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Abstract. It is known that G-functions solutions of a linear differential equation of order
1 with coefficients in Q(z) are algebraic (of a very precise form). No general result is known
when the order is 2. In this paper, we determine the form of a G-function solution of an
inhomogeneous equation of order 1 with coefficients in Q(z), as well as that of a G-function
f of differential order 2 over Q(z) and such that f and f ′ are algebraically dependent over
C(z). Our results apply more generally to holonomic Nilsson-Gevrey arithmetic series of
order 0 that encompass G-functions.

1. Introduction

We fix an embedding of Q into C. A G-function is a power series

f(z) =

∞∑

n=0

anz
n ∈ Q[[z]]

such that:

– f(z) satisfies a non-zero linear differential equation with coefficients in Q(z);
– there exists C > 0 such that for any σ ∈ Gal(Q/Q), we have |σ(an)| ≤ Cn+1;
– there exists a sequence of positive integers dn such that dn ≤ Cn+1 and dnam is an
algebraic integer for all m ≤ n.

This class of arithmetic power series was defined by Siegel [22]. Given some sub-field
L of C, throughout the paper, by “solution of a differential operator L ∈ L(z)[ d

dz
]”, it

must be understood “solution of the homogeneous linear differential equation Ly(z) = 0”.
We say that a non-zero solution of a differential operator in L(z)[ d

dz
] of order µ is “of

order µ over L(z)” if it is not solution of a differential operator in L(z)[ d
dz
] \ {0} of order

≤ µ− 1. (Note that y(z) = z + π is of order 1 over C(z) but of order 2 over Q(z), because
(z+π)y′(z)−y(z) = 0 and y′′(z) = 0.) Amongst differential operators in Q(z)[ d

dz
] of which

G-functions can be solutions, we distinguish G-operators (precisely defined in §2); in fact,
any G-function f(z) is always solution of a G-operator, and this highly non-trivial fact
implies many special properties of the minimal linear differential equation satified by f(z)
over Q(z) (fuchsianity, rationality of exponents, etc). It is also conjectured that the class
of G-operators and the class of globally nilpotent operators in Q(z)[ d

dz
] coincide (see [2] for

more on this).
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Standard examples of G-functions are algebraic functions over Q(z) regular at the ori-
gin, as well as the generalized hypergeometric series p+1Fp[a1, . . . , ap+1; b1, . . . , bp; z] with
rational parameters aj and bj (algebraic parameters are also possible in certain circum-
stances). It is not known if there is a way to algebraically express any G-function in
terms of these two classes of functions only, although this has been the subject of some
speculations and conjectures. For instance, Dwork conjectured in [7] that any globally
nilpotent operator in Q(z)[ d

dz
] of order 2 (hence conjecturally any G-operator of order 2)

is a linear differential equation satisfied by an algebraic function over Q(z) or an algebraic
pullback of Gauss’ hypergeometric differential equation satisfied by 2F1[a, b; c; z] for some
a, b, c ∈ Q (1). Dwork’s conjecture has been disproved by Krammer [15], further counter-
examples being given later on in [5]. On a related note, Theorem 5 in [8, §7] shows that it
is very unlikely that any G-function could be written as a polynomial with coefficients in
Q of G-functions of the form µ(z) · p+1Fp[a1, . . . , ap+1; b1, . . . , bp; zλ(z)], with p ≥ 0, aj ∈ Q,

bj ∈ Q \ Z≤0, µ(z), λ(z) algebraic over Q(z) and regular at z = 0. On the other hand,
a folklore assertion is that G-functions can be obtained as suitable specialisations of the
parameters and variables of the multivariate series known as A-hypergeometric functions
(defined by Gelfand-Kapranov-Zelivinski, see [10] and references there). This is already
known to be true for algebraic functions over Q(z), see [25] for instance.

To state our results, we first present a few results of the solutions of G-operators. André
introduced in [2] the class of Nilsson-Gevrey arithmetic series of order 0, denoted by
NGA{0}C0 (see §4 for the definition). In this paper we consider only holonomic Nilsson-
Gevrey arithmetic series of order 0, and we prove the following result. By holonomic, we
mean “solution of a linear differential equation over C(z)”.

Proposition 1. Holonomic Nilsson-Gevrey arithmetic series of order 0 are exactly the
functions of the form ∑

(α,j,k)∈S

λα,j,kz
α log(z)jfα,j,k(z) (1.1)

where S is a finite subset of Q× N× N, λα,j,k ∈ C and each fα,j,k(z) is a G-function.

In this definition, the determination of log(z) is arbitrary. This notion could be also
considered at another point of C ∪ {∞} with obvious changes. It is known that any
solution of a G-operator is in NGA{0}C0 (see §2) and conversely André proved that any
holonomic element of NGA{0}C0 is solution of a G-operator (see [2, p. 720]). We shall also

consider the sub-class NGA{0}Q0 of NGA{0}C0 where the coefficients λα,j,k in Eq. (1.1) are

in Q. Algebraic functions over C(z), respectively over Q(z), are in NGA{0}C0 , respectively
in NGA{0}Q0 .

The goal of this paper is to describe the holonomic elements of NGA{0}C0 of order
2 over Q(z) and subject to certain restrictions (Proposition 2 and Theorem 1 below).

1According to this conjecture, a solution of a globally nilpotent operator could then be expressed as a
C-linear combination of functions of the form µ(z)F [zλ(z)] where µ(z), λ(z) ∈ Q(z) are regular at z = 0,
and F (z) is a solution of Gauss’ hypergeometric equation.
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They are in agreement with the “conjecture” recalled above that G-functions should be
specialisations of A-hypergeometric functions. The structure of the general holonomic
elements of NGA{0}C0 of order 2 over Q(z) remains unknown. Throughout the paper,∫
u(z)dz denotes a primitive of a function u(z) where the arbitrary complex constant

is not specified, while the definite integral
∫ z

z0
u(x)dx denotes the primitive of u(z) that

vanishes at z = z0.

To begin with, let us consider the easy case of solutions of homogeneous operators of
degree 1. We explain in §2 why the non-zero elements of NGA{0}C0 solutions of an operator
in Q(z)[ d

dz
] of order 1 are exactly the functions of the form

δ
∏

j∈J

(λj − z)sj (1.2)

where δ ∈ C, J is a finite set, λj ∈ Q and sj ∈ Q for every j ∈ J . In particular, up to a

multiplicative constant, these solutions are algebraic functions over Q(z).

Now we move to solutions of inhomogeneous operators of degree 1 (see [27, pp. 398–399]
for similar considerations in a particular case).

Proposition 2. Let f(z) /∈ Q(z) be an element of NGA{0}C0 and solution of an inhomo-
geneous differential equation f ′(z) = a(z)f(z) + b(z) with a(z) ∈ Q(z) and b(z) ∈ Q(z)∗.
Then, d

dz
− a(z) is a G-operator and letting g(z) 6= 0 be one of its solutions, we have

f(z) = g(z)

∫
b(z)

g(z)
dz. (1.3)

Remark 1. The assumptions of f(z) ensure that it is of order 2 over Q(z) (see the details
in the proof).

The important fact in Proposition 2 is that d
dz

− a(z) is a G-operator, which was not
obvious a priori.

A partial converse of Proposition 2 holds. With g(z) 6= 0 a solution of a G-operator
d
dz

− a(z) and b(z) ∈ Q(z)∗, the right-hand side of (1.3) is solution of the inhomogeneous

equation y′(z) = a(z)y(z) + b(z), and its generalized expansion at z = 0 is in NGA{0}C0 .
But it is not guaranteed that it is not in Q(z).

The assumption b(z) 6= 0 is important for the proof but not really restrictive because (1.2)
gives the form of the elements of NGA{0}C0 solutions of an operator d

dz
− a(z) ∈ Q(z)[ d

dz
].

Let us state now our main result, which deals with solutions of homogeneous operators of
degree 2 (with an additional assumption, namely that f and f ′ are algebraically dependent
over C(z)).

Theorem 1. Let f(z) 6= 0 be an element of NGA{0}C0 , holonomic of order 2 over Q(z)
and such that f(z) and f ′(z) are algebraically dependent over C(z). Let L ∈ Q(z)[ d

dz
] of

order 2 be such that Lf(z) = 0. Then, at least one of the following assertions holds:
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(i) f(z) is algebraic over C(z). More precisely, the differential equation Ly(z) = 0 has
a basis of solutions made of algebraic functions over Q(z).

(ii) There exist two solutions g(z) 6= 0, h(z) 6= 0 of (possibly distinct) G-operators of
order 1 such that

f(z) = g(z)

∫
h(z)dz. (1.4)

The functions f(z) and g(z) form a basis of solutions of the differential equation Ly(z) = 0.

Remark 2. Assertions (i) and (ii) can hold simultaneously. The function f(z) = π
√
z − e

(with its principal branch) is of order 2 over Q(z) with L = 2z d2

dz2
+ d

dz
(and 1,

√
z as a

basis), and we can take g(z) = 1 and h(z) = π/(2
√
z) in (ii). On the other hand, a function

f(z) as in (1.4) can be transcendental over C(z) with f(z), f ′(z) algebraically dependent
over C(z): take g(z) = 1 and h(z) = 1/z for instance.

A partial converse of Theorem 1 holds. Concerning (i): any function f(z) algebraic over
C(z) is in NGA{0}C0 and obviously such that f(z) and f ′(z) are algebraically dependent
over C(z). Concerning (ii): let f(z) be as in (1.4) with g(z) 6= 0, h(z) 6= 0 solutions of
G-operators of order 1 (hence both algebraic over C(z)). Then its generalized expansion
at z = 0 is in NGA{0}C0 . Moreover f(z) satisfies f ′(z) − a(z)f(z) = h(z)g(z) where
a(z) ∈ Q(z) (such that g′(z) = a(z)g(z)) and h(z)g(z) is algebraic over C(z) and of order 1
over Q(z). Hence, f(z) and f ′(z) are algebraically dependent over C(z), and f(z) is of
order ≤ 2 over Q(z).

Under the assumptions of Theorem 1, f(z) turns out to be a Liouvillian solution of the
G-operator L. Conversely, the proof of the theorem (based on Kovacic’s classification)
shows that any Liouvillian solution of a G-operator L of order 2 is either algebraic over
C(z) or of the form (1.4).

It is not easy to state simple necessary and sufficient conditions ensuring that the right-
hand side of (1.4) is a G-function, not merely a holonomic element of NGA{0}C0 , because
there are many possible situations. We can write g(z) = δzαg̃(z) and h(z) = ωzβh̃(z)

where δ, ω ∈ C∗, α, β ∈ Q and g̃(z), h̃(z) are G-functions such that g̃(0)h̃(0) 6= 0. Let

h̃(z) =
∑∞

n=0 anz
n. If we assume for instance that β > −1, then a necessary and sufficient

condition for g(z)
∫ z

0
h(x)dx to be a G-function is that α+ β ∈ Z≥−1 and δω ∈ Q. Indeed,

we have g(z)
∫ z

0
h(x)dx = δωzα+β+1g̃(z)

∑∞

n=0
anzn

β+n+1
with g̃(0)a0

β+1
6= 0.

To conclude, we mention that similar questions have already been addressed for E-
functions in Siegel’s original sense. E-functions of order 1 over Q(z) have been determined
by Shidlovskii [24, p. 184]. Building upon a remark in [2, p. 724, §4.5], E-functions so-
lutions of inhomogeneous differential equations of order 1 over Q(z) have been classified
by Gorelov [11], a result reproved in [19] for E-functions in the restricted sense. Gorelov
eventually classified E-functions of order 2 over Q(z) in [12], and a different proof was
also given in [20] for E-functions in the restricted sense. This classification involves only

1F1 hypergeometric series with rational parameters. We also emphasize that the above
Theorem 1 is an analogue of Theorem 3 of [19], and we drew inspiration of the proof of the
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latter (based on Kovacic’s theorem [14] adapted to Q(z)) to prove the former; the main
difference is that in the proof of Theorem 1 in §3 below, Cases 1, 2 and 3 can happen in
Kovacic’s classification, while in the proof of [19, Theorem 3] only Case 1 can happen. It
does not seem that the methods of [12] or [20] can be easily adapted to classify G-functions
of order 2 over Q(z).

The structure of this paper is as follows. In §2 we recall the results we shall use on
G-operators, and study the solutions in NGA{0}C0 of G-operators of order 1, and those of
G-operators of order 2 reducible over Q(z). We prove Proposition 2, and also that any
L ∈ Q(z)[ d

dz
] is of minimal order over Q(z) for one of its solutions (viewed as an element of

a Picard-Vessiot extension of Ly(z) = 0 over C(z)) – a result that does not hold with Q(z)
replaced by C(z). In §3 we prove Theorem 1. At last in §4 we prove Proposition 1, and in
§5 an independent result that we have not found in the literature: any function algebraic
over C(z) and holonomic over Q(z) is a C-linear combination of functions algebraic over
Q(z).

Acknowledgements. We thank C. Hardouin, J. Roques and J.-A. Weil for patiently
answering our questions on differential Galois theory (in particular for pointing a crucial
result in [13]) and Y. André for confirming to us that a result of his on G-functions (scholie

in [1, p. 123]) can be extended to holonomic elements of NGA{0}Q0 with the same proof. We
also thank M. Singer for his comments on our Proposition 7 in the final part of the paper,
and for sending us his own alternative proof of it (not reproduced here). Finally, let us
mention that the starting point of this paper was a question of the referee of our paper [8]:
he asked us if something could be said of G-functions solutions of inhomogeneous equations
of order 1 over Q(z). Both authors have partially been funded by the ANR project De
Rerum Natura (ANR-19-CE40-0018).

2. Some results on G-operators

Consider a differential system Y ′(z) = A(z)Y (z) with A(z) ∈ Ms×s(Q(z)). It is im-
mediate that Y (n) = An(z)Y (z) where the sequence of matrices (An)n≥1 is defined by
An+1 = AnA1 + A′

n, A1 := A.
Let T (z) ∈ Q[z] \ {0} (of minimal degree) such that T (z)A(z) has entries in Q[z]. It is

easy to check by induction that, for every n, T (z)nAn(z) has entries in Q[z]. Let Dk ≥ 1

denote the least integer such that DkT (z)n

n!
An(z), n = 1, . . . , k, all have entries in OQ[z].

We say that A(z) satisfies Galochkin’s condition if Dk has at most geometric growth (see
[9]). We say that the differential system Y ′(z) = A(z)Y (z) is a G-operator when A(z)
satisfies Galochkin’s condition. By extension, a differential operator in C(z)[ d

dz
] is said

to be a G-operator when its companion differential system is a G-operator; in particular
there exists p(z) ∈ C(z) such that p(z)L ∈ Q(z)[ d

dz
] and there is no loss of generality in

considering that G-operators are in Q(z)[ d
dz
].
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If L1, L2 ∈ Q(z)[ d
dz
] are G-operators, then L1L2 is a G-operator. Conversely, if L ∈

Q(z)[ d
dz
] is a G-operator that can be factorized as L = L1L2 with L1, L2 ∈ Q(z)[ d

dz
], then

L1 and L2 are G-operators. See [1] or [16, p. 16, Corollary 2] for a proof.
André [1] proved that Galochkin’s condition is equivalent to another one introduced by

Bombieri [3]. Bombieri’s condition and a result of Katz imply that a G-operator is fuchsian
with rational exponents. Moreover, various estimates from the theory of p-adic differential
equations imply that at any point of Q ∪ {∞}, a G-operator has a local basis of solutions
(essentially) made of G-functions. In particular and more precisely, the local solutions at
z = 0 of a G-operator are in NGA{0}C0 . The converse is true by a theorem of André quoted
below.

It is difficult to prove that a differential operator is G-operator because Galochkin’s
condition can be hard to verify. Chudnovsky [6] proved the following sufficient condition:
if L ∈ Q(z)[ d

dz
] \ {0} is of minimal order over Q(z) for some G-function, then L is a G-

operator. In [2, p.720], André extended Chudnovsky’s theorem: any holonomic element of
NGA{0}C0 is solution of a G-operator. Therefore, if L ∈ Q(z)[ d

dz
] \ {0} is of minimal order

over Q(z) for some element in NGA{0}C0 , it is a G-operator. We will mention this result
as André’s minimality theorem in the rest of the paper.

A complete characterization of G-operators of order ≥ 2 is not known, but this can be
done when the order is 1.

Proposition 3. (i) If a non-zero element y(z) of NGA{0}C0 is a solution of L ∈ Q(z)[ d
dz
]

of order 1, then L is a G-operator and we have y(z) = δ
∏

j∈J(λj − z)sj where δ ∈ C∗, J

is a finite set, λj ∈ Q and sj ∈ Q for every j ∈ J .
(ii) G-operators of order 1 are exactly the differential operators in Q(z)[ d

dz
] of order 1

which are fuchsian and with rational exponents.

Proof. First of all, if y(z) is a non-zero element of NGA{0}C0 and L ∈ Q(z)[ d
dz
] is a differen-

tial operator of order 1 such that Ly(z) = 0, then L is clearly of minimal order over Q(z)
for y(z). By André’s minimality theorem (see also Remark 3 below), L is a G-operator.

Now consider L ∈ Q(z)[ d
dz
] of order 1 and fuchsian with rational exponents. Without

loss of generality, we assume that L is monic, ie that

L =
d

dz
−

∑

j∈J

sj
λj − z

with λj ∈ Q (pairwise distinct) and sj ∈ Q for all j ∈ J (see [26, Lemma 6.11, p. 174]).
Hence, the solutions of L are of the form

δ
∏

j∈J

(λj − z)sj ∈ NGA{0}C0

where δ ∈ C, J is a finite set, λj ∈ Q and sj ∈ Q for every j ∈ J . (If J = ∅, the value of

the product is 1.) Since L is minimal over Q(z) for the non-zero solution with δ = 1, as
above we deduce that L is a G-operator. Since every G-operator is fuchsian with rational
exponents, this concludes the proof. �
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Remark 3. André’s minimality theorem is a general result for differential operators of
arbitrary orders, and it can be avoided in this particular situation. Let us prove directly
that Galochkin’s condition holds for the operator d

dz
− A1(z) with A1(z) :=

∑
j∈J

sj
λj−z

.

Recall that we define a sequence of matrices (An)n≥1 by y(n)(z) = An(z)y(z) where y(z) is
any solution of d

dz
−A1(z) (the sequence is independent of the solution). Let J = {1, . . . , p}.

Taking y(z) =
∏p

j=1(λj − z)sj , Leibniz’s formula shows that

An(z) = n!
∑

n1+···+np=n

( p∏

j=1

(−sj)nj

nj !

1

(λj − z)nj

)
.

Since for any t ∈ Q, the common denominator of the numbers (t)n
n!

, n = 0, . . . , k, has at
most geometric growth in k (Siegel), it follows that Galochkin’s condition is satisfied by

the matrices T (z)n

n!
An(z), n = 1, . . . , k, with T (z) =

∏p
j=1(λj − z).

Proposition 4. Let f(z) ∈ NGA{0}C0 be a non-zero solution of a G-operator L ∈ Q(z)[ d
dz
]

of order 2 which is reducible over Q(z). Then, for any factorization L = MN with M,N ∈
Q(z)[ d

dz
] of order 1,

(i) M and N are both G-operators,
(ii) there exist a solution g(z) 6= 0 of N (and thus of L) and a solution k(z) of M such

that

f(z) = g(z)

∫
k(z)

g(z)
dz. (2.1)

Proof. Since L of order 2 is reducible over Q(z), there exist η(z), ̟(z), ν(z) ∈ Q(z), ν(z) 6=
0, such that

L = ν(z)
( d

dz
− η(z)

)( d

dz
−̟(z)

)
.

L being a G-operator, this is also the case of M := ν(z)( d
dz

− η(z)) and N := d
dz

−̟(z).
We set k(z) := f ′(z)−̟(z)f(z), so that Mk(z) = 0. (2)
We now have to solve for f(z) the inhomogeneous equation f ′ = ̟f + k. This is a well-

known exercise. Let g(z) be a non-zero solution of the homogeneous equation y′ = ̟y.
Then, the general solution of y′ = ̟y + k is of the form

y(z) = g(z)

∫
k(z)

g(z)
dz.

In particular, f(z) is of this form and the proof is complete. �

Remark 4. The converse of Proposition 4 holds: if g, k are G-functions such that Ng(z) =
Mk(z) = 0, where M,N ∈ Q(z)[ d

dz
] are of order 1, then we may assume that N = d

dz
− a

and M = d
dz

− b, and any function f defined by (1.4) satisfies f ′(z) − a(z)f(z) = k(z) so

that MNf(z) = 0, and its generalized expansion at z = 0 is in NGA{0}C0 .
2Notice that if f(z) is a G-function, both f(z) and f ′(z) are regular at z = 0, and ̟(z) ∈ Q(z), so that

if k(z) has a singularity at z = 0, then it is a pole.
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The operatorsM and N are not unique (even in the class of G-operators), as the classical

factorization d2

dz2
= ( d

dz
− 1

z+λ
)( d

dz
+ 1

z+λ
), λ ∈ C arbitrary, shows; all these operators are

G-operators when λ ∈ Q. Hence the representation of f(z) as in (2.1) is not unique.

We are now able, using Proposition 4, to deduce Proposition 2.
We have f ′(z) = a(z)f(z) + b(z). Since b(z) 6= 0, f(z) is then trivially a solution of the

(reducible) differential operator

L :=
( d

dz
− b′(z)

b(z)

)( d

dz
− a(z)

)
∈ Q(z)

[ d

dz

]
\ {0}.

Because f(z) 6= 0, f(z) is not of order 0 over Q(z) and because b(z) 6= 0 and f(z) /∈ Q(z),
f(z) is not of order 1 over Q(z) either. In the latter case, assume on the contrary that
f ′(z) = c(z)f(z) for some c(z) ∈ Q(z): we then have a(z)f(z) + b(z) = c(z)f(z), so that
either f(z) ∈ Q(z) or b(z) = 0, which is impossible. Hence, Lf(z) = 0 is of minimal order
for f(z) over Q(z). By André’s minimality theorem, it follows that L is a G-operator, of
which f(z) ∈ NGA{0}C0 is a solution. We are thus in the situation of Proposition 4. More
precisely, in the proof of that proposition, we may take ̟(z) := a(z), η(z) := b′(z)/b(z),
and ν(z) := 1; the function k(z) defined there by k(z) := f ′(z) − ̟(z)f(z) is thus equal
to b(z). This concludes the proof of Proposition 2.

We end this section with a simple but interesting result which can be viewed as a converse
to André’s minimality theorem when applied to a G-operator. We recall that Q is viewed
as a sub-field of C.

Proposition 5. Any given L ∈ Q(z)[ d
dz
] admits a solution for which L is of minimal order

over Q(z).

Remark 5. This is false if Q(z) is replaced by C(z). Consider for instance again L = d2

dz2
∈

C(z)[ d
dz
]. The solutions of L are az + b, a, b ∈ C, and any particular function az + b is

solution of (az + b) d
dz

− a ∈ C(z)[ d
dz
]. This is of course another point of view on the above

mentioned factorization of d2

dz2
.

Proof. We can assume that L 6= 0; we letm ≥ 1 be the order of L. Let α ∈ Q be an ordinary
point of L and let f1(z), . . . , fm(z) denote a local C-basis of solutions of L at z = α where
each fj(z) is in Q[[z − α]]. Let ω1, . . . , ωm be m complex numbers linearly independent
over Q (for instance ωj = πj) and consider the solution h(z) =

∑m
j=1 ωjfj(z) 6= 0 of L. Let

M ∈ Q(z)[ d
dz
] be of minimal order for h(z). We have

Mh =

m∑

j=1

ωjMfj = 0. (2.2)

Consider the Laurent series expansions Mfj(z) =
∑∞

k=−K φk,j(z − α)k, j = 1, . . . , m,

φk,j ∈ Q (where K ≥ 0 can be chosen the same for all j). From (2.2), we deduce the
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relations
m∑

j=1

φk,jωj = 0, ∀k ≥ −K.

The assumption on the ωj’s implies that φk,j = 0 for all k ≥ −K and all j ∈ {1, . . . , m}.
In other words, Mfj(z) = 0 for every j. By C-linear independence of the fj ’s, we deduce
that the order of M is m. Thus M = L, up to multiplication by a non-zero element of
Q(z). �

3. Proof of Theorem 1

Let f(z) 6= 0 be an element of NGA{0}C0 , holonomic of order 2 over Q(z). Let L ∈
Q(z)[ d

dz
] of order 2 be such that Lf(z) = 0: it is a G-operator by André’s minimality

theorem. The differential Galois groups of L over C(z) and Q(z) respectively are “equal”
in the sense that they are defined by the same algebraic relations, ie the former is obtained
from the latter by extension of scalars from Q to C; see Proposition 1.3.2 in [13, p. 19]
(due to Gabber) for the precise statement of this fact. Moreover, assuming that f(z) and
f ′(z) are algebraically dependent over C(z), the differential Galois group of L over C(z)
does not contain SL2(C). Therefore the differential Galois group of L over Q(z) does not
contain SL2(Q). Kovacic’s classification [14, §1.2, Theorem] (adapted to the case where
the field of constants is Q; see [21]) then implies that one of the following cases holds:

Case 1: L has a non-zero solution g(z) such that g′(z) = a(z)g(z) for some a(z) ∈ Q(z).

Case 2: L has a basis of solutions g(z)k(z) and h(z)k(z) such that g(z) and h(z) are
algebraic over Q(z) and k′(z) = a(z)k(z) for some a(z) ∈ Q(z).

Case 3: L has a basis of solutions g(z) and h(z) such that g′(z) = a(z)g(z) and
h′(z) = b(z)h(z) where a(z) and b(z) are distinct quadratic functions, solutions of the
same quadratic equation over Q(z).

Before going on, we give some details on bases of solutions. In Cases 2 and 3, Kovacic’s
analysis provides a priori Q-bases of solutions with the stated properties. We have to
explain why these solutions also form C-bases. This is in fact an immediate application of
Corollary 1.13 in [26, p. 10] but let us explain this in our situation. By Lemma 1.12 in
[26, p. 9], two elements u, v of a differential field with field of constants C (of characteristic
0) are linearly independent over C if and only if their wronskian uv′ − u′v is non-zero.
Consider now a differential operator M ∈ Q(z)[ d

dz
] of order 2 with a Q-basis of solutions

f, g in a Picard-Vessiot extension of My(z) = 0 over Q(z). Notice that f and g are also
elements of a Picard-Vessiot extension of My(z) = 0 over C(z); since their wronskian is
non-zero, f and g remain linearly independent over C. Hence, f and g also form a C-basis
of M . This explains why in Cases 2 and 3, the bases of solutions of L are also bases over
C, a fact that will be used in the discussions below.
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3.1. Discussion of Case 1. The differential operator N := d
dz

− a(z) ∈ Q(z)[ d
dz
] is a

right-factor of the G-operator L ∈ Q(z)[ d
dz
]. Hence L is reducible over Q(z) and we have

L = MN with M,N ∈ Q(z)[ d
dz
] both of order 1. We can thus apply Proposition 4: we have

that f(z) = g(z)
∫
k(z)/g(z)dz where g(z) 6= 0 and k(z) are solutions of the G-operators N

andM respectively. Now, the expressions of g(z) and k(z) given by Proposition 3 show that
h(z) := k(z)/g(z) is also a solution of a G-operator of order 1. Moreover, the functions f(z)
and g(z) are linearly independent over C. Indeed, if on the contrary c1f(z) + c2g(z) = 0
for some c1, c2 ∈ C not both 0, then necessarily c1 6= 0 and thus f(z) would be of order
≤ 1 over Q(z) which is excluded. This also implies that h(z) can not be zero. We are thus
exactly in situation (ii) of Theorem 1.

3.2. Discussion of Case 2. We work in a suitable simply connected cut plane where all
functions under consideration are analytic. The function G := gk is a solution of L, hence
it is in NGA{0}C0 . It follows that k = G/g has moderate growth at its finite singularities
and ∞. Hence, d

dz
− a(z) ∈ Q(z)[ d

dz
] is fuchsian by Fuchs’ criterion (see [18, p. 55]), and

we denote its finite singularities by λj, j ∈ J ; they are all in Q. We have

k(z) = δ
∏

j∈J

(λj − z)sj

with δ ∈ C∗ and sj ∈ C for all j. We now prove that sj ∈ Q. Indeed, in the local
generalized expansion (around any β ∈ C)

G(z)

g(z)
=

∑

(α,j,k)∈S

λα,j,k(z − β)α log(z − β)jGα,j,k(z − β)

obtained from those of G and g, with Gα,j,k(z − β) ∈ C[[z − β]], the exponents α are in Q

because g is an algebraic function and G is a solution of the G-operator L with rational
exponents. Therefore sj ∈ Q for any j, and δ−1k(z) is algebraic over Q(z).

In conclusion, δ−1g(z)k(z) and δ−1h(z)k(z) are algebraic functions over Q(z) and they
form a basis of L, in accordance with (i) of Theorem 1.

3.3. Discussion of Case 3. This case is more complicated. We work in a suitable simply
connected cut plane where all functions under consideration are analytic, and fix an arbi-
trary determination of the square root function. The quadraticity assumption on a and b
ensures the existence of r, s ∈ Q(z) such that

√
s /∈ Q(z), a = r+

√
s and b = r−√

s. Since
g and h are solutions of the G-operator L, they are in NGA{0}C0 . From now on, we limit
our discussion to the case of g because the results can be transfered immediately to h.

From the equation g′ = (r +
√
s)g, we deduce that

g(z) = c exp
(∫

r(z)dz
)
exp

(∫ √
s(z)dz

)

for some c ∈ C∗, where
∫
denotes arbitrary but fixed primitives of the functions involved.

The value of the constant c 6= 0 is in fact arbitrary because we can of course replace
g by any of its non-zero constant multiples in the above discussion. We now explain
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how to assign a specific value to c that will suit our goals. Notice that the function
g̃(z) := exp(−

∫
r(z)dz)g(z) = c exp(

∫ √
s(z)dz) satisfies g̃′ =

√
sg̃ and that the local

expansion at z = 0 of
∫ √

s(z)dz can be written as α+β log(z)+R(z) for some α ∈ C, β ∈ Q

and R ∈ Q((z1/2)) with no constant term. We set c := exp(−α) (which now completely
defines g(z)) so that the local expansion at z = 0 of g̃(z) is in zβ · exp(P (z−1/2)) ·Q[[z1/2]]
for some P ∈ Q[z] such that P (0) = 0. We shall prove below that exp(−

∫
r(z)dz) is

algebraic over Q(z) (up to a mutiplicative constant), from which we shall deduce that

g̃(z) ∈ NGA{0}Q0 . We will then prove that g̃(z) is algebraic over Q(z).
Using g′ = (r +

√
s)g and g′′ = ((r +

√
s)′ + (r +

√
s)2)g, it is immediate to check that

g(z) is a solution of the operator

M :=
d2

dz2
−

(
2r +

s′

2s

) d

dz
+ r2 − r′ +

rs′

2s
− s ∈ Q(z)

[ d

dz

]
. (3.1)

(Another solution of M is h(z).) Let us perform the euclidean right-division of L by M :
there exist P ∈ Q(z)\{0} and R ∈ Q(z)[ d

dz
] such that L = PM+R where the order of R is

0 or 1. Because Lg(z) = Mg(z) = 0, we have Rg(z) = 0. Comparing with g′ = (r +
√
s)g,

we deduce that necessarily R = 0. Consequently, L = PM and thus M is also a G-operator
for these particular r(z) and s(z).

Therefore M is fuchsian with rational exponents: denoting by z1, . . . , zm ∈ Q its (pair-
wise distinct) finite singularities, we have

−2r(z)− s′(z)

2s(z)
=

m∑

j=1

1− ρ1,j − ρ2,j
z − zj

(3.2)

where for each j, ρ1,j ∈ Q and ρ2,j ∈ Q are the local exponents of M at zj (see [18,

p. 77, Eqs. (20) and (21)]). Writing s(z) = δ
∏k

j=1(z − wj)
sj where δ ∈ Q

∗
and wj ∈ Q,

sj ∈ Z \ {0} for each j, we have

s′(z)

s(z)
=

k∑

j=1

sj
z − wj

. (3.3)

Using (3.3) in (3.2), we deduce that

r(z) =

ℓ∑

j=1

tj
z − αj

(3.4)

for some αj ∈ Q and tj ∈ Q for every j. From (3.4), it follows as claimed that there exists
d ∈ C∗ such that

exp
(∫

r(z)dz
)
= d

ℓ∏

j=1

(z − αj)
tj ,

ie that exp(
∫
r(z)dz) is algebraic over Q(z) up to a multiplicative constant. Hence, g̃(z) =

d−1
∏ℓ

j=1(z − αj)
−tjg(z) ∈ NGA{0}C0 . Now we have also proved that the local expansion
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at z = 0 of g̃(z) belongs to zβ · exp(P (z−1/2)) ·Q[[z1/2]] for some β ∈ Q and P ∈ Q[z] such

that P (0) = 0; it follows that g̃(z) ∈ NGA{0}Q0 .
Now, the function g̃(z) is solution of the operator N := d2

dz2
− s′(z)

2s(z)
d
dz

− s(z). (This is

formally the operator obtained from M in (3.1) with r(z) = 0.) Notice that g̃(z) is of order
2 over Q(z) because it is not 0 and g̃′ =

√
sg̃ rules out the possibility that it is of order 1

over Q(z). Therefore, N is a G-operator by André’s minimality theorem. A key remark
is that 1/g̃(z) is also a solution of N . Therefore, 1/g̃(z) ∈ NGA{0}C0 . Since the local
expansion at z = 0 of 1/g̃(z) belongs to z−β · exp(−P (z−1/2)) ·Q[[z1/2]] for some β ∈ Q and

P ∈ Q[z] such that P (0) = 0, we deduce that 1/g̃(z) is in NGA{0}Q0 . By the scholie in [1,
p. 123] (the proof of which encompasses our case), we conclude that g̃(z) is algebraic over
Q(z). Therefore, up to a multiplicative constant in C, g(z) is also algebraic over Q(z).

The same arguments show that h(z) is algebraic over Q(z), up to a multiplicative con-
stant in C. In other words, there exist u, v ∈ C∗ such that ug(z) and vh(z) are algebraic
over Q(z), and form a basis of L. This is in accordance with (i) of Theorem 1, the proof
of which is now complete.

4. Holonomic Nilsson-Gevrey arithmetic series

André introduced in [2] the class of Nilsson-Gevrey arithmetic series of order 0, defined
as functions of the form ∑

(α,j,k)∈S

λα,j,kz
α log(z)jfα,j,k(z) (4.1)

where S is a finite subset of Q × N × N, λα,j,k ∈ C and each fα,j,k(z) is a power series∑∞

n=0 anz
n with algebraic coefficients an (which depend also on α, j, k) such that:

– there exists C > 0 such that for any σ ∈ Gal(Q/Q), we have |σ(an)| ≤ Cn+1;
– there exists a sequence of positive integers dn such that dn ≤ Cn+1 and dnam is an
algebraic integer for all m ≤ n.

In other words, fα,j,k(z) satisfies the requirements to be a G-function, except that it
is not assumed to be holonomic. In this section we prove Proposition 1 stated in the
introduction, namely: a Nilsson-Gevrey arithmetic series of order 0 is holonomic if, and
only if, it can be written as (4.1) with G-functions fα,j,k(z). Indeed we shall prove the
following more precise result.

Proposition 6. Let J ≥ 0, and A ⊂ C be a finite subset such that α−α′ ∈ Z with α, α′ ∈ A
implies α = α′. For any pair (α, j) ∈ A×{0, . . . , J} let K(α, j) be a non-negative integer,
(fα,j,k)1≤k≤K(α,j) be a family of K(α, j) functions holomorphic at 0 with algebraic Taylor

coefficients, and (λα,j,k)1≤k≤K(α,j) be complex numbers linearly independent over Q. Then
the function

f(z) =
∑

α∈A

J∑

j=0

K(α,j)∑

k=1

λα,j,kz
α log(z)jfα,j,k(z)

is holonomic if, and only if, all functions fα,j,k(z) are holonomic.
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This result shows that Proposition 1 can be adapted easily to Nilsson-Gevrey arithmetic
series of negative order (for instance with E-functions instead of G-functions). More gen-
erally, the assumptions on the growth and denominators of the Taylor coefficients of the
power series fα,j,k(z) are not necessary here.

Since each fα,j,k(z) has algebraic Taylor coefficients at 0, it is holonomic (i.e., solution of
a differential equation with coefficients in C(z)) if, and only if, it is solution of a differential
equation with coefficients in Q(z). Proposition 1 shows that the same property holds with
f(z).

Proof. If all fα,j,k(z) are holonomic, then so is f . To prove the converse, we assume that f
is holonomic and for each (α, j) ∈ A× {0, . . . , J} we consider

fα,j(z) =

K(α,j)∑

k=1

λα,j,kfα,j,k(z) ∈ C[[z]] (4.2)

so that

f(z) =
∑

α∈A

J∑

j=0

zα log(z)jfα,j(z). (4.3)

Our first step is to prove that fα,j is holonomic for any pair (α, j). With this aim in
view, for each α ∈ A we denote by Jα the largest integer j such that fα,j is not identically
zero; shrinking A if necessary we assume that for each α there exists such a j. Then we
shall prove by induction on S :=

∑
α∈A(1+ Jα) that if f is holonomic in Eq. (4.3) then all

fα,j are.
This property holds trivially if S = 0, because A = ∅ in this case. Let us assume that

S > 0, and that it holds for S − 1. Since S > 0 we have A 6= ∅; we choose α0 ∈ A. Upon
dividing by zα0 we may assume that α0 = 0. We denote by T the monodromy around the
origin. Then Eq. (4.3) provides an expression of the form

(Tf − f)(z) =
∑

α∈A′

J ′

α∑

j=0

zα log(z)jgα,j(z) (4.4)

with functions gα,j(z) holomorphic at 0, where A \ {0} ⊂ A′ ⊂ A and J ′
α = Jα for any

α ∈ A \ {0}. Moreover, if J0 = 0 then 0 6∈ A′; otherwise 0 ∈ A′ and J ′
0 = J0 − 1. In both

cases Eq. (4.4) corresponds to S ′ =
∑

α∈A′(1+J ′
α) = S−1. Using the induction hypothesis

we deduce that all gα,j are holonomic. Now since the fα,j and gα,j are holomorphic at 0,
it is not difficult to express all functions gα′,j′ as linear combinations of the fα,j (and f0,0
does not appear in this computation since Tf0,0 − f0,0 = 0). The underlying matrix is
invertible (since it is block-wise triangular with non-zero diagonal coefficients) so that any
fα,j (with (α, j) 6= 0, 0) is a C-linear combination of the holonomic functions gα′,j′, and
therefore is holonomic. Using Eq. (4.3) it follows that f0,0 is holonomic too: this concludes
the inductive proof.
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Let us move now to the second part of the proof of Proposition 6. Recall from Eq. (4.2)
that

fα,j(z) =

K(α,j)∑

k=1

λα,j,kfα,j,k(z). (4.5)

For simplicity we write h(z) = fα,j(z), hk(z) = fα,j,k(z), and λk = λα,j,k; then h =∑K
k=1 λkhk with K = K(α, j) is holonomic, the complex numbers λk are Q-linearly inde-

pendent, and hk ∈ Q[[z]]. Our aim is to prove that all hk are holonomic.

We consider the subspace F of CK consisting in all a = (a1, . . . , aK) such that
∑K

k=1 akhk

is holonomic. We are going to prove that F is defined over Q, i.e. that there exists a basis

of F consisting of elements of Q
K

(this is equivalent to the existence of a system of linear
equations with algebraic coefficients that defines F : see [4]). Since (λ1, . . . , λK) ∈ F and
the λk are Q-linearly independent, this implies F = CK so that all hk are holonomic.

Since F is finite-dimensional, there exists a non-zero differential operator L ∈ C[z, d
dz
]

such that L(
∑K

k=1 akhk) = 0 for any a ∈ F . Let µ and δ denote, respectively, the order and
degree of L. We consider the subspace V of C[[z]] spanned by the power series zi( d

dz
)jhk

with 0 ≤ i ≤ δ, 0 ≤ j ≤ µ, 1 ≤ k ≤ K. Since hk ∈ Q[[z]] for any k, this subspace V is
defined over Q: there exists a basis (v1, . . . , vN) of V such that vℓ ∈ Q[[z]] for any ℓ. For
any a ∈ CK we denote by M(a) ∈ MN,(µ+1)(δ+1)(C) the matrix whose columns are given

by the coordinates of zi( d
dz
)j(

∑K
k=1 akhk) in the basis (v1, . . . , vN); then each coefficient of

M(a) is a Q-linear combination of a1, . . . , aK (with coefficients independent from a). Now
for a ∈ CK the following assertions are equivalent :

• a ∈ F
• ∑K

k=1 akhk is annihilated by a non-zero differential operator of degree at most δ and
order at most µ

• the columns of M(a) are linearly dependent (over C)
• M(a) has rank less than (µ+ 1)(δ + 1)
• All minors of size (µ+ 1)(δ + 1) of M(a) are equal to 0.

Now each minor ofM(a) is a polynomial in a1, . . . , aK with algebraic coefficients. Therefore
F is the zero locus in CM of a finite family of polynomials with algebraic coefficients. Since
F is also a vector subspace of CM , as such it is defined over Q. This concludes the proof
of Proposition 6. �

5. A result on algebraic functions

While searching for a proof of Theorem 1, we proved a result of independent interest
which is not used in the paper. We have not seen it in the literature. M. Singer could
not find it either and he sent us his own proof based on differential Galois theory. Our
approach presented below is different.

Proposition 7. Let f(z) be a function algebraic over C(z), solution of a differential equa-
tion Ly(z) = 0 with L ∈ Q(z)[ d

dz
] \ {0}. Then there exist complex numbers λ1, . . . , λp and
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functions f1(z), . . . , fp(z) algebraic over Q(z) such that Lfi(z) = 0 for each i and

f(z) =

p∑

i=1

λifi(z).

Proof. Let us fix a simply connected cut plane which does not contain any singularity of
L, and on which a determination of log(z) is fixed. We choose a non-singular point z0 ∈ Q

in this cut plane. A solution of Ly = 0 will be considered as a function on this cut plane,
and identified with its Taylor expansion at z0. Notice that if such a solution has algebraic
Taylor coefficients at z0, then it is algebraic over C(z) if, and only if, it is algebraic over
Q(z).

Let p denote the order of L, and (f1, . . . , fp) be a basis of solutions of Ly = 0, with

algebraic Taylor coefficients at z0. Denote by A the Q-vector space of all functions algebraic
over Q(z), and let

V = A ∩ SpanQ(f1, . . . , fp)

denote the set of solutions of L that are algebraic over Q(z) and have algebraic Taylor
coefficients at z0. Let (g1, . . . , gr) be a basis of this Q-vector space, and h1, . . . , hq be such
that (g1, . . . , gr, h1, . . . , hq) is a Q-basis of the space SpanQ(f1, . . . , fp) of solutions of Ly = 0
with algebraic Taylor coefficients at z0. We have 0 ≤ r, q ≤ p and r + q = p. If q = 0 then
r = p and SpanQ(f1, . . . , fp) = V ⊂ A: all functions f1, . . . , fp are algebraic over Q(z), and
Proposition 7 is proved.

Therefore we may assume that q ≥ 1. There exist κ1, . . . , κp ∈ C such that

f = κ1h1 + . . . κqhq + κq+1g1 + . . . κpgr.

Since g1, . . . , gr and f are algebraic over C(z), so is κ1h1+ . . . κqhq = f −κq+1g1− . . . κpgr.
Let I denote the set of all I ⊂ {1, . . . , q} for which there exist complex numbers µi, i ∈ I,
not all zero, such that

∑
i∈I µihi(z) is algebraic over C(z). If κi = 0 for any i ∈ {1, . . . , q}

then f = κq+1g1+ . . .+κpgr and Proposition 7 is proved. Otherwise we have {1, . . . , q} ∈ I
by taking µi = κi for any i, and we shall deduce a contradiction by considering an element
I of I with minimal cardinality.

If I = {i} for some i, then hi is algebraic over C(z); since hi has algebraic Taylor
coefficients at z0, it is algebraic over Q(z), so that hi ∈ V = SpanQ(g1, . . . , gr): this
contradicts the definition of h1, . . . , hq.

Therefore Card I ≥ 2. Let us choose i0 ∈ I; by minimality of I we have µi0 6= 0. Let
us prove the µi/µi0 is transcendental for at least one i ∈ I. Indeed, if all these numbers
were algebraic, then µ−1

i0

∑
i∈I µihi(z) would have algebraic Taylor coefficients at z0 while

being algebraic over C(z). Therefore it would be algebraic over Q(z), and belong to
V = A∩ SpanQ(f1, . . . , fp). Since it is a non-zero element of SpanQ(h1, . . . , hq) this would
contradict the definition of h1, . . . , hq.

We have proved that there exists i1 ∈ I such that µi1/µi0 is transcendental. Moreover,
there exists P (z,X) =

∑t
k=0 Pk(z)X

k ∈ C[z,X ] \ {0} such that P (z,
∑

i∈I µihi(z)) = 0. In
other words, all Taylor coefficients at z0 of this function of z are zero. Notice that each such
coefficient is a polynomial with algebraic coefficients in the µi, i ∈ I, and the coefficients
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of the Pk(z). Let K denote a sub-field of C, of finite transcendence degree over Q, that
contains the µi, i ∈ I, and the coefficients of the Pk(z). Denote by d the transcendence
degree of K over Q. Since µi1/µi0 is transcendental and belongs to K, we have d ≥ 1. Let
θ1, . . . , θd denote a transcendence basis of K over Q (see for instance [17, p. 109, Definition
9.8]). Since C is not coutable, there exist α1, . . . , αd ∈ C such that θ1, . . . , θd, α1, . . . , αd

are algebraically independent over Q. Denote by σ : Q(θ1, . . . , θd) → Q(α1, . . . , αd) the
morphism of Q-algebras defined by σ(θj) = αj for any j ∈ {1, . . . , d}; in other words,
we have σ(R(θ1, . . . , θd)) = R(α1, . . . , αd) for any R ∈ Q(X1, . . . , Xd). Since K is an
algebraic extension of Q(θ1, . . . , θd), σ can be extended to a morphism K → L still denoted
by σ, where L is an algebraic extension of Q(α1, . . . , αd) (see [17, Proposition 2.2 and
Theorem 6.8]). If σ(µi1/µi0) = µi1/µi0 , then this element belongs to both K and L, so
that it is algebraic over both Q(θ1, . . . , θd) and Q(α1, . . . , αd). Since θ1, . . . , θd, α1, . . . , αd

are algebraically independent over Q, this implies µi1/µi0 ∈ Q, which is a contradiction.
Therefore we have σ(µi1/µi0) 6= µi1/µi0 .

Now recall that all Taylor coefficients at z0 of P (z,
∑

i∈I µihi(z)) are zero, and that
P (z,X) ∈ K[z,X ] \ {0} by construction of K. Denote by P σ(z,X) ∈ L[z,X ] \ {0} the
polynomial obtained from P (z,X) by applying σ to all coefficients. Recall that all Taylor
coefficients at z0 of the functions hi are algebraic, and accordingly invariant under σ.
Therefore any Taylor coefficient at z0 of P σ(z,

∑
i∈I σ(µi)hi(z)) is the image under σ of

the corresponding coefficient of P (z,
∑

i∈I µihi(z)), which is zero. In other words, we have
P σ(z,

∑
i∈I σ(µi)hi(z)) = 0: the function

∑
i∈I σ(µi)hi(z) is algebraic over C(z). Therefore

the function

h(z) =
1

µi0

∑

i∈I

µihi(z)−
1

σ(µi0)

∑

i∈I

σ(µi)hi(z)

is also algebraic over C(z). It is a linear combination of the hi, i ∈ I \ {i0}: by minimality
of I, it has to be 0. Since h1, . . . , hq are linearly independent over C (because they are over

Q and they have algebraic Taylor coefficients at z0), we deduce that all coefficients are 0,

so that
µi1

µi0

=
σ(µi1

)

σ(µi0
)
which is a contradiction.

This concludes the proof of Proposition 7. �
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(2000), 705–740.

[3] E. Bombieri, On G-functions, in Recent progress in analytic number theory, Symp. Durham 1979, Vol.
2, 1–67 (1981).

[4] N. Bourbaki, Algèbre, Chapitre II, 3rd ed., Hermann (1962).
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91405, Orsay, France.

T. Rivoal, Institut Fourier, CNRS et Université Grenoble Alpes, CS 40700, 38058
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