we must have d(pj, c
∗
j) < bj for all agents j ∈ A=. Further-452

more, since c∗ /∈ V , c∗ ∈ seg(e) for some edge {u, v}. Denote by Au the set of453
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all agents j for which c∗j ∈ seg(e) and c∗j is between u and c∗ in seg(e), or for454

which there is a shortest path from c∗j to c∗ going through u. Denote by Av455

the set of all agents j /∈ A= ∪ Au (for which, there must be a shortest path456

from c∗j to c∗ going through v, or for which c∗j ∈ seg(e) and c∗j is between v457

and c∗ in seg(e)).458

Without loss of generality, we assume |Au| ≥ |Av|. Now consider what459

happens to Sum(C∗) when we move all stopping points c∗j of agents j ∈ A=460

by an ε > 0 towards u:461

• The pairwise distances in A=, in Au, and in Av individually and the462

distances between agents in Au and agents in Av stay the same.463

• The distances between agents in A= and in Au decrease by ε each.464

• The distances between agents in A= and in Av increase by at most ε.465

Overall, Sum(C∗) changes under the moving operation by a total value of466

at most 2ε · |A=| · |Av| − 2ε · |A=| · |Au| ≤ 0. Hence we can move the stopping467

points c∗j of agents j ∈ A= until we reach (i) a point p ∈ V ∪
⋃

i S(i) or until468

we reach (ii) the stopping point p = c∗a of another agent a, whichever comes469

first. In either case, we still have for all agents j ∈ A= that d(pj, p) ≤ bj.470

Furthermore, in the first case we have found a feasible configuration with471

a smaller number of agents j such that cj /∈ V ∪
⋃

i S(i), contradicting the472

minimality of O′-configurations among configurations in O. In the second473

case, we have found a feasible configuration with a larger number of agents474

stopping on the same point p, contradicting the maximality of C∗ among475

configurations in O′.476

Theorem 6 (MinSum, 2(1 − 1
k
)-apx). Algorithm 3 is a polynomial-time477

2(1− 1
k
)-approximation algorithm (and the approximation ratio is tight).478

Proof. (Upper bound). Let C∗ = (c∗1, . . . , c
∗
k) denote the configuration com-479

puted by Algorithm 3. We denote with s∗ := Sum(C∗) the sum of all480

pairwise agent distances in C∗. Furthermore, let O = (o1, . . . , ok) be an481

optimum MinSum solution in which each agent j stops on a point oj ∈482

V ∪
⋃

i S(i) and let sOpt = Sum(O) =
∑

i

∑
j d(oi, oj). Choosing a point483

o ∈ arg minoi∈O
∑

j d(oi, oj) we get484 ∑
j

d(o, oj) = 1
k
· k
∑
j

d(o, oj) ≤ 1
k
·
∑
i

∑
j

d(oi, oj) = 1
k
· sOpt. (1)
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Algorithm 3 MinSum (2(1− 1
k
)–apx)

Input: An instance 〈G, k, (pi)i=1,...,k, (bi)i=1,...,k〉.
Output: Configuration C with Sum(C) ≤ 2(1− 1

k
) ·minfeasible C′ Sum(C′).

1: for each p ∈ V ∪
⋃

i S(i) do
2: Compute Cp := (cp1, . . . , c

p
k),

3: where either cpi = p if d(pi, p) ≤ bi, or otherwise
4: cpi ∈ arg min{d(p, ci) | ci ∈ B(i) ∪ S(i)} (breaking ties arbitrarily).
5: Compute Sum(Cp).
6: end for
7: Return arg min

Cp : p∈V ∪
⋃

i S(i)

Sum(Cp).

Consider now the configuration Co = (co1, . . . , c
o
k) which Algorithm 3 com-485

puted for point o in Step 2 and let so := Sum(Co) =
∑

i

∑
j d(coi , c

o
j). Clearly,486

we have s∗ ≤ so. Furthermore, o is reachable by at least one agent a, thus487

by Step 2 we also have coa = o. Finally, as Step 2 moves agents as close to488

o as possible, we have d(o, coj) ≤ d(o, oj). Using the triangle inequality, we489

rewrite so to get490

s∗ ≤ so =
∑
i

∑
j

d(coi , c
o
j)

≤ 2
∑
j

d(coa, c
o
j) +

∑
i 6=a

∑
j 6=a
j 6=i

(d(coi , o) + d(o, coj))

= 2
∑
j

d(o, coj) + (k − 2)
∑
i 6=a

d(coi , o) + (k − 2)
∑
j 6=a

d(o, coj)

= (2k − 2)
∑
j

d(o, coj)

≤ 2(k − 1)
∑
j

d(o, oj)
(1)
≤ 2(1− 1

k
) · sOpt.

(Lower bound). To see that the above analysis is tight, we construct in-491

stances 〈G, k, (pi)i=1,...,k, (b)i=1,...,k〉 with k agents of uniform budget b = 1,492

for which the tie-breaking in Line 3 of Algorithm 3 leads to a configuration493

C with Sum(C) = 2(1− 1
k
) · Sum(O). An example of such an instance with494

three agents of uniform budget b = 1 is given in Figure 4. We now give a495
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construction for an arbitrary number of agents k and an evaluation for each496

p ∈ V ∪
⋃

i S(i):497

Define G = (V,E, ω) with uniform edge weights ω = 1 as follows: For498

each agent i, we connect its starting position pi to nodes ui,j, ∀1 ≤ j ≤ k.499

Furthermore, we connect each node ui,i to all nodes uj,i, ∀ 1 ≤ j ≤ k. We also500

add edges {ui,i, uj,j}, ∀ 1 ≤ i < j ≤ k, such that the k nodes u1,1, . . . , uk,k501

induce a k-clique, see Figure 4. As each pair of agents i 6= j has original502

distance d(pi, pj) = 3, every configuration C must have Sum(C) ≥ k(k − 1),503

with equality only for the k-clique O = (u1,1, . . . , uk,k). For every agent i, we504

have B(i) ∪ S(i) = {pi, ui,1, . . . , ui,i, . . . , ui,k} and thus V ∪
⋃

i S(i) = V . We505

analyze the configurations Cp and Sum(Cp) =
∑

i

∑
j d(cpi , c

p
j) computed in506

Lines 2–5 for each round p ∈ V :507

• p = ua,a: Agent a will move to cpa = ua,a, while every other agent j is508

indifferent between uj,j and uj,a and thus might move to cpj = uj,a. In509

this case, agents i 6= j have distance d(cpi , c
p
j) = 1 if i = a or j = a and510

d(cpi , c
p
j) = 2 otherwise, giving Sum(Cp) = 2(k−1)·1+(k−1)(k−2)·2 =511

2(k − 1)2 = 2k−1
k
k(k − 1) = 2(1− 1

k
) · Sum(O).512

• p = ua,b (for a 6= b): Agent a will move to cpa = ua,b and agent b to513

cpb = ub,b. Every other agent j is indifferent between uj,j and uj,b, having514

both distance 2 to ua,b. In case they each choose cpj = uj,b, we get a515

configuration Cp which is symmetric to the previous case.516

• p = pa: Agent a will stay on pa, while every other agent j is indifferent517

between uj,j and uj,a. In case they each choose cpj = uj,a, we get a518

configuration Cp where any two agents i, j have distance 2., giving519

Sum(Cp) = 2k(k − 1) = 2 · Sum(O).520

Hence the approximation analysis of Algorithm 3 is tight.521

Theorem 7. There is no FPTAS for MinSum, unless P = NP.522

Proof. Assume for the sake of contradiction that there is a polynomial-time523

approximation scheme for MinSum which for all ε > 0 computes a (1 + ε)-524

approximation in time poly(k, 1
ε
). We reuse the reduction to 3Sat already525

given in Theorem 5. Recall from its proof that (i) the underlying 3Sat-526

formula φ is satisfiable if and only if there is a Near-Gathering solution C∗527

in which all agents have pairwise distance 1, and that (ii) any other solution528

C has at least one pair of agents with distance 2.529
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Figure 4: Lower bound construction for Algorithm 3 with k = 3 agents: The only optimum
MinSum configuration isO = (u1,1, u2,2, u3,3) with Sum(O) = k(k−1). In the tie-breaking
in Line 4, agents i will generally be indifferent between the options ui,i and ui,j , leading
to a configuration C with Sum(C) = 2(k − 1)2 = 2(1− 1

k ) · Sum(O).

Summing up the pairwise distances we get for (i) that Sum(C∗) = k(k−530

1), while for (ii) we have Sum(C) ≥ k(k − 1) + 1. The existence of an531

FPTAS, using ε ≤ 1
k2
, means that we can approximate Sum(C∗) to within532

(1 + 1
k2

) ·k(k−1) = k2−k+ 1− 1
k
< k(k−1) +1 ≤ Sum(C). Hence we could533

distinguish the existence of a solution C∗ from any other solution and thus534

decide satisfiability of φ in time poly(k, 1
1/k2

) = poly(k), in contradiction to535

the assumption P 6= NP.536

5. Additive Approximation and Conclusion537

In this paper, we explored the task of Near-Gathering a group of energy-538

constrained agents, whose movements are restricted by their energy budget.539

We showed how to compute, in polynomial time, an optimum solution for540

MinBall (minimizing the radius of a smallest ball containing all agents), a541

2-approximation for MinDiam (minimizing the maximum distance between542

any two agents), and a 2(1− 1
k
)-approximation for MinSum (minimizing the543

average distance between any two agents). For MinDiam, we provided a544

matching hardness result, while for MinSum, we ruled out the existence of545

an FPTAS, unless P = NP. Hence for future work, a major open problem is546

to improve upon the (in)approximability of MinSum.547

A second possible research direction for Near-Gathering is an analysis of548

additive approximation. For this, we briefly review how we can reuse our549

hardness construction of multiplicative approximation of MinDiam:550

Theorem 8. There exists no deterministic polynomial-time additive551

+(2 maxi bi − o(1))-approximation algorithm for MinDiam with node stops,552

and no deterministic polynomial-time additive +(4
3

maxi bi − o(1))-approxi-553
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mation algorithm for MinDiam with arbitrary stops, unless P = NP.554

(Proof at end of Section.)555

This is surprising for two reasons. On the one hand, not moving the agents556

at all is already an additive +(2 maxi bi)-approximation. On the other hand,557

this is the only result in this paper, in which the two scenarios of (I) node558

stops and (II) arbitrary stops differ. The difference in the hardness result559

boils down to the loss of Lemma 4 in the adaption of the proof of Theorem 5,560

which we can only fully salvage for the case of node stops. Does this mean561

that there is a polynomial-time +(2 maxi bi − o(1))-approximation for the562

scenario with arbitrary final positions? This remains completely open.563

Finally, we aim to study the reverse problem of Spreading energy-con-564

strained mobile agents, with the respective goals of (i) maximizing the radius565

of a smallest ball containing all agents, (ii) maximizing the minimum distance566

between any two agents, and (iii) maximizing the average distance between567

any two agents.568

We finish by proving the additive approximation hardness results in Theo-569

rem 8 by a similar reduction from 3Sat as the one given for the multiplicative570

(2− o(1))-approximation hardness of MinDiam. Instead of a self-contained571

proof, we describe all necessary adaptions we make in the proof of Theorem 5.572

Proof. Given an arbitrary 3Sat formula φ with n variables andm clauses, we573

first make a one-to-one copy φ′ of all its variables and all its clauses. Clearly,574

φ is satisfiable if and only if Φ := φ ∧ φ′ is satisfiable. We now construct575

an instance 〈G, k, (pi)i=1,...,k, (b)i=1,...,k〉 with k = 2n + 2m agents of uniform576

budget b and a graph G = (V,E, ω) in the same manner as for Theorem 5.577

We add weights to the edge of G in the following manner: the weight of578

each edge in Ex`∪ECL is b and the weight of each edge in E``∪E`L∪ELL is 2b.579

Overall, the main reduction idea is now the following: Φ shall be satisfiable if580

and only if there is an optimum solution of diameter 2b. Furthermore, from581

any configuration with a “good” additive approximation and small diameter,582

we can infer either a satisfiable assignment of φ or of φ′.583

⇒ We first show that if Φ is satisfiable, then there exists an optimum584

configuration C of diameter Diam(C) = 2b. This follows immediately from585

the proof of Theorem 5. Since we increased the weight of all relevant edges586

by a factor or 2b, we get with the same reasoning an optimum configuration587

C of diameter Diam(C) = 2b (instead of the previously shown 1).588
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⇐ We now show that if Φ is not satisfiable, then every solution to Min-589

Diam with node stops is of size greater than or equal to 2b + 2b = 4b.590

The difficulty lies in the fact that Lemma 4 is no longer valid, since the591

node triples vi, vTi , vFi no longer form an equilateral triangle; instead, we have592

ω({vTi , vFi }) = 2b, while vi is connected to vTi , vFi with two edges of weight b.593

Similarly, edges in ELL have weight 2b while edges in ECL have weight b.594

We now observe the following: If in a configuration C there are two agents595

i, j which stay on their starting position pi, pj, then they must have a dis-596

tance of d(pi, pj) ≥ b + 2b + b = 4b. Otherwise, there is at most one agent597

staying at its starting position. Thus in at least one of the subgraphs induced598

by φ and φ′, respectively, we can assume that all agents move to nodes in599

V` ∪ VL. Repeating the arguments given in the proof of Theorem 5, since φ600

and φ′ are not satisfiable, there must be two agents in V` and VL which are601

not connected by an edge and thus have distance at least 2b+ 2b = 4b.602

⇐ We now show that if Φ is not satisfiable then every solution to Min-603

Diam with arbitrary stops is of size greater than or equal to 2b + 4
3
b = 10

3
b.604

As in the case of node stops, we note that if in a configuration C there605

are two agents i, j which move away from their starting positions pi, pj by606

a distance of at most δ := b
3
, then they must have a distance of at least607

d(pi, pj) − δ − δ = b + 2b + b − 2δ = 10
3
b. Otherwise, there is at most one608

agent staying closer than δ to its starting position. Thus in at least one of609

the subgraphs induced by φ and φ′, respectively, each agent moves either to610

a vertex in V` ∪ VL or to a point of an edge of Ex` ∪ECL at distance at least611

δ = b
3
from its starting position. Repeating the arguments given in the proof612

of Theorem 5, since φ and φ′ are not satisfiable, there must be a variable613

agent a(vi) moving towards a node u ∈ V` and a clause agent a(cj) moving614

towards a node v ∈ VL which are not connected, i.e. {u, v} /∈ E`L. Thus615

a(vi) and a(cj) are connected with a shortest path going via vi or cj and616

hence have a distance of at least δ + b+ 2b = 10
3
b.617

Since a polynomial-time additive +(2b − o(1))-approximation algorithm618

for MinDiam with node stops could distinguish between instances with an619

optimum solution with diameter 2b and instances with an optimum solution620

with diameter 4b, it would also be able to decide whether Φ is satisfiable of621

not. Similarly a polynomial-time additive +(4
3
b− o(1))-approximation algo-622

rithm for MinDiam with arbitrary stops could distinguish between instances623

with an optimum solution with diameter 2b and instances with an optimum624

solution with diameter 10
3
b. This completes the proof.625
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