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We consider the cylindrical bending problem for an infinite plate as modelled with a family of generalized continuum models, including the micromorphic approach. The models allow to describe length scale effects in the sense that thinner specimens are comparatively stiffer. We provide the analytical solution for each case and exhibit the predicted bending stiffness. The relaxed micromorphic continuum shows bounded bending stiffness for arbitrary thin specimens, while classical micromorphic continuum or gradient elasticity as well as Cosserat models [37] exhibit unphysical unbounded bending stiffness for arbitrary thin specimens. This finding highlights the advantage of using the relaxed micromorphic model, which has a definite limit stiffness for small samples and which aids in identifying the relevant material parameters.

Introduction of the cylindrical bending problem

The classical Cauchy-Boltzmann theory of continuum mechanics comes to its limits when the wavelengths of deformation fields become comparable to characteristic microstructural length scales of a material, and therefore generalized continuum theories are necessary in this regime. Micromorphic continuum theories are established today for this purpose due to their direct connection to concepts of classical continuum mechanics and their relatively simple numerical implementation in existing finite element codes. The micromorphic theory contains other approaches like the Cosserat continuum [START_REF] Lakes | Elastic freedom in cellular solids and composite materials[END_REF][START_REF] Lakes | Experimental methods for study of Cosserat elastic solids and other generalized elastic continua[END_REF][START_REF] Neff | A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy[END_REF], couple stress continuum [START_REF] Ghiba | A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions[END_REF][START_REF] Madeo | A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model[END_REF], microstretch continuum, micro-void continuum, the microstrain continuum, the relaxed micromorphic continuum or the strain-gradient theory as special cases [START_REF] Dell'isola | Generalized Hooke's law for isotropic second gradient materials[END_REF], among others. An overview can be found in [START_REF] Forest | Micromorphic approach to materials with internal length[END_REF][START_REF] Forest | Micromorphic approach to gradient plasticity and damage[END_REF]. In the very most cases, any of these subclasses is favoured over the general micromorphic theory since the latter requires a large number of constitutive parameters, namely already 18 for isotropic linearelastic material. Even more, the effect of most of these parameters on measurable quantities is still rather unclear.

An important milestone was set by Gauthier and Jahsman [START_REF] Gauthier | A quest for micropolar elastic constants[END_REF], who derived analytical solutions for bending and torsion of a linear isotropic Cosserat continuum. The gradients under bending and torsion problems activate the non-classical terms, which is why the respective non-classical parameters affect the observable stiffness. Further studies for bending of a linear isotropic Cosserat continuum have been carried out by Altenbach [START_REF] Altenbach | On the linear theory of micropolar plates[END_REF][START_REF] Altenbach | On generalized Cosserat-type theories of plates and shells: a short review and bibliography[END_REF]. These solutions have been used in many works to identify the constitutive parameters from real or virtual experiments, e.g. in [START_REF] Gauthier | A quest for micropolar elastic constants[END_REF][START_REF] Lakes | Size effects and micromechanics of a porous solid[END_REF][START_REF] Rueger | Cosserat elastic lattices[END_REF][START_REF] Tekoglu | Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete[END_REF]45,46] or they could be a useful tool to reduce the computational load in numerical identification or homogenization schemes, e.g. in [START_REF] Arroyo | Continuum mechanics modeling and simulation of carbon nanotubes[END_REF][START_REF] Brcic | Estimation of material properties of nanocomposite structures[END_REF][START_REF] Corigliano | On-chip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale[END_REF][START_REF] Renda | A geometric variable-strain approach for static modeling of soft manipulators with tendon and fluidic actuation[END_REF][START_REF] Rueger | Cosserat elastic lattices[END_REF]47].

However, certain effects at edges or the dispersion of longitudinal waves could not be explained by the Cosserat theory [START_REF] Lurie | Bending problems in the theory of elastic materials with voids and surface effects[END_REF], but more general micromorphic theories are required. The authors in [START_REF] Cowin | Linear elastic materials with voids[END_REF] provided the bending solution for the micro-void continuum. However, this theory cannot explain experimentally observed size effects in torsion or dispersion of shear waves. De Cicco and Nappa [START_REF] Cicco | Torsion and flexure of microstretch elastic circular cylinders[END_REF] solved the bending and torsion problem for the microstretch continuum analytically. Further closed-form solutions of the bending and torsion problems have been found for sub-classes of the micromorphic continuum and certain geometries [START_REF] Hütter | Application of a microstrain continuum to size effects in bending and torsion of foams[END_REF][START_REF] Ieşan | Torsion of micropolar elastic beams[END_REF][START_REF] Ieşan | Saint-Venant's problem for microstretch elastic solids[END_REF][START_REF] Lakes | Bending of a Cosserat elastic bar of square cross section: Theory and experiment[END_REF][START_REF] Lurie | Bending problems in the theory of elastic materials with voids and surface effects[END_REF][START_REF] Park | Torsion of a micropolar elastic prism of square cross-section[END_REF][START_REF] Taliercio | Torsion of micropolar hollow circular cylinders[END_REF]. However, to the best of the authors' knowledge, no solution is known for the general micromorphic continuum with an unconstrained second-order tensor of microdeformation as kinematic degree of freedom.

The scope of the present paper is to derive and discuss the solution for cylindrical bending for such a general micromorphic continuum and several of its sub-classes, notably the relaxed micromorphic model. A similar investigation with respect to the simple shear problem has been undertaken in [START_REF] Rizzi | Analytical solutions of the simple shear problem for micromorphic models and other generalized continua[END_REF].

The solid studied here has a finite thickness h along the direction x 2 while it is infinite in the directions x 1 and x 3 . Our aim is to describe a state of uniform cylindrical bending in the infinite plate for various models of generalized elasticity. The bending of a plate can be thought of as a result of applying couples at the lateral faces of a suitable large portion of it. 
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Notation

For vectors a, b ∈ R n , we consider the scalar product a, b := n i=1 a i b i ∈ R, the (squared) norm a 2 := a, a and the dyadic product a ⊗ b := (a i b j ) i,j=1,...,n ∈ R n×n . Similarly, for tensors P , Q ∈ R n×n with Cartesian coordinates P ij and Q ij , we define the scalar product P , Q := n i,j=1 P ij Q ij ∈ R and the (squared) Frobenius-norm P 2 := P , P . Moreover, P T := (P ji ) i,j=1,...,n denotes the transposition of the matrix P = (P ij ) i,j=1,...,n , which decomposes orthogonally into the symmetric part symP := 1 2 (P + P T ) and the skew-symmetric part skewP := 1 2 (P -P T ). The Lie-Algebra of skew-symmetric matrices is denoted by so(3) := {A ∈ R 3×3 | A T = -A}. The identity matrix is denoted by 1, so that the trace of a matrix P is given by tr P := P , 1 . Using the bijection axl : so(3) → R 3 we have

A b = axl(A) × b ∀ A ∈ so(3) , b ∈ R 3 . ( 1 
)
where × denotes the standard cross product in R 3 . The inverse is denoted by Anti: R 3 → so [START_REF] Arroyo | Continuum mechanics modeling and simulation of carbon nanotubes[END_REF]. The gradient and the curl for a vector field u are defined as 

Du =   u 1,1 u 1,2 u 1,3 u 2,1 u 2,2 u 2,3 u 3,1 u 3,2 u 3,3   , curl u = ∇ × u =   u 3,2 -u 2,3 u 1,3 -u 3,1 u 2,1 -u 1,2   . (2) 
The cross product between a second order tensor and a vector is defined as follow 

where m ∈ R 3×3 , b ∈ R 3 , and is the Levi-Civita tensor.

2 Cylindrical bending for the isotropic Cauchy continuum

For comparison we start with the well known classical case. The expression of the strain energy for an isotropic linear elastic Cauchy continuum is 1

W (Du) = µ macro sym Du 2 + λ macro 2 tr 2 (Du) = µ macro dev sym Du 2 + κ macro 2 tr 2 (Du) , (5) 
where µ macro and λ macro are the two classical Lamé constants, and κ macro is the bulk modulus. Consequently, the equilibrium equations without body forces are Div σ = 0 , σ = 2 µ macro sym Du + λ macro tr (Du) 1 = 2 µ macro dev sym Du + κ macro tr (Du) 1 , [START_REF] Corigliano | On-chip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale[END_REF] where σ is the symmetric Cauchy-stress tensor and = sym Du is the symmetric strain tensor. The boundary conditions at the upper and lower surface (free surface) are the traction-free forces conditions

t(x 2 = ± h/2) = ± σ(x 2 = ± h/2) • e 2 = 0 , (7) 
where the expression of σ is in eq.( 6) 2 and e 2 is the unit vector aligned to the x 2 -direction. We are interested in describing a state of uniform curvature κ of the infinite plate. According to the reference system shown in Fig. 1, the ansatz for the displacement field is

u(x 1 , x 2 ) =   -x 2 w (x 1 ) w(x 1 ) + v(x 2 ) 0   . (8) 
Therein, w(x 1 ) refers to the deflection of the neutral axis x 2 = 0 and v(x 2 ) denotes the lateral contraction.

The gradient of the displacement field and its symmetric part (the strain tensor) result to be Du =   -x 2 w (x 1 ) -w (x 1 ) 0 w (x 1 ) v (x 2 ) 0 0 0 0

  , ε = sym Du =   -x 2 w (x 1 ) 0 0 0 v (x 2 ) 0 0 0 0   . (9) 
It is highlighted that the gradient of eq.( 9) 1 has a symmetric part which has only diagonal components as it can be seen in eq.( 9) 2 . The equilibrium equations in terms of the ansatz eq.( 8) are -x 2 w (3) (x 1 ) (λ macro + 2µ macro ) = 0 , (λ macro + 2µ macro ) v (x 2 ) -λ macro w (x 1 ) = 0 .

Equation. [START_REF] Dell'isola | Generalized Hooke's law for isotropic second gradient materials[END_REF] 2 requires both w(x 1 ) and v(x 2 ) to be a quadratic function in x 1 and x 2 , respectively, and this already satisfies eq.( 10) 1 :

w(x 1 ) = c 3 x 2 1 + c 2 x 1 + c 1 , v(x 2 ) = c 3 λ macro λ macro + 2µ macro x 2 2 + c 5 x 2 + c 4 . (11) 
It is important to highlight that the solution eq.( 11) depends on the elastic parameters of the material.

In addition, we can further simplify the solution eq.( 11) by setting c 1 = 0, c 4 = 0 and c 2 = 0 since they represent rigid body motions (the first two a rigid translation, while the third one a rigid rotation).

The boundary conditions eq.( 7) on the upper and lower surface (stress free surfaces, no tractions), require that c 5 = 0. Appling these simplifications while substituting the solution eq. [START_REF] Forest | Micromorphic approach to materials with internal length[END_REF] in eq.( 8), the displacement field results to be (with c 3 = κ/2) [START_REF] Hadjesfandiari | Pure plate bending in couple stress theories[END_REF] 

u(x 1 , x 2 ) = κ 2 -2 x 1 x 2 λmacro λmacro+2µmacro x 2 2 + x 2 1 = 1 2R -2 x 1 x 2 νmacro 1-νmacro x 2 2 + x 2 1 . ( 12 
)
1 Here are reported the macroscopic 3D Poisson's ratio νmacro = Thus, the middle plane of the infinite plate is bent to a cylindrical surface (see Fig. 1) which is approximated by the parabolic cylinder u 2 (x 1 , x 2 = 0) = 1 2R x2 1 . Since the displacement field solution depends on the elastic coefficients of the material, two extreme cases are shown in the following Fig. 2 with a plot of u 1,1 across the thickness h. The desired bending moment about the x 3 -axis and energy (per unit area dx 1 dx 3 ) expressions are

M c (κ) := h/2 -h/2 σ e 1 , e 1 x 2 dx 2 = 2 c 3 h 3 µ macro (λ macro + µ macro ) 3(λ macro + 2µ macro ) = λ macro + 2µ macro J x3 κ = D macro κ , (13) 
W tot (κ) := +h/2 -h/2 W (Du) dx 2 = 2 c 2 3 h 3 µ macro (λ macro + µ macro ) 3(λ macro + 2µ macro ) = 1 2 λ macro + 2µ macro J x3 κ 2 = 1 2 D macro κ 2 ,
where λ macro is the plane stress first Lamé parameter, J x3 = h 3 12 is the moment of inertia for a unit thickness, κ = 2c 3 is the curvature, and the quantity

D macro = ( λ macro + 2µ macro ) J x3 = h 3 12 E macro (1 -ν 2 macro ) = h 3 12 4µ macro (3κ macro + µ macro ) 3κ macro + 4µ macro , (14) 
is the classical cylindrical bending stiffness for a plate (flexural rigidity). 2 It is also highlighted that

d dκ W tot (κ) = M c (κ) . ( 15 
)
Here and in the remainder of this work, the elastic coefficients µ i , λ i , κ i are expressed in [MPa], the coefficients a i are dimensionless, the lengths L c and the thickness h in meter [m], the curvature κ in [1/m].

Classical Mindlin-Eringen formulation

The classical micromorphic model couples the displacement u ∈ R 3 with an independent affine field P ∈ R 3×3 , called the microdistortion. Even in the isotropic case the model has 18 parameters (among them 11 for the curvature) and the elastic energy can be represented as

W (Du, P , DP ) = µ sym Du 2 + λ 2 tr 2 (Du) + b 1 2 tr 2 (Du -P ) + b 2 2 Du -P 2 + b 3 2 Du -P , (Du -P ) T + g 1 tr (Du) tr (Du -P ) + g 2 sym Du, (Du -P ) T + 1 2 ADP , DP = µ ε ij ε ij + λ 2 ε ii ε jj + b 1 2 γ ii γ jj + b 2 2 γ ij γ ij + b 3 2 γ ij γ ji (16) + g 1 γ ii ε jj + g 2 (γ ij + γ ji ) ε ij + a 1 χ iik χ kjj + a 2 χ iik χ jkj + 1 2 a 3 χ iik χ jjk + 1 2 a 4 χ ijj χ ikk + a 5 χ ijj χ kik + 1 2 a 8 χ iji χ kjk + 1 2 a 10 χ ijk χ ijk + a 11 χ ijk χ jki + 1 2 a 13 χ ijk χ ikj + 1 2 a 14 χ ijk χ jik + 1 2 a 15 χ ijk χ kji
where ε = sym Du is the symmetric part of the gradient of the displacement field, γ = Du -P is the difference between the gradient of the displacement field and the microdistortion tensor, and χ ijk = P jk,i is the full gradient of the microdistortion and A is a sixth order tensor.

A general solution of the cylindrical bending problem for the isotropic micromorphic model is not yet known but it could be found by the present ansatz without any fundamental problem, only the formulas get extremely long and complicated. Therefore, we consider the following simplified energy

W (Du, P , DP ) = µ e + µ micro + µ c 2 Du -P 2 + µ e + µ micro -µ c 2 Du -P , (Du -P ) T + λ e + λ micro 2 tr 2 (Du -P ) + µ micro sym Du 2 + λ micro 2 tr 2 (Du) (17) 
-2µ micro Du -P , sym Du -λ micro tr (Du -P ) tr (Du)

+ µ L 2 c 2 3 i=1 a 1 dev sym ∂ xi P 2 + a 2 skew ∂ xi P 2 + 2 9 a 3 tr 2 ∂ xi P
which is a special case of eq. ( 16), by setting the values of the elastic parameters as follows (see [START_REF] Neff | On material constants for micromorphic continua[END_REF] and Appendix G for the full derivation for the curvature part)

µ = µ micro , λ = λ micro , b 1 = λ e + λ micro , b 2 = µ e + µ micro + µ c , b 3 = µ e + µ micro -µ c , g 1 = -λ micro , g 2 = -2µ micro , a 1,2,3,5,8,11,14,15 = 0 , a 4 = µ L 2 c 2a 3 -a 1 3 , a 10 = µ L 2 c a 1 + a 2 2 , (18) 
a 13 = µ L 2 c a 1 -a 2 2 .
Thus, with this choice of parameters, the former energy can be expressed as

W (Du, P , DP ) = µ e dev sym (Du -P ) 2 + κ e 2 tr 2 (Du -P ) + µ c skew (Du -P ) 2 + µ micro dev sym P 2 + κ micro 2 tr 2 (P ) (19) 
+ µ L 2 c 2 3 i=1 a 1 dev sym ∂ xi P 2 + a 2 skew ∂ xi P 2 + 2 9 a 3 tr 2 ∂ xi P ,
which coincides, apart from the curvature term, with the energy from the relaxed micromorphic model treated in the next paragraph. Note again carefully that the chosen curvature expression is still isotropic [START_REF] Münch | Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy[END_REF] but does not represent the most general isotropic curvature expression in this model.

Cylindrical bending for the isotropic relaxed micromorphic model

The expression of the strain energy for the isotropic relaxed micromorphic continuum is: where µ e and λ e are the material parameters related to the meso-scale, µ micro and λ micro are the parameters related to the micro-scale, µ c is the Cosserat couple modulus, L c > 0 is the characteristic length, and a 1 , a 2 , and a 3 are the three general isotropic curvature parameters. The curvature expression is the most general isotropic one in terms of a dependence on the second order tensor CurlP and can be obtained by setting the values of the elastic parameters of the classical micromorphic model eq.( 16) as follows (see Appendix G for the full derivation)

µ = µ micro , λ = λ micro , b 1 = λ e + λ micro , b 2 = µ e + µ micro + µ c , b 3 = µ e + µ micro -µ c , g 1 = -λ micro , g 2 = -2µ micro , a 1 = µ L 2 c 2a 1 -a 2 4 , a 2,5,8 = 0 , a 3 = a 4 = µ L 2 c a 2 -a 1 2 , (21) 
a 10 = -a 15 = µ L 2 c 2a 1 + a 3 3 , a 11 = -2 a 1 -a 3 + a 10 2 , a 13 = a 14 = 4 a 1 + 2 a 3 -a 10 .
The most simple isotropic curvature term

µ L 2 c 2
CurlP 2 corresponds to a 1 = a 2 = a 3 = 1 and would therefore be given by a 2,3,4,5,8,11,13,14 = 0, a 1 = µ Lc 4 , a 10 = -a 15 = µ L c Due to [START_REF] Lewintan | Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy[END_REF] the model is well-posed even for a 1 > 0 and a 2 = a 3 = 0 if µ micro , κ micro > 0. The equilibrium equations without body forces are Div σ:=

[2µ e sym (Du -P ) + λ e tr (Du -P ) 1 + 2µ c skew (Du -P )] = 0, σ -2µ micro sym P -λ micro tr (P ) 1

(22) -µ L 2 c Curl a 1 dev sym Curl P + a 2 skew Curl P + a 3 3 tr (Curl P ) 1 m = 0.
The boundary conditions at the upper and lower surface (free surface) are

t(x 2 = ± h/2) = ± σ(x 2 ) • e 2 = 0 , (23) η(x 2 = ± h/2) = ± m(x 2 ) • • e 2 = ± m(x 2 ) × e 2 = 0 ,
where the expression of σ and m are in eq.( 22), e 2 is the unit vector aligned to the x 2 -direction, is the Levi-Civita tensor, and m = µ L 2 c a 1 dev sym Curl P + a 2 skew Curl P + a3

3 tr (Curl P ) 1 is the generalized second order moment tensor. The generalised traction vector is t(x 2 ) ∈ R 3 and the generalized double traction tensor is η(x 2 ) ∈ R 3×3 . According with the reference system shown in Fig. 1, the ansatz for the displacement field and the microdistortion P is

u(x 1 , x 2 ) =   -κ 1 x 1 x 2 v(x 2 ) + κ1x 2 1 2 0   , P (x 1 , x 2 ) =   P 11 (x 2 ) -κ 2 x 1 0 κ 2 x 1 P 22 (x 2 ) 0 0 0 P 33 (x 2 )   , (24) 
3 Are here reported the 3D Poisson's ratio νmacro = while the gradient of the displacement field results to be

Du =   -κ 1 x 2 -κ 1 x 1 0 κ 1 x 1 v (x 2 ) 0 0 0 0   . (25) 
We supply as well the homogenization relations between the macro-parameters and the meso-(with index (•) e ) and micro-parameters [START_REF] Agostino | Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model[END_REF][START_REF] Neff | Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization[END_REF][START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF] µ macro = µe µmicro µe+µmicro , κ macro = κe κmicro κe+κmicro , with

κ i = 2µi+3λi 3 i = {e, micro, macro} . (26) 
4.1 One curvature parameter and zero Poisson's ratios ν e = ν micro = 0

Substituting the ansatz in the following simplified equilibrium eq.( 27) where ν e = ν micro = 0 and a 1 = a 2 = a 3 = 1, results in the simplified curvature 

σ -2µ micro sym P -µ L 2 c Curl Curl P = 0 , (27) 
where the generalized moment tensor is m = µ L 2 c Curl P . The equilibrium equations ( 27) then are

2 µ c (κ 1 -κ 2 ) + 2 µ e (v (x 2 ) -P 22 (x 2 )) = 0 , µ L 2 c P 11 (x 2 ) -2 µ e (P 11 (x 2 ) + κ 1 x 2 ) -2 µ micro P 11 (x 2 ) = 0 , 2 x 1 µ c (κ 2 -κ 1 ) = 0 , (28) 
2 x 1 µ c (κ 1 -κ 2 ) = 0 , 2 µ e v (x 2 ) -2 P 22 (x 2 ) (µ e + µ micro ) = 0 , µ L 2 c P 33 (x 2 ) -2 P 33 (x 2 ) (µ e + µ micro ) = 0 .
It is clear that, in order to satisfy eq.( 28) 3 and eq.( 28) 4 either µ c = 0 or κ 1 = κ 2 = κ; we choose the latter option, which implies that the skew-symmetric part of the gradient of the displacement eq.( 25) is the same as the skew-symmetric part of the microdistortion eq.( 24) 2 . This also implies that the Cosserat couple modulus µ c does not play a role any more. Consequently, the solution of eq.( 28) is

v(x 2 ) = c 0 x 2 1 + µ e µ micro , P 11 (x 2 ) = c 1 e -f 1 x 2 Lc + c 2 e f 1 x 2 Lc - µ e µ e + µ micro κ x 2 , (29) 
P 22 (x 2 ) = c 0 µ e µ micro , P 33 (x 2 ) = c 3 e -f 1 x 2 Lc + c 4 e f 1 x 2 Lc , f 1 := 2 (µ e + µ micro ) µ .
The boundary conditions eq.( 23) on the upper and lower surfaces allow to evaluate the constants c i , i ∈ {0, 1, 2, 3, 4} as shown in the following 4

c 0 = c 3 = c 4 = 0 , c 1 = -c 2 = µ micro κ 2 (µ e + µ micro ) L c f 1 sech f 1 h 2L c . (30) 
Finally, the displacement and microdistortion components result in

u 1 (x 1 , x 2 ) = -κ x 1 x 2 , u 2 (x 1 , x 2 ) = κ x 2 1 2 , P 12 (x 1 ) = -P 21 (x 1 ) = -κ x 1 , P 22 (x 2 ) = 0 , (31) 
P 11 (x 2 ) = - µ micro κ µ e + µ micro L c f 1 sech f 1 h 2L c sinh f 1 x 2 L c - µ e κ µ e + µ micro x 2 , P 33 (x 2 ) = 0 .
It is underlined that for this specific case P 22 and P 33 turn out to be equal to zero. In Fig. 3 we show the deformed shape due to the displacement field solution The classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) expressions are reported next in the following eq.(32) 0 2.5 5 7.5 10 As in the classical Cauchy elastic case, we have

D macro D micro 0 h/L c M c , M m ,W M c M m W (a) 0 2.5 5 7.5 10 1 D  micro 0 h/L c M  c , M  m ,W  M c M m W (b)
d dκ W tot (κ) = M c (κ) + M m (κ) . (33) 

Remarks on the boundary conditions: consistent coupling

If a finite slice is cut along the x 1 -direction at distance ± b/2 from the origin, a finite solid in the x 1 -x 2 plane is obtained. The kinematic boundary conditions that arise on the cut surfaces Γ -and Γ + (see Fig. 1)

for this solution are

u x1=± b/2 = κ   ∓ b x 2 /2 b 2 /8 0   , (P • e 2 ) x1=± b/2 = (Du • e 2 ) x1=± b/2 =   -κ b/2 0 0   . (34) 
Moreover, it holds that P e 3 = Du e 3 at x 1 = ± b/2, which implies that for zero Poisson's ratios ν e = ν micro = 0, the consistent coupling condition

P × e 1 = Du × e 1 (35) 
at the lateral boundary Γ -and Γ + is exactly verified. This means that in this exceptional case we could start alternatively with a finite domain boundary value problem and describe the bending condition according to eq.( 34) 1 and in addition require P × e 1 = Du × e 1 at the lateral boundary Γ -and Γ + , giving the ansatz eq.( 24), since the solution of the problem is unique [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF].

The static boundary conditions that arise on the cut surfaces Γ -and Γ + (see Fig. 1) are

t 1 x1=± b/2 = ± 2µ e µ micro µ e + µ micro -x 2 + sech f 1 h 2L c sinh f 1 x 2 L c L c f 1 κ , ( 36 
)
η 12 x1=± b/2 = ± µ micro µ e + µ micro µ L 2 c 1 -sech f 1 h 2L c cosh f 1 x 2 L c κ ,
where t 1 and η 12 are the only components different from zero. It is also highlighted that the compatibility condition expressed by eq.( 36) 2 is satisfied. The boundary conditions eq.( 23) on the upper and lower surface in addition to eq.( 34) or eq.( 36) (the choice is up to the reader) on the left and right surface are enough to retrieve the full solution eq.( 31). The plot of P 11 obtained analytically and numerically (via COMSOL ® ) while changing L c is shown in Fig. 5 In Fig. 6 is shown the deformed shape obtained thanks to simulations done via COMSOL ® . 

Limit cases

We consider in the following the two limit cases: first L c → 0 corresponds to arbitrary thick specimens, while secondly L c → ∞ corresponds conceptually to arbitrary thin specimens. We see that in the relaxed micromorphic model, this corresponds unequivocally to the stiffness D macro and D micro , respectively, since

lim Lc→0 M c (κ) = h 3 12 2 µ e µ micro µ e + µ micro κ = D macro κ , lim Lc→∞ M c (κ) = 0 , lim Lc→0 M m (κ) =0 , lim Lc→∞ M m (κ) = h 3 12 2 µ micro κ = D micro κ , ( 37 
) lim Lc→0 W tot (κ) = 1 2 h 3 12 
2 µ e µ micro µ e + µ micro

κ 2 = 1 2 D macro κ 2 , lim Lc→∞ W tot (κ) = 1 2 h 3 12 2µ micro κ 2 = 1 2 D micro κ 2 .
4.2 One curvature parameter and arbitrary Poisson's ratios ν micro and ν e Substituting the ansatz in the following simplified equilibrium eq.( 38) where a 1 = a 2 = a 3 = 1 Div σ:=

[2µ e sym (Du -P ) + λ e tr (Du -P ) 1 + 2µ c skew (Du -P )] = 0,

σ -2µ micro sym P -λ micro tr (P )

1 -µ L 2 c Curl Curl P = 0 .
where the generalized moment tensor is m = µ L 2 c Curl P . The equilibrium equation [START_REF] Park | Torsion of a micropolar elastic prism of square cross-section[END_REF] are

2µ c (κ 1 -κ 2 ) -λ e (κ 1 + P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 )) + 2µ e (v (x 2 ) -P 22 (x 2 )) = 0 , µ L 2 c P 11 (x 2 ) -P 11 (x 2 ) (2 (µ e + µ micro ) + λ micro ) -λ e (P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 ) + κ 1 x 2 ) -2κ 1 x 2 µ e + λ micro (-P 22 (x 2 ) -P 33 (x 2 )) = 0 2x 1 µ c (κ 2 -κ 1 ) = 0 , 2x 1 µ c (κ 1 -κ 2 ) = 0 , (39) 
-λ e (P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 ) + κ 1 x 2 ) + 2µ e (v (x 2 ) -P 22 (x 2 )) -λ micro P 11 (x 2 ) -P 22 (x 2 ) (λ micro + 2µ micro ) -λ micro P 33 (x 2 ) = 0 , µ L In order to satisfy eq.( 39) 3 and eq.( 39) 4 either µ c = 0 or κ 1 = κ 2 = κ; we have chosen the latter option, which implies that the skew-symmetric part of the gradient of the displacement eq.( 25) is the same as the skew-symmetric part of the microdistortion eq.( 24) 2 . This also implies that the Cosserat couple modulus µ c does not play a role any more.

From eq.(39 After substituting eq.( 41) in eq.( 39) the following two second order ordinary differential equations in P 11 (x 2 ) and P 33 (x 2 ) are retrieved 

)
b 0 c 0 + κ b 3 x 2 -b 1 P 11 (x 2 ) -b 2 P 33 (x 2 ) + µ L 2 c P 11 (x 2 ) = 0 , (42) 
b 0 c 0 + κ b 4 x 2 -b 1 P 33 (x 2 ) -b 2 P 11 (x 2 ) + µ L
= K e + K micro , (44) 
b 1 -b 2 = 2µ e + 2µ micro .
where K e and K micro are the plane stress bulk moduli expressions at the micro-and meso-scale, respectively. Finally, the solution of eq.( 42) is

P 11 (x 2 ) = b 0 b 1 + b 2 c 0 - b 1 b 3 -b 2 b 4 b 2 1 -b 2 2 κ x 2 + c 1 + c 3 2 cosh f 1 x 2 L c + c 2 + c 4 2 L c f 1 sinh f 1 x 2 L c + c 1 -c 3 2 cosh f 2 x 2 L c + c 2 -c 4 2 L c f 2 sinh f 2 x 2 L c , P 33 (x 2 ) = b 0 b 1 + b 2 c 0 - b 1 b 4 -b 2 b 3 b 2 1 -b 2 2 κ x 2 + c 1 + c 3 2 cosh f 1 x 2 L c + c 2 + c 4 2 L c f 1 sinh f 1 x 2 L c (45) - c 1 -c 3 2 cosh f 2 x 2 L c - c 2 -c 4 2 L c f 2 sinh f 2 x 2 L c , f 1 := b 1 + b 2 µ , f 2 := b 1 -b 2 µ .
Given boundary conditions eq.( 23) for this case, the integration constants reduce to

c 2 = 1 2 κ b 3 + b 4 b 1 + b 2 -1 sech f 1 h 2L c + b 3 -b 4 b 1 -b 2 -1 sech f 2 h 2L c , c 0 = 0 , (46) 
c 4 = 1 2 κ b 3 + b 4 b 1 + b 2 -1 sech f 1 h 2L c - b 3 -b 4 b 1 -b 2 -1 sech f 2 h 2L c , c 1 = 0 , c 3 = 0 .
The classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) expressions are

M c (κ) := h/2 -h/2 σe 1 , e 1 x 2 dx 2 = h 3 12 p 1 + p 2 L c h 2 + p 3 L c h 3 tanh f 1 h 2L c +p 4 L c h 3 tanh f 2 h 2L c κ , M m (κ) := h/2 -h/2 (m × e 1 ) e 2 , e 1 dx 2 = h 3 12 q 1 L c h 2 -q 2 L c h 3 tanh f 1 h 2L c -q 3 L c h 3 tanh f 2 h 2L c κ , ( 47 
) W tot (κ) := +h/2 -h/2 W (Du, P , CurlP ) dx 2 = 1 2 h 3 12 p 1 + (p 2 + q 1 ) L c h 2 + (p 3 -q 2 ) L c h 3 tanh f 1 h 2L c + (p 4 -q 3 ) L c h 3 tanh f 2 h 2L c κ 2 , p 1 := 2µ e λ e + 2µ e λ e (b 1 (2b 1 -2b 3 -b 4 ) -b 2 (2b 2 -b 3 -2b 4 )) b 2 1 -b 2 2 + 2µ e (b 1 (b 1 -b 3 ) -b 2 (b 2 -b 4 )) b 2 1 -b 2 2 , p 2 := - 12µ e (λ e + 2µ e ) (3λ e + 2µ e ) b 1 + b 2 -b 3 -b 4 (b 1 + b 2 ) 2 + (λ e + 2µ e ) b 1 -b 2 -b 3 + b 4 (b 1 -b 2 ) 2 µ , p 3 := 12 f 3 1 1 - b 3 + b 4 b 1 + b 2 2µ e (3λ e + 2µ e ) (λ e + 2µ e ) , p 4 := 12 f 3 2 1 - b 3 -b 4 b 1 -b 2 2µ e , (48) 
q 1 := 12 b 1 (b 1 -b 3 ) + b 2 (b 4 -b 2 ) b 2 1 -b 2 2 µ , q 2 := 12 b 1 + b 2 -b 3 -b 4 f 3 1 , q 3 := 12 b 1 -b 2 -b 3 + b 4 f 3 2 . Again, d dκ W tot (κ) = M c (κ) + M m (κ)
. The plot of the bending moments and the strain energy divided by h 3 12 κ and 1 2 h 3 12 κ 2 , respectively, while changing L c is shown in Fig. 7. 

µ e = 1, λ e = 1, µ micro = 1, λ micro = 1, µ = 1. 4.2.1 Limit cases lim Lc→∞ M c (κ) = 0 , lim Lc→0 M m (κ) = 0 , lim Lc→0 M c (κ) = h 3 12 4 µ macro (λ macro + µ macro ) λ macro + 2µ macro κ = h 3 12 4µ macro (3κ macro + µ macro ) 3κ macro + 4µ macro κ = D macro κ , lim Lc→∞ M m (κ) = h 3 12 4 µ micro (λ micro + µ micro ) λ micro + 2µ micro κ = h 3 12 4µ micro (3κ micro + µ micro ) 3κ micro + 4µ micro κ = D micro κ , ( 49 
) lim Lc→0 W tot (κ) = 1 2 h 3 12 4 µ macro (λ macro + µ macro ) λ macro + 2µ macro κ 2 = 1 2 h 3 12 4µ macro (3κ macro + µ macro ) 3κ macro + 4µ macro κ 2 = 1 2 D macro κ 2 , lim Lc→∞ W tot (κ) = 1 2 h 3 12 4 µ micro (λ micro + µ micro ) λ micro + 2µ micro κ 2 = 1 2 h 3 12 4µ micro (3κ micro + µ micro ) 3κ micro + 4µ micro κ 2 = 1 2 D micro κ 2 .
4.3 Full isotropic curvature and zero Poisson's ratios ν micro = ν e = 0

The expression of the strain energy for the isotropic relaxed micromorphic continuum is

W (Du, P , Curl P ) = µ e sym (Du -P ) 2 + λ e 2 tr 2 (Du -P ) + µ c skew (Du -P ) 2 + µ micro sym P 2 + λ micro 2 tr 2 (P ) (50) + µ L 2 c 2 a 1 dev sym Curl P 2 + a 2 skew Curl P 2 + a 3 3 tr 2 (Curl P ) ,
while the equilibrium equations without body forces are Div σ:=

[2µ e sym (Du -P ) + λ e tr (Du -P ) 1 + 2µ c skew (Du -P )] = 0, σ -2µ micro sym P -λ micro tr (P ) 1 Substituting the ansatz eq.( 24) in eq.( 51) the equilibrium equations result to be

2µ c (κ 1 -κ 2 ) + 2µ e (v (x 2 ) -P 22 (x 2 )) = 0 , µ L 2 c ((a 1 + a 2 ) P 11 (x 2 ) + (a 2 -a 1 ) P 33 (x 2 )) -4µ e (P 11 (x 2 ) + κ 1 x 2 ) -4µ micro P 11 (x 2 ) = 0 , 2x 1 µ c (κ 2 -κ 1 ) = 0 , (52) 
2x 1 µ c (κ 1 -κ 2 ) = 0 , 2µ e v (x 2 ) -2P 22 (x 2 ) (µ e + µ micro ) = 0 , µL 2 c ((a 2 -a 1 )P 11 (x 2 ) + (a 1 + a 2 )P 33 (x 2 )) -4P 33 (x 2 ) (µ e + µ micro ) = 0 .
It is clear that in order to satisfy eq.( 52) 3 and eq.( 52) 4 either µ c = 0 or κ 1 = κ 2 = κ; it has been chosen the latter option, which implies that the skew-symmetric part of the gradient of the displacement eq.( 25) is the same as the skew-symmetric part of the microdistortion eq.( 24) 2 . This also implies that the Cosserat couple modulus µ c does not play a role any more. From eq.(52

) 1 it is possible to evaluate v (x 2 ) and consequently v (x 2 ) v (x 2 ) = P 22 (x 2 ) , v (x 2 ) = P 22 (x 2 ) + c 0 . (53) 
By substituting back eq.( 53) in eq.( 52), we can evaluate P 22 (x 2 ) and its derivatives from equation eq.(52) 5

P 22 (x 2 ) = µ e µ micro c 0 , P 22 (x 2 ) = 0 , P 22 (x 2 ) = 0 . (54) 
After substituting eq.( 54) in eq.( 52) the following two coupled second order ordinary differential equations in P 11 (x 2 ) and P 33 (x 2 ) are obtained

µ L 2 c ((a 1 + a 2 )P 11 (x 2 ) -(a 1 -a 2 )P 33 (x 2 )) -4µ e (P 11 (x 2 ) + κ x 2 ) -4µ micro P 11 (x 2 ) = 0 , (55) 
µ L 2 c ((a 1 + a 2 )P 33 (x 2 ) -(a 1 -a 2 )P 11 (x 2 )) -4P 33 (x 2 ) (µ e + µ micro ) = 0 .
Finally, the solution of eq.( 55) is

P 11 (x 2 ) = c 1 -c 3 2 cosh f 1 x 2 L c + c 1 + c 3 2 cosh f 2 x 2 L c + c 2 -c 4 2 L c f 1 sinh f 1 x 2 L c + c 2 + c 4 2 L c f 2 sinh f 2 x 2 L c - µ e µ e + µ micro κ x 2 , P 33 (x 2 ) = c 3 -c 1 2 cosh f 1 x 2 L c + c 1 + c 3 2 cosh f 2 x 2 L c (56) + c 4 -c 2 2 L c f 1 sinh f 1 x 2 L c + c 2 + c 4 2 L c f 2 sinh f 2 x 2 L c , f 1 := 2 (µ e + µ micro ) a 1 µ , f 2 := 2 (µ e + µ micro ) a 2 µ .
Given boundary conditions eq.( 23) for this case, the integration constants reduce to

c 2 = - κ µ micro 2 (µ e + µ micro ) sech f 1 h 2L c + sech f 2 h 2L c , c 0 = 0 . ( 57 
)
c 4 = κ µ micro 2 (µ e + µ micro ) sech f 1 h 2L c -sech f 2 h 2L c , c 1 = 0 , c 3 = 0 .
The classical bending moment, the higher-order bending moment, and energy (per unit area dx

1 dx 3 ) ex- pressions are M c (κ) := h/2 -h/2 σe 1 , e 1 x 2 dx 2 = h 3 12 2µ e µ micro µ e + µ micro 1 -6 f 2 1 + f 2 2 f 2 1 f 2 2 L c h 2 + 12 f 3 1 f 3 2 L c h 3 f 3 1 tanh f 2 h 2L c + f 3 2 tanh f 1 h 2L c κ , M m (κ) := h/2 -h/2 (m × e 1 ) e 2 , e 1 dx 2 = h 3 12 2µ micro 3 a 1 + a 2 µ e + µ micro µ L c h 2 -6 a 1 a 2 µ e + µ micro µ L c h 3 1 a 1 f 2 tanh f 2 h 2L c + 1 a 2 f 1 tanh f 1 h 2L c κ , (58) 
W tot (κ) := +h/2 -h/2 W (Du, P , CurlP ) dx 2 = 1 2 h 3 12 2µ e µ micro µ e + µ micro 1 + 6 µ micro µ e f 2 1 + f 2 2 f 2 1 f 2 2 L c h 2 -12 µ micro µ e 1 f 3 1 f 3 2 L c h 3 f 3 1 tanh f 2 h 2L c + f 3 2 tanh f 1 h 2L c κ 2 . Again, d dκ W tot (κ) = M c (κ) + M m (κ)
. The plot of the bending moments and the strain energy divided by Observe that the bending stiffness remains bounded as L c → ∞ (h → 0). This is a distinguishing feature of the relaxed micromorphic model. The values of the parameters used are:

µ e = 1, µ micro = 1, µ = 1, a 1 = 2, a 2 = 1. 4.3.1 Limit cases lim Lc→0 M c (κ) = 2 µ e µ micro µ e + µ micro h 3 12 κ = D macro κ , lim Lc→∞ M c (κ) = 0 , lim Lc→0 M m (κ) = 0 , lim Lc→∞ M m (κ) = 2 µ micro h 3 12 κ = D micro κ , ( 59 
) lim Lc→0 W tot (κ) = 1 2 2 µ e µ micro µ e + µ micro h 3 12 κ 2 = 1 2 D macro κ 2 , lim Lc→∞ W tot (κ) = 1 2 2µ micro h 3 12 κ 2 = 1 2 D micro κ 2 .
4.4 Full isotropic curvature and arbitrary Poisson's ratios ν micro and ν e

Finally, we are prepared to treat the most general case of an isotropic, linear-elastic relaxed micromorphic continuum.. The expression of the strain energy for the isotropic relaxed micromorphic continuum is:

W (Du, P , Curl P ) = µ e sym (Du -P ) 2 + λ e 2 tr 2 (Du -P ) + µ c skew (Du -P ) 2 + µ micro sym P 2 + λ micro 2 tr 2 (P ) (60) + µ L 2 c 2 a 1 dev sym Curl P 2 + a 2 skew Curl P 2 + a 3 3 tr 2 (Curl P ) ,
while the equilibrium equations without body forces are Div σ:=

[2µ e sym (Du -P ) + λ e tr (Du -P ) 1 + 2µ c skew (Du -P )] = 0, σ -2µ micro sym P -λ micro tr (P ) 1

(61) -µ L 2 c Curl a 1 dev sym Curl P + a 2 skew Curl P + a 3 3 tr (Curl P ) 1 = 0.
Substituting the ansatz eq.( 24) in eq.( 61) the equilibrium equations are

2µ c (κ 1 -κ 2 ) -λ e (κ 1 + P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 )) + 2µ e (v (x 2 ) -P 22 (x 2 )) = 0 , 1 2 µL 2 c ((a 1 + a 2 )P 11 (x 2 ) + (a 2 -a 1 )P 33 (x 2 )) -λ e (P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 ) + κ 1 x 2 )
-2µ e (P 11 (x 2 ) + κ 1 x 2 ) -P 11 (x 2 ) (λ micro + 2µ micro ) + λ micro (-P 22 (x 2 ) -P 33 (x 2 )) = 0 , (62)

2x 1 µ c (κ 2 -κ 1 ) = 0 , 2x 1 µ c (κ 1 -κ 2 ) = 0 , -λ e (P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 ) + κ 1 x 2 ) + 2µ e (v (x 2 ) -P 22 (x 2 )) +λ micro (-P 11 (x 2 )) -P 22 (x 2 ) (λ micro + 2µ micro ) -λ micro P 33 (x 2 ) = 0 , - 1 2 µL 2 c ((a 1 -a 2 )P 11 (x 2 ) -(a 1 + a 2 )P 33 (x 2 )) -λ e (P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 ) + κ 1 x 2 ) -2µ e P 33 (x 2 ) -λ micro P 11 (x 2 ) -λ micro P 22 (x 2 ) -P 33 (x 2 ) (λ micro + 2µ micro ) = 0 .
In order to satisfy eq.( 62) 3 and eq.( 62) 4 either µ c = 0 or κ 1 = κ 2 = κ; we have chosen the latter option, which implies that the skew-symmetric part of the gradient of the displacement eq.( 25) is the same as the skew-symmetric part of the microdistortion eq.( 24) 2 . This also implies that the Cosserat couple modulus µ c does not play a role any more. From eq.(62 After substituting eq.(64) in eq.( 62) the following two coupled second order ordinary differential equations in P 11 (x 2 ) and P 33 (x 2 ) are retrieved Finally the solution of eq.( 65) is

)
µL 2 c ((a 1 + a 2 )P 11 (x 2 ) + (a 2 -a 1 )P 33 (x 2 )) -2b 1 P 11 (x 2 ) -2b 2 P 33 (x 2 ) -2b 3 x 2 + 2b 0 c 0 = 0 , µL 2 c ((a 2 -a 1 )P 11 (x 2 ) + (a 1 + a 2 )P 33 (x 2 )) -2b 1 P 33 (x 2 ) -2b 2 P 11 (x 2 ) -2b 4 x 2 + 2b 0 c 0 = 0 , (65) 
P 11 (x 2 ) = b 0 c 0 b 1 + b 2 + (b 2 b 4 -b 1 b 3 )x 2 b 2 1 -b 2 2 + c 1 -c 3 2 cosh f 1 x 2 L c + c 2 -c 4 2 L c f 1 sinh f 1 x 2 L c + c 1 + c 3 2 cosh f 2 x 2 L c + c 2 + c 4 2 L c f 2 sinh f 2 x 2 L c , P 33 (x 2 ) = b 0 c 0 b 1 + b 2 + (b 2 b 3 -b 1 b 4 )x 2 b 2 1 -b 2 2 + c 3 -c 1 2 cosh f 1 x 2 L c + c 4 -c 2 2 L c f 1 sinh f 1 x 2 L c (66) + c 1 + c 3 2 cosh f 2 x 2 L c + c 2 + c 4 2 L c f 2 sinh f 2 x 2 L c , f 1 := b 1 -b 2 a 1 µ , f 2 := b 1 + b 2 a 2 µ .
Given boundary conditions eq.( 23) for this case, the integration constants reduce to

c 2 = 1 2 b 3 -b 4 b 1 -b 2 -κ sech f 1 h 2L c + b 3 + b 4 b 1 + b 2 -κ sech f 2 h 2L c , c 0 = 0 , (67) 
c 4 = 1 2 b 4 -b 3 b 1 -b 2 + κ sech f 1 h 2L c + b 3 + b 4 b 1 + b 2 -κ sech f 2 h 2L c , c 1 = 0 , c 3 = 0 .
In Fig. 9(a) we present the distribution across the thickness of P 11 while varying L c . and it will be anyway always smaller than (Du) 11 . The classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) expressions are

M c (κ) := h/2 -h/2 σe 1 , e 1 x 2 dx 2 = -z 0 λ e p 1 + p 2 L c h 2 -p 3 L c h 3 tanh f 1 h 2L c -p 4 L c h 3 tanh f 2 h 2L c -2µ e q 1 -q 2 L c h 2 + q 3 L c h 3 tanh f 1 h 2L c + q 4 L c h 3 tanh f 2 h 2L c , M m (κ) := h/2 -h/2 (m × e 1 ) e 2 , e 1 dx 2 = - h 3 µ 2(b 2 1 -b 2 2 ) r 1 L c h 2 + r 2 L c h 3 tanh f 1 h 2L c -r 3 L c h 3 tanh f 2 h 2L c , (68) 
W tot (κ) := +h/2 -h/2 W (Du, P , CurlP ) dx 2 = - z 0 κ 2 λ e p 1 + p 2 L c h 2 -p 3 L c h 3 tanh f 1 h 2L c -p 4 L c h 3 tanh f 2 h 2L c -2µ e q 1 -q 2 L c h 2 + q 3 L c h 3 tanh f 1 h 2L c + q 4 L c h 3 tanh f 2 h 2L c - κ h 3 µ 4(b 2 1 -b 2 2 ) r 1 L c h 2 + r 2 L c h 3 tanh f 1 h 2L c -r 3 L c h 3 tanh f 2 h 2L c ,
where

z 0 := h 3 µ e 6f 3 1 f 3 2 (b 2 1 -b 2 2 ) (λ e + 2µ e ) , p 1 := f 3 1 f 3 2 -2b 2 1 κ + b 1 (2b 3 + b 4 ) + b 2 (2b 2 κ -b 3 -2b 4 ) , p 2 := 6f 1 f 2 b 2 1 κ 3f 2 1 + f 2 2 -3b 1 f 2 1 (b 3 + b 4 ) + b 1 f 2 2 (b 4 -b 3 ) +b 2 b 3 3f 2 1 -f 2 2 + b 2 3f 2 1 + f 2 2 (b 4 -b 2 κ) , p 3 := 12f 3 2 (b 1 + b 2 )(κ(b 1 -b 2 ) -b 3 + b 4 ) , p 4 := 36f 3 1 (b 1 -b 2 )(κ(b 1 + b 2 ) -b 3 -b 4 ) , q 1 := f 3 1 f 3 2 b 2 1 κ -b 1 b 3 + b 2 (b 4 -b 2 κ) , (69) 
q 2 := 6f 1 f 2 b 2 1 κ f 2 1 + f 2 2 -b 1 f 2 1 (b 3 + b 4 ) + b 1 f 2 2 (b 4 -b 3 ) , +b 2 b 3 (f 1 -f 2 )(f 1 + f 2 ) + b 2 f 2 1 + f 2 2 (b 4 -b 2 κ) , q 3 := 12f 3 2 (b 1 + b 2 )(κ(b 1 -b 2 ) -b 3 + b 4 ) , q 4 := 12f 3 1 (b 1 -b 2 )(κ(b 1 + b 2 ) -b 3 -b 4 ) , r 1 := -a 1 (b 1 + b 2 )(b 1 κ -b 2 κ -b 3 + b 4 ) -a 2 (b 1 -b 2 )(κ(b 1 + b 2 ) -b 3 -b 4 ) , r 2 := 2a 1 (b 1 + b 2 )(b 1 κ -b 2 κ -b 3 + b 4 ) f 1 , r 3 := 2a 2 (b 1 -b 2 )(-κ(b 1 + b 2 ) + b 3 + b 4 ) f 2 . Again, d dκ W tot (κ) = M c (κ) + M m (κ)
. The plot of the bending moments and the strain energy divided by Observe that the bending stiffness remains bounded as L c → ∞ (h → 0). This is a distinguishing feature of the relaxed micromorphic model. The values of the parameters used are:

µ e = 1, λ e = 1, µ micro = 1, λ micro = 1, µ = 1, a 1 = 2, a 2 = 1.

Limit cases

In addition to the two limits 0 ← L c → ∞ we consider here as well µ micro → ∞ since this makes for the transition to the classical Cosserat model.

lim Lc→0 M c (κ) = 4 µ macro (λ macro + µ macro ) λ macro + 2µ macro h 3 12 κ = D macro κ , lim Lc→∞ M c (κ) = 0 , lim Lc→∞ M m (κ) = 4 µ micro (λ micro + µ micro ) λ micro + 2µ micro h 3 12 κ = D micro κ , lim Lc→0 M m (κ) = 0 , lim Lc→0 W tot (κ) = 1 2 4 µ macro (λ macro + µ macro ) λ macro + 2µ macro h 3 12 κ 2 = 1 2 D macro κ 2 , lim Lc→∞ W tot (κ) = 1 2 4 µ micro (λ micro + µ micro ) λ micro + 2µ micro h 3 12 κ 2 = 1 2 D micro κ 2 , lim µmicro→∞ M c (κ) = 4µ macro (λ macro + µ macro ) λ macro + 2µ macro h 3 12 κ , lim µmicro→∞ M m (κ) = h µ L 2 c a 1 + a 2 2 κ . lim µmicro→∞ W tot (κ) = 1 2     4µ macro (λ macro + µ macro ) λ macro + 2µ macro h 3 12 Dmacro +µ L 2 c a 1 + a 2 2 h     κ 2 .
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The micro-stretch model in dislocation format

The micro-stretch model in dislocation format [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF] can be obtained from the relaxed micromorphic model by letting formally µ micro → ∞, while κ micro < ∞. For bounded energy, this constrains dev sym P = 0 ⇔ P = A + ω1, A ∈ so(3), ω ∈ R. Thus the micro-stretch model has 4 additional degrees of freedom. The expression of the strain energy for the isotropic micro-stretch continuum in dislocation format (i.e. with curvature energy only depending on the dislocation density tensor Curl (A + ω1)) can then be written as [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]: The boundary conditions at the upper and lower surface (free surface) are

W (Du, A, ω, Curl (A -ω1)) = µ macro dev sym Du 2 + κ e 2 tr 2 (Du -ω1) + µ c skew (Du -A) 2 + κ micro 2 tr 2 (ω1) + µ L 2 c 2 a 1 dev sym Curl (A + ω1) 2 + a 2 skew Curl (A + ω1) 2 + a 3 3 tr 2 (Curl (A + ω1)) (71) = µ macro dev sym Du 2 + κ e 2 tr 2 (Du -ω1) + µ c skew (Du -A) 2 + 9 2 κ micro ω 2 + µ L 2 c 2 a 1 dev sym Curl A 2 + a 2 skew Curl (A + ω1) 2 + a 3 3 tr 2 (Curl A) , since 
t(x 2 = ± h/2) = ± σ(x 2 ) • e 2 = 0 , η(x 2 = ± h/2) = ± skew (m(x 2 ) • • e 2 ) = ± skew (m(x 2 ) × e 2 ) = 0 , (73) 
γ(x 2 = ± h/2) = ± 1 3 tr (m(x 2 ) • • e 2 ) = ± 1 3 tr (m(x 2 ) × e 2 ) = 0 .
According with the reference system shown in Fig. 1, the ansatz for the displacement field and the function ω is

u(x 1 , x 2 ) =   -κ 1 x 1 x 2 v(x 2 ) + κ1x 2 1 2 0   , A(x 1 ) =   0 -κ 2 x 1 0 κ 2 x 1 0 0 0 0 0   , ω = ω (x 2 ) . ( 74 
)
The equilibrium equations (72) then result in 5

κ e (v (x 2 ) -κ -3ω (x 2 )) + 2 3 µ macro (κ + 2v (x 2 )) = 0 , (75) 
2 3 a2 µ L 2 c ω (x 2 ) + κ e (v (x 2 ) -κ x 2 -3ω(x 2 )) -3κ micro ω(x 2 ) = 0 ,
since the second equation eq.(72) 2 is already satisfied. From eq.(75) 1 it is possible to evaluate v (x 2 ) and consequently v (x 2 ) as follows

v (x 2 ) = 9κ e 3κ e + 4µ macro ω (x 2 ) + 3κ e -2µ macro 3κ e + 4µ macro κ , (76) 
v (x 2 ) = 9κ e 3κ e + 4µ macro ω(x 2 ) + 3κ e -2µ macro 3κ e + 4µ macro κ x 2 + c 0 .

Substituting back the expression of v (x 2 ) and v (x 2 ) in (75) it is possible to evaluate ω(x 2 ) from eq.(75) 2 and consequently v(x 2 ) which results in

ω(x 2 ) = c 1 e -f 1 x 2 Lc + c 2 e f 1 x 2 Lc -f 2 κ x 2 + f 3 c 0 , v(x 2 ) = 9κ e 3κ e + 4µ macro L c f 1 c 2 e f 1 x 2 Lc -c 1 e -f 1 x 2 Lc + (3 -9f 2 )κ e -2µ macro 6κ e + 8µ macro x 2 2 κ + 1 + 3f 2 κ e 2µ macro x 2 c 0 , f 1 := 1 √ a 2 µ 9 2 κ micro + 4κ e µ e 3κ e + 4µ macro , f 2 := 6κ e µ macro 12µ macro (κ e + κ micro ) + 9κ e κ micro . ( 77 
)
f 3 := 2 3 + κ e 2µ macro f 2 .
In Fig. 12 we present the distribution across the thickness of P 11 while varying L c . 5 Where κe = 2µe +3λe 

M c (κ) := h/2 -h/2 σe 1 , e 1 x 2 dx 2 = h 3 12 µ macro p 1 + p 2 f 1 L c h 2 -2p 2 L c h 3 tanh f 1 h 2L c κ , M m (κ) := h/2 -h/2 2 skew (m × e 1 ) e 2 , e 1 dx 2 = h 3 12 µ macro q 1 L c h 2 + q 2 L c h 3 tanh f 1 h 2L c κ , M m (κ) := h/2 -h/2
tr (m × e 1 ) dx 2 = 0 , (78)

W tot (κ) := +h/2 -h/2 W (Du, A, ω, Curl (A -ω1)) dx 2 = 1 2 h 3 12 µ macro p 1 + (p 2 f 1 + q 1 ) L c h 2 -(2p 2 -q 2 ) L c h 3 tanh f 1 h 2L c κ 2 , p 1 := 2(6 -9f 2 )κ e + 4µ macro 3κ e + 4µ macro , p 2 := 108 (2f 2 -1)κ e f 3 1 (3κ e + 4µ macro ) , q 1 := 6µ (a 1 + a 2 (1 -2f 2 )) µ macro , q 2 := 12a 2 µ (2f 2 -1) f 1 µ macro .
One of the two higher-order bending moment is zero and we have d dκ

W tot (κ) = M c (κ) + M m (κ).
The plot of the non zero bending moments and the strain energy divided by h 3 12 κ and 1 2 h 3 12 κ 2 , respectively, while changing L c is shown in Fig. 13. 

Limit cases

lim Lc→0 M c (κ) = h 3 12 4µ macro (3κ macro + µ macro ) 3κ macro + 4µ macro κ = D macro κ , lim Lc→0 M m (κ) = 0 , lim Lc→0 W tot (κ) = 1 2 h 3 12 
4µ macro (3κ macro + µ macro ) 3κ macro + 4µ macro κ 2 = 1 2 D macro κ 2 , lim Lc→∞ M c (κ) = h 3 12 µ macro κ , ( 79 
) lim Lc→∞ M m (κ) = ∞ , lim Lc→∞ W tot (κ) = ∞ .
6 Cylindrical bending for the isotropic Cosserat continuum

The expression of the strain energy for the isotropic Cosserat continuum in dislocation tensor format can be written6 

W (Du, A, Curl A) = µ macro sym Du 2 + λ macro 2 tr 2 (Du) + µ c skew (Du -A) 2 (80) + µ L 2 c 2 a 1 dev sym Curl A 2 + a 2 skew Curl A 2 + a 3 3 tr 2 (Curl A) ,
where A ∈ so(3). The Cosserat energy can be obtained from the relaxed micromorphic model by letting formally µ micro , λ micro → ∞ or letting κ micro → ∞ in the micro-stretch model.

It is important to underline that, since tr (Curl A) = 0 and dev sym Curl

A 2 = sym Curl A 2 = skew Curl A 2 = 1 2 Curl A 2
for a plane problem (see Appendix C), the elastic energy ends up to have only one effective curvature parameter

W (Du, A, Curl A) = µ macro sym Du 2 + λ macro 2 tr 2 (Du) + µ c skew (Du -A) 2 (81) + µ L 2 c 2 a 1 + a 2 2 Curl A 2 .
The equilibrium equations without body forces are the following:

Div σ:= [2µ macro sym Du + λ macro tr (Du) 1 + 2µ c skew (Du -A)] = 0 , 2µ c skew (Du -A) (82) -µ L 2 c skew Curl a 1 dev sym Curl A + a 2 skew Curl A + a 3 3 tr (Curl A) 1 = 0 .
The boundary conditions for the upper and lower surface (free surface) are

t(x 2 = ± h/2) = ± σ(x 2 ) • e 2 = 0 , (83) η(x 2 = ± h/2) = ± skew (m(x 2 ) × e 2 ) = ± skew (m(x 2 ) • • e 2 ) = 0 ,
where the expression of σ is in eq.( 82), e 2 is defined the unit vector aligned to the x 2 -direction, is the Levi-Civita tensor, and the moment stress tensor m = µ L 2 c (a 1 dev sym Curl A + a 2 skew Curl A + a 3 /3 tr (Curl A) 1).

The bending Neumann condition skew (m(x 2 ) × e 2 ) = 0 at the upper and lower surface will be derived in Appendix B.

According to the reference system shown in Fig. 1, the ansatz for the displacement field and the microrotation is

u(x 1 , x 2 ) =   -κ 1 x 1 x 2 v(x 2 ) + κ1x 2 1 2 0   , A(x 1 ) =   0 -κ 2 x 1 0 κ 2 x 1 0 0 0 0 0   , (84) 
while the gradient of the displacement field result to be

Du =   -κ 1 x 2 -κ 1 x 1 0 κ 1 x 1 v (x 2 ) 0 0 0 0   . ( 85 
)
Substituting the ansatz eq.( 84) in eq.( 82) the equilibrium equations turn in

2µ c (κ 1 -κ 2 ) -κ 1 λ macro + (λ macro + 2µ macro ) v (x 2 ) = 0 , (86) 
2x 1 µ c (κ 2 -κ 1 ) = 0 , 2x 1 µ c (κ 1 -κ 2 ) = 0 .
In order to satisfy eq.( 86) 2 and eq.( 86) 3 either µ c = 0 or κ 1 = κ 2 = κ; we have chosen the latter option, which implies that the skew-symmetric part of the gradient of the displacement eq.( 85) is the same as the skew-symmetric part of the micro-rotation eq.( 84) 2 . This also implies that the Cosserat couple modulus µ c does not play a role any more. Consequently, the solution (deprived of the rigid body motion) of eq.( 86) is

v(x 2 ) = κ λ macro 2λ macro + 4µ macro x 2 2 + c 2 x 2 = κ ν macro 2 (1 -ν macro ) x 2 2 + c 2 x 2 . (87) 
The boundary conditions eq.( 83) 1 on the upper and lower surfaces constrain c 2 = 0, while the second one eq.( 83) 2 is identically satisfied. Then, the displacement and micro-rotation fields solution are

u 1 (x 2 ) = -κ x 1 x 2 , u 2 (x 2 ) = κ 2 
λ macro λ macro + 2µ macro x 2 2 + κ 2 x 2 1 , A 12 (x 1 ) = -A 21 (x 1 ) = -κ x 1 . (88) 
The displacement field eq.( 88) is the same as the classical one eq. ( 12). In Fig. 14 we shown the plot of A 11 across the thickness.

-0.07 -0.035 The classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) expressions are reported in the following eq.( 89).

M c (κ) = h/2 -h/2 σe 1 , e 1 x 2 dx 2 = h 3 12 4µ macro (λ macro + µ macro ) λ macro + 2µ macro κ = D macro κ , M m (κ) = h/2 -h/2 skew (m × e 1 ) e 2 , e 1 -skew (m × e 1 ) e 1 , e 2 dx 2 = h µ L 2 c a 1 + a 2 2 κ , (89) 
W tot (κ) = +h/2 -h/2 W (Du, A, CurlA) dx 2 = 1 2     h 3 12 4µ macro (λ macro + µ macro ) λ macro + 2µ macro Dmacro +12 µ L c h 2 a 1 + a 2 2 h 3 12     κ 2 .
Finally, there is only one combination of curvature parameters γ =: 

µ macro = 1, λ macro = 1, µ = 1, a 1 = 2, a 2 = 1.

Micro-void model in dislocation tensor format

The expression of the strain energy for the isotropic micro-void continuum with a single curvature parameter in dislocation tensor format (3+1=4 dof's) can be written as:

W (Du, ω, Curl (ω1)) = µ macro dev sym Du 2 + κ e 2 tr 2 (Du -ω1) + κ micro 2 tr 2 (ω1) (90) + µ L 2 c 2 a 2 Curl (ω1) 2 .
Here, ω : R 3 → R describes the additional scalar micro-void degree of freedom. Since Curl (ω1) ∈ so(3), the isotropic curvature reduces to The boundary conditions at the upper and lower surface (free surface) are

t(x 2 = ± h/2) = ± σ(x 2 ) • e 2 = 0 , (92) 
η(x 2 = ± h/2) = ± 1 3 tr (m(x 2 ) • • e 2 ) = ± 1 3 tr (m(x 2 ) × e 2 ) = 0 .
According with the reference system shown in Fig. 1, the ansatz for the displacement field and the function ω is

u(x 1 , x 2 ) =   -κ 1 x 1 x 2 v(x 2 ) + κ1x 2 1 2 0   , ω (x 2 ) 1 =   ω(x 2 ) 0 0 0 ω(x 2 ) 0 0 0 ω(x 2 )   . (93) 
The equilibrium equations (91) turn in are he meso-and the micro-scale 3D bulk modulus.

κ e (v (x 2 ) -κ -3 ω (x 2 )) + 2 3 µ macro (κ + 2v (x 2 )) = 0 , ( 94 
) 2 3 a 2 µ L 2 c ω (x 2 ) + κ e (v (x 2 ) -κ x 2 -3 ω(x 2 )) -3 κ micro ω(x 2 ) = 0 .
Form eq.(94) 1 it is possible to evaluate v (x 2 ) and consequently v (x 2 ) as follows

v (x 2 ) = 3 κ e -2µ macro 3 κ e + 4µ macro κ + 9 κ e 3 κ e + 4µ macro ω (x 2 ) , (95) 
v (x 2 ) = 3 κ e -2µ macro 3 κ e + 4µ macro κ x 2 + 9 κ e 3 κ e + 4µ macro ω(x 2 ) + c 0 .

Substituting back the expression of v (x 2 ) and v (x 2 ) in eq.( 94) it is possible to evaluate ω(x 2 ) from eq.(94) 2 and consequently v(x 2 ) which implies

ω(x 2 ) = c 1 e -f 1 x 2 Lc + c 2 e f 1 x 2 Lc -f 2 κ x 2 + f 3 c 0 , v(x 2 ) = c 2 e f 1 x 2 Lc -c 1 e -f 1 x 2 Lc 9κ e 3κ e + 4µ macro L c f 1 + (3 -9f 2 )κ e -2µ macro 6κ e + 8µ macro κ x 2 2 (96) + 9f 3 κ e 3κ e + 4µ macro + 1 c 0 x 2 , f 1 := 1 √ a 2 µ 9 2
4κ e µ macro 3κ e + 4µ macro + κ micro , f 2 := 2κ e µ macro 4µ macro (κ e + κ micro ) + 3κ e κ micro ,

f 3 := κ e 2µ macro + 2 3 f 2 .
In Fig. 16 we show the distribution across the thickness of P 11 while varying L c . Figure 16: (Micro-void model) Distribution across the thickness of ω(x 2 ) while varying L c . On the vertical axis we have the dimensionless thickness while on the horizontal we have the quantity ω(x 2 ). Notice that the red curve correspond to the limit for L c → 0 while the blue curve correspond to the limit for L c → ∞. The values of the parameters used are: µ e = 2/3, κ e = 7/9, µ micro = 2, κ micro = 7/3, µ = 1, a 1 = 1, κ = 7/200. The classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) expressions are reported in the following eq.( 97)

M c (κ) := h/2 -h/2 σe 1 , e 1 x 2 dx 2 = h 3 12 4µ macro (3κ e + µ macro ) 3κ e + 4µ macro 1 - 9f 2 κ e 2 (3κ e + µ macro ) + 54 κ e 3κ e + µ macro f 2 f 2 1 L c h 2 -
108 κ e 3κ e + µ macro 

f 2 f 3 1 L c h 3 tanh f 1 h 2L c κ , M m (κ) := h/2 -h/2 tr (m × e 1 ) dx 2 = 0 , (97) 
f 2 f 2 1 L c h 2 -
108 κ e 3κ e + µ macro

f 2 f 3 1 L c h 3 tanh f 1 h 2L c κ 2 .
Since the higher-order bending moment is zero and d 

dκ W tot (κ) = M c (κ) + M m (κ) = M c (κ) ,

Limit cases

If µ micro → ∞ (which is the consistent case for the micro-void model) then µ macro → µ e (see the homogenization formulas eq.( 26)) and we obtain lim 

Lc→0 M c (κ) = h 3 12 4µ macro (3κ macro + µ macro ) 3κ macro + 4µ macro κ = D macro κ , lim Lc→∞ M c (κ) = h 3 12 
and inserting back ω1 in eq.(91) 1 , the expressions of the macro stiffness coefficients result to be

µ macro = µ e , κ macro = κ e κ micro κ e + κ micro ; (100) 
• If L c → ∞, in order for a minimum of the energy to exist, it is required that Curl (ω 1) = 0 which means that ω 1 has to be the gradient of a scalar function ζ, which implies that ω(x 2 ) must be constant.

The boundary conditions eq.(92) 2 requires ω (x 2 ) to be zero on the upper and lower surface and since ω 1 must be constant, this is automatically satisfied.

While the micro-void model in dislocation format has bounded stiffness in cylindrical plate bending, the micro-stretch model does not. This may look strange given that the micro-stretch model should be more "flexible" having more independent degrees of freedom (the additional micro-rotation A ∈ so(3)). However, the specific coupling with the curvature terms dictate otherwise. This also shows that the micro-void model is not a simple "penalization" of the micro-stretch model.

Cylindrical bending for the isotropic couple stress continuum family

The indeterminate couple stress models [START_REF] Neff | Correct traction boundary conditions in the indeterminate couple stress model[END_REF] appear by letting formally the Cosserat couple modulus µ c → ∞. This implies the constraint A = skew Du ∈ so(3). It is highlighted that this constraint is automatically satisfied given the ansatz eq.( 84) and the equilibrium equation's requirement that κ 1 = κ 2 (which also implies that the solution is finally independent of the Cosserat couple modulus µ c ), setting the energy for the isotropic Cosserat model equal to the one of the isotropic indeterminate couple stress model. 

1 = 0 ,
while the boundary condition on the upper and lower surface are (for more details see [START_REF] Neff | Correct traction boundary conditions in the indeterminate couple stress model[END_REF]) According to the reference system shown in Fig. 1, the ansatz for the displacement field and consequently the gradient of the displacement are

t(x 2 = ± h/2) = ± σ - 1 2 Anti (Div m) • e 2 - 1 2 e 2 × D [ e 2 , sym m • e 2 ] - 1 2 D [Anti ((1 -e 2 ⊗ e 2 ) • m • e 2 ) • (1 -e 2 ⊗ e 2 )] : (1 -e 2 ⊗ e 2 ) = 0 , ( 104 
) (1 -e 2 ⊗ e 2 ) • η(x 2 = ± h/2) = ± (1 -e 2 ⊗ e 2 ) • Anti [(1 -e 2 ⊗ e 2 ) • m • e 2 ] • e 2 = 0 , π(x 2 = ± h/2) = ± Anti [(1 -e 2 ⊗ e 2 ) • m • e 2 ] + -Anti [(1 -e 2 ⊗ e 2 ) • m • e 2 ] -• e 1 =
u(x 1 , x 2 ) =   -κ x 1 x 2 v(x 2 ) + κx 2 1 2 0   , Du =   -κ x 2 -κ x 1 0 κ x 1 v (x 2 ) 0 0 0 0   . ( 105 
)
Substituting the ansatz eq.( 105) in eq.( 103) the equilibrium equation results to be:

-κλ macro + (λ macro + 2µ macro ) v (x 2 ) = 0 , (106) 
Consequently, the solution (deprived of the rigid body motion) of eq.( 106) is:

v(x 2 ) = κ λ macro 2λ macro + 4µ macro x 2 2 + c 2 x 2 = κ ν macro 2 (1 -ν macro ) x 2 2 + c 2 x 2 . ( 107 
)
The boundary conditions eq.( 104) 1 on the upper and lower surfaces constrain c 2 = 0, while eq.( 104) 2 and eq.(104) 3 are identically satisfied. Then, the displacement field solution results in

u 1 (x 2 ) = -κ x 1 x 2 , u 2 (x 2 ) = κ 2 λ macro λ macro + 2µ macro x 2 2 + κ 2 x 2 1 . ( 108 
)
The displacement field eq.( 108) is the same as the classical one eq.( 12). In Fig. 18 we show the plot of (Du) 11 across the thickness:

-0.07 -0.035 The classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) expressions are reported in the following eq.( 109)

M c (κ) = h/2 -h/2 σe 1 , e 1 x 2 dx 2 = h 3 12 4µ macro (λ macro + µ macro ) λ macro + 2µ macro κ , M m (κ) = h/2 -h/2 (m × e 1 ) e 2 , e 1 dx 2 = h 3 12 µ L c h 2 12 a 1 + a 2 2 κ , ( 109 
) W tot (κ) = +h/2 -h/2 W (Du, Curl skew Du) dx 2 = 1 2 h 3 12 4µ macro (λ macro + µ macro ) λ macro + 2µ macro Dmacro +12 µ L c h 2 a 1 + a 2 2 h 3 12 κ 2 .
The result coincides with the Cosserat solution eq.( 89). Note that d dκ W tot (κ) = M c (κ) + M m (κ) . The plot of the bending moments and the strain energy divided by h 3 12 κ and 1 2 h 3 12 κ 2 , respectively, while changing L c is shown in Fig. 19. 

µ macro = 1, λ macro = 1, µ = 1, a 1 = 2, a 2 = 1.

Cylindrical bending for the isotropic symmetric couple stress continuum

The modified couple stress model [START_REF] Münch | The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless[END_REF] consist in choosing a 1 > 0, a 2 = 0 and the ("pseudo")consistent couple stress model [START_REF] Hadjesfandiari | Couple stress theory for solids[END_REF] appears for a 1 = 0, a 2 > 0. Since Curl sym Du = -Curl skew Du due to Curl Du = 0 for a plane problem, the form of the energy remains the same. For the cylindrical bending problem, the higher order Neumann boundary conditions are already identically satisfied for all these models, like for their general case which is the relaxed micromorphic model.

Cylindrical bending for the classical isotropic micromorphic continuum without mixed terms

The expression of the strain energy for the reduced isotropic micromorphic continuum without mixed terms (like sym P , sym (Du -P ) , etc.) and simplified isotropic curvature can be written as where ∆P ∈ R 3×3 is taken component-wise. The boundary conditions (see the Appendix E) at the upper and lower surface (free surface) are

W (
t(x 2 = ± h/2) = ± σ(x 2 ) • e 2 = 0 R 3 , (113) 
η(x 2 = ± h/2) = ± 3 i=1 m i (x 2 ) (e 2 ) i = 0 R 3×3 ,
where

m i = a 1 dev sym (∂ xi P ) + a 2 skew (∂ xi P ) + 2 9 a 3 tr (∂ xi P ) 1, i = 1, 2, 3
, is a second order tensor, and (e 2 ) i is the i th component of the unit vector e 2 (see the Appendix E). According with the reference system shown in Fig. 1, the ansatz for the displacement field and the microdistortion is

u(x 1 , x 2 ) =   -κ 1 x 1 x 2 v(x 2 ) + κ1x 2 1 2 0   , P (x 1 , x 2 ) =   P 11 (x 2 ) -κ x 1 0 κ x 1 P 22 (x 2 ) 0 0 0 P 33 (x 2 )   . ( 114 
)
Substituting the ansatz eq.( 114) in eq.( 112) the equilibrium equation are 2µ e (v (x 2 ) -P 22 (x 2 )) -λ e (κ + P 11 (x 2 ) + P 22 (x 2 ) + P

33 (x 2 ) -v (x 2 )) = 0 , 1 9 µ L 2 c (2(3a 1 + a 3 )P 11 (x 2 ) -(3a 1 -2a 3 ) (P 22 (x 2 ) + P 33 (x 2 ))) -λ e (P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 ) + κx 2 ) -2µ e (P 11 (x 2 ) + κx 2 ) +λ micro (-P 11 (x 2 ) -P 22 (x 2 ) -P 33 (x 2 )) -2µ micro P 11 (x 2 ) = 0 , - 1 9 µ L 2 c ((3a 1 -2a 3 )P 11 (x 2 ) -2(3a 1 + a 3 )P 22 (x 2 ) + (3a 1 -2a 3 )P 33 (x 2 )) (115) 
-λ e (P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 ) + κx 2 ) + 2µ e (v (x 2 ) -P 22 (x 2 ))

+λ micro (-P 11 (x 2 ) -P 22 (x 2 ) -P 33 (x 2 )) -

2µ micro P 22 (x 2 ) = 0 , - 1 9 µ L 2 c ((3a 1 -2a 3 )P 11 (x 2 ) + (3a 1 -2a 3 )P 22 (x 2 ) -2(3a 1 + a 3 )P 33 (x 2 )) -λ e (P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 ) + κx 2 ) -2µ e P 33 (x 2 ) +λ micro (-P 11 (x 2 ) -P 22 (x 2 ) -P 33 (x 2 )) -2µ micro P 33 (x 2 ) = 0 .
It is possible to evaluate v (x 2 ) from eq.( 115) 1 and then P 22 (x 2 ) form a linear combination of the remaining equation. After substituting the expressions of v (x 2 ) and P 22 (x 2 ) in eq.( 115), we are left with two coupled ordinary differential equations of fourth order in P 11 (x 2 ) and P 33 (x 2 ). The solution is again of hyperbolic type and the unknown coefficients are determined by the boundary conditions eq.( 113).

In Fig. 20 we show the distribution across the thickness of P 11 while varying L c . . On the vertical axis we have the dimensionless thickness while on the horizontal we have the quantity P 11 . Notice that the red curve correspond to the limit for L c → 0 while the blue curve correspond to the limit for L c → ∞. Again the response is opposite to the relaxed micromorphic model. L c → ∞ implies P 11 → 0 (blue line). The values of the parameters used are: µ e = 1/3, λ e = 1/8, µ micro = 2, λ micro = 1, µ = 1, a 1 = 1/2, a 2 = 1/2, a 3 = 3/2, κ = 7/200.. Subsequently, the bending moments and the strain-energy per unit area are computed by

M c (κ) = h/2 -h/2 σe 1 , e 1 x 2 dx 2 , M m (κ) = h/2 -h/2 3 i=1 m i (x 2 ) • (e 1 ) i e 2 , e 1 dx 2 , ( 116 
) W tot (κ) = +h/2 -h/2 W (Du, P , DP ) dx 2 ,
where (e 1 ) i is the scalar i th component of the unit vector e 1 , similarly to eq.( 113) . The symbolic expressions are too long to be reported here, but we provide a plot of the bending moments and the strain energy divided by h 

µ micro = 1, λ micro = 1, µ = 1, a 1 = 2, a 2 = 1, a 3 = 1/2.

Penalized second gradient elasticity

The classical Mindlin-Eringen micromorphic model can also be interpreted as a penalty formulation of second gradient elasticity. Indeed, letting µ e → ∞, κ e → ∞, µ c → ∞ imposes the constraint P = Du and the remaining minimization problem is of the type

min u Ω µ micro sym Du 2 + λ micro 2 tr 2 (Du) + µ L 2 c 2 D 2 u 2 . ( 117 
)
We consider the stiffness generated for this limit in the simple case ν micro = ν e = 0 and we investigate this specific limit case since it remains analytically treatable. 10 Cylindrical bending for the micro-strain model without mixed terms

The micro-strain model [START_REF] Forest | Nonlinear microstrain theories[END_REF][START_REF] Hütter | Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage[END_REF] can be obtained from the classical Mindlin-Eringen model by assuming a priori that the microdistortion remains symmetric, P = S ∈ Sym(3).

A bending solution for a particular model of this type has been derived in [START_REF] Hütter | Application of a microstrain continuum to size effects in bending and torsion of foams[END_REF] disregarding of the lateral contraction. This simplification shall be overcome here, whereby we employ a reduced isotropic curvature expression to make the calculations manageable.

Note that the micro-strain model cannot be obtained from the relaxed micromorphic model, although there are certain similarities. The free energy which we consider is given by

W (Du, S, DS) = µ e dev (sym Du -S) 2 + κ e 2 tr 2 (Du -S) + µ micro dev S 2 + κ micro 2 tr 2 (S) + µ L 2 c 2 3 i=1 a 1 dev ∂ xi S 2 R 3×3 + 2 9 a 3 tr 2 ∂ xi S = µ e dev (sym Du -S) 2 + κ e 2 tr 2 (Du -S) + µ micro dev S 2 + κ micro 2 tr 2 (S) (118) 
+ µ L 2 c 2 a 1 dev DS 2 + 2 9 a 3 tr 2 DS .
The meaning of dev sym DS and tr (DS) for the third order tensor DS can be inferred from eq.( 118), i.e. we define dev sym DS

2 := 3 i=1 dev sym ∂ xi S 2 , tr 2 DS := 3 i=1 tr 2 ∂ xi S . (119) 
The chosen 2-parameter curvature expression represents a simplified isotropic curvature (the full isotropic curvature for the micro-strain model still counts 8 parameters [START_REF] Barbagallo | Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics[END_REF]). If a 1 , a 2 > 0 the chosen curvature energy provides a complete control of DS 2 . If we assume that µ micro → ∞, while κ micro < ∞, then the model turns formally also into the micro-void model (see Section 7) i.e. S = ω1. Then the curvature turns into 8

L 2 c 2 3 i=1 2 9 a 3 tr 2 (∂ xi (ω1)) = µ L 2 c 2 2 9 a 3 3 i=1 tr 2 (∂ xi ω • 1) = µ L 2 c 2 2 9 a 3 3 i=1 |∂ xi ω| 2 R • 9 (120) = µ L 2 c 2 2 a 3 Dω 2 R 3 = µ L 2 c 2 a 3 Curl (ω1) 2 R 3×3 .
The equilibrium equations without body forces are the following (see Appendix E) Div σ:=

[2µ e dev (sym Du -S) + κ e tr (Du -S) 1] = 0, 2µ e dev (sym Du -S) + κ e tr (Du -S) 1 -2µ micro dev S -κ micro tr (S) 1

(121) + µ L 2 c sym a 1 dev ∆S + 2 9 a 3 tr (∆S) 1 = 0 ,
where ∆S ∈ R 3×3 is taken component-wise. The boundary conditions (see the Appendix E) at the upper and lower surface (free surface) are

t(x 2 = ± h/2) = ± σ(x 2 ) • e 2 = 0 , (122) η 
(x 2 = ± h/2) = ± 3 i=1 sym (m i (x 2 ) (e 2 ) i ) = 0 ,
where

m i = a 1 dev (∂ xi S) + 2 9 a 3 tr (∂ xi S) 1, i = 1, 2,
3 is a second order tensor and (e 2 ) i is the scalar i th component of the unit vector e 2 (see the Appendix E). According with the reference system shown in Fig. 1, the ansatz for the displacement field and the microdistortion is

u(x 1 , x 2 ) =   -κ 1 x 1 x 2 v(x 2 ) + κ1x 2 1 2 0   , S (x 1 , x 2 ) =   S 11 (x 2 ) 0 0 0 S 22 (x 2 ) 0 0 0 S 33 (x 2 )   . ( 123 
) 8 Note that Curl (ω1) 2 R 3×3 = Anti (Dω) 2 R 3×3 = 2 axl (Anti (Dω)) 2 R 3 = 2 Dω 2 R 3
Substituting the ansatz eq.( 123) in eq.( 121) the equilibrium equation results in

2µ e (v (x 2 ) -S 22 (x 2 )) -λ e (κ + S 11 (x 2 ) + S 22 (x 2 ) + S 33 (x 2 ) -v (x 2 )) = 0 , 1 9 µ L 2 c (2(3a 1 + a 3 )S 11 (x 2 ) -(3a 1 -2a 3 ) (S 22 (x 2 ) + S 33 (x 2 ))) -λ e (S 11 (x 2 ) + S 22 (x 2 ) + S 33 (x 2 ) -v (x 2 ) + κx 2 ) -2µ e (S 11 (x 2 ) + κx 2 ) +λ micro (-S 11 (x 2 ) -S 22 (x 2 ) -S 33 (x 2 )) -2µ micro S 11 (x 2 ) = 0 , - 1 9 µ L 2 c ((3a 1 -2a 3 )S 11 (x 2 ) -2(3a 1 + a 3 )S 22 (x 2 ) + (3a 1 -2a 3 )S 33 (x 2 )) (124) 
-λ e 11 (x

2 ) + S 22 (x 2 ) + S 33 (x 2 ) -v (x 2 ) + κx 2 ) + 2µ e (v (x 2 ) -S 22 (x 2 )) +λ micro (-S 11 (x 2 ) -S 22 (x 2 ) -S 33 (x 2 )) -2µ micro S 22 (x 2 ) = 0 , - 1 9 µ L 2 c ((3a 1 -2a 3 )S 11 (x 2 ) + (3a 1 -2a 3 )S 22 (x 2 ) -2(3a 1 + a 3 )S 33 (x 2 )) -λ e (S 11 (x 2 ) + S 22 (x 2 ) + S 33 (x 2 ) -v (x 2 ) + κx 2 ) -2µ e S 33 (x 2 ) +λ micro (-S 11 (x 2 ) -S 22 (x 2 ) -S 33 (x 2 )) -2µ micro S 33 (x 2 ) = 0 .
It is possible to evaluate v (x 2 ) from eq.( 124) 1 and then S 22 (x 2 ) form a linear combination of the remaining equation. After substituting the expressions of v (x 2 ) and S 22 (x 2 ) in eq.( 124), we are left with two coupled ordinary differential equations of fourth order in S 11 (x 2 ) and S 33 (x 2 ). In Fig. 23 we show the distribution across the thickness of P 11 while varying L c .
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Figure 23: (Micro-strain model) Distribution across the thickness of S 11 while varying L c . On the vertical axis we have the dimensionless thickness while on the horizontal we have the quantity S 11 . Notice that the red curve correspond to the limit for L c → 0 while the blue curve correspond to the limit for L c → ∞. Observe the similar behaviour on L c → ∞ with the classical micromorphic model, as opposed to the relaxed micromorphic model. The values of the parameters used are:

µ e = 1/3, λ e = 1/8, µ micro = 2, λ micro = 1, µ = 1, a 1 = 1/2, a 2 = 1/2, a 3 = 3/2, κ = 7/200.
The classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) definitions are reported in the following eq.( 125)

M c (κ) = h/2 -h/2 σe 1 , e 1 x 2 dx 2 , M m (κ) = h/2 -h/2 3 i=1 m i (x 2 ) • (e 1 ) i e 2 , e 1 dx 2 , (125) 
W tot (κ) = +h/2 -h/2 W (Du, S, DS) dx 2 ,
where (e 1 ) i is the scalar i th component of the unit vector e 1 . Again, the symbolic expressions are lengthy and are thus not reported here in detail. Fig. 24 provides a graphical representation of the final result. Since the higher-order bending moment is zero and the following relation holds

d dκ W tot (κ) = M c (κ) + M m (κ) = M c (κ) , (126) 
only the plot of energy [START_REF] Shaat | A reduced micromorphic model for multiscale materials and its applications in wave propagation[END_REF] (per unit area dx 1 dx 3 ) while changing L c is shown in Fig. 
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Figure 24: (Micro-strain model) Energy expression while varying L c . Observe that the bending stiffness remains bounded as L c → ∞ (h → 0). Here this is due to the fact that the skew-symmetric part of the micro-distorsion is absent in the curvature energy, similarly to the micro-void curvature energy. The values of the parameters used are:

µ e = 1, λ e = 1, µ micro = 1, λ micro = 1, µ = 1, a 1 = 2, a 2 = 1, a 3 = 1/2.
The energy of the model remains bounded, as for the micro-void model, since for both models the higher-order bending moment are zero, and this does not create a conflict with the boundary condition as L c → ∞.

Cylindrical bending for the second gradient continuum

The expression of the most general isotropic strain energy for the second gradient continuum is [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] 

W Du, D 2 u = µ macro sym Du 2 + λ macro 2 tr 2 (Du) (127) 
+ a 1 χ iik χ kjj + a 2 χ ijj χ ikk + a 3 χ iik χ jjk + a 4 χ ijk χ ijk + a 5 χ ijk χ kji ,
where χ = D 2 u (χ ijk = ∂ 2 u k ∂xi ∂xj ). The expression we are going to use in the following is a simplified isotropic strain energy with three curvature parameters

W Du, D 2 u = µ macro sym Du 2 + λ macro 2 tr 2 (Du) + µ L 2 c 2 3 i=1 a 1 dev sym ∂ xi Du 2 R 3×3 + a 2 skew ∂ xi Du 2 R 3×3 + 2 9 a 3 tr 2 ∂ xi Du = µ macro sym Du 2 + λ macro 2 tr 2 (Du) (128) + µ L 2 c 2 a 1 dev sym D 2 u 2 + a 2 skew D 2 u 2 + 2 9 a 3 tr 2 D 2 u .
The meaning of dev sym D 2 u, skew D 2 u, and tr D 2 u for the third order tensor D 2 u can be inferred from eq.( 128), i.e. we define 

dev sym D 2 u 2 := 3 i=1 dev sym ∂ xi Du 2 , skew D 2 u 2 := 3 i=1 skew ∂ xi Du 2 , (129) 
a 3 tr (∆ (Du)) 1 = 0 ,
where ∆ (Du) ∈ R 3×3 , is taken component-wise. According with the reference system shown in Fig. 1, the ansatz for the displacement field and the microdistortion is

u(x 1 , x 2 ) =   -κ x 1 x 2 v(x 2 ) + κ x 2 1 2 0   .
(131)

11.1 One curvature parameter and zero Poisson's ratio ν macro = 0

Substituting the ansatz eq.( 131) in eq.( 130) while choosing a 1 = a 2 = 1, a 3 = 3 2 and the Poisson's ratio ν macro = 0, the equilibrium equation are

-µ L 2 c v (4) (x 2 ) + 2µ macro v (x 2 ) = 0 . (132) 
It is possible to see that, for the second gradient model there is just one cumulative higher order parameter.

The boundary conditions (are reported here just the non zero terms), in the classical Mindlin formulation [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], at the upper and lower surface (free surface) are

t k (x 2 = ± h/2) = ± ( σ jk n j -n i n j D (m ijk ) -2n j D i (m ijk )) = 0 , (133) 
η k (x 2 = ± h/2) = ± (n i n j m ijk ) = 0 ,
where σ = 2µ macro sym Du, the third-order moment stress tensor m = µ L c D 2 u, n = e 2 is the normal to the upper or lower surface and

D j (•) = (δ jl -n j n ) (•) , , D (•) = n (•) , . (134) 
The solution of eq.( 132) is

v(x 2 ) = µ L 2 c µ macro c 1 e - x 2 2µmacro µ Lc + c 2 e x 2 2µmacro µ Lc + c 4 x 2 + c 3 . (135) 
After applying the boundary conditions eq.( 133) it is possible to evaluate the displacement field solution of the cylindrical bending problem. The classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) definitions are reported in the following eq.( 136) (where n = e 1 in this case):

M c (κ) = h/2 -h/2 ( σ jk n j -n i n j D (m ijk ) -2n j D i (m ijk )) n k x 2 dx 2 = h 3 12 2µ macro κ , (136) 
M m (κ) = h/2 -h/2 m • e 1 R 3×3 e 1 , e 2 -m • e 2 R 3×3 e 1 , e 1 -m • e 1 R 3×3 e 2 , e 1 dx 2 = h 3 12 36 µ L c h 2 κ , W tot (κ) = +h/2 -h/2 W Du, D 2 u dx 2 = 1 2 h 3 12 2µ macro + 36 µ L c h 2 κ 2 .
The plot of the bending moments and the strain energy divided by h 3 12 κ and 1 

One curvature parameter and arbitrary Poisson's ratio

Substituting the ansatz eq.( 131) in eq.( 130) while choosing a 1 = a 2 = 1, a 3 = 3 2 , the equilibrium equation results to be:

-µ L 2 c v (4) (x 2 ) + λ macro (v (x 2 ) -κ) + 2µ macro v (x 2 ) = 0 . ( 137 
)
The solution of eq.( 137) is

v(x 2 ) = 2 µ L 2 c λ macro + 2µ macro c 1 e - x 2 λmacro+2µmacro µ Lc + c 2 e x 2 λmacro +2µmacro µ Lc (138) + λ macro λ macro + 2µ macro x 2 2 2 κ + c 4 x 2 + c 3 .
After applying the boundary conditions (are reported here just the non zero terms), in the classical Mindlin formulation [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], at the upper and lower surface (free surface)

t k (x 2 = ± h/2) = ± ( σ jk n j -n i n j D (m ijk ) -2n j D i (m ijk )) = 0 , (139) 
η k (x 2 = ± h/2) = ± (n i n j m ijk ) = 0 ,
where σ = 2µ macro sym Du, the third-order moment stress tensor m = µ L c D 2 u, n = e 2 is the normal to the upper or lower surface and

D j (•) = (δ jl -n j n ) (•) , , D (•) = n (•) , , (140) 
it is possible to evaluate the displacement field solution of the cylindrical bending problem. The classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) definitions are reported in the following eq.( 146) (where n = e 1 in this case)

M c (κ) = h/2 -h/2 ( σ jk n j -n i n j D (m ijk ) -2n j D i (m ijk )) n k x 2 dx 2 = h 3 12 4µ macro (λ macro + µ macro ) λ macro + 2µ macro + 12 µ λ 2 macro (λ macro + 2µ macro ) 2 L c h 2 - 24 µ λ 2 macro (λ macro + 2µ macro ) 2 L c h 3 µ λ macro + 2µ macro tanh h 2L c λ macro + 2µ macro µ κ , M m (κ) = h/2 -h/2 m • e 1 R 3×3 e 1 , e 2 -m • e 2 R 3×3 e 1 , e 1 -m • e 1 R 3×3 e 2 , e 1 dx 2 = h 3 12 36 µ L c h 2 κ , W tot (κ) = +h/2 -h/2 W Du, D 2 u dx 2 (141) = 1 2 h 3 12 4µ macro (λ macro + µ macro ) λ macro + 2µ macro + 12µ 3 (λ macro + 2µ macro ) 2 + λ 2 macro (λ macro + 2µ macro ) 2 L c h 2 - 24 µ λ 2 macro (λ macro + 2µ macro ) 2 L c h 3 µ λ macro + 2µ macro tanh h 2L c λ macro + 2µ macro µ κ 2 .
As The boundary conditions (see the Appendix F) at the upper and lower surface (free surface) are (for the complete formulation in the classical notation see [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF]) 

t(x 2 = ± h/2) = ± σ • e 2 -µ L 2 c 3 i=1 ∂ xi m i • e 2 -µ L 2 c 3 i=1 m i (e 2 ) i • D τ = 0 , (142) 
D τ = (1 -n ⊗ n) • (∂ x1 , ∂ x2 , ∂ x3 ) . ( 143 
)
Substituting the ansatz eq.( 131) in eq.( 130) while choosing a 1 = a 2 = 1, a 3 = 3 2 , the equilibrium equation is

- 2 9 µ L 2 c (3a 1 + a 3 ) v (4) (x 2 ) + λ macro (v (x 2 ) -κ) + 2µ macro v (x 2 ) = 0 , (144) 
and the solution of eq.( 144) is

v(x 2 ) = 1 9 L 2 c f 2 1 c 1 e -3x 2 Lc f1 + c 2 e 3x 2 Lc f1 + λ macro 2 (λ macro + 2µ macro ) κ x 2 2 + c 4 x 2 + c 3 , (145) 
f 1 := λ macro + 2µ macro 2µ(3a 1 + a 3 ) .
After applying the boundary conditions at the upper and lower surface (free surface) it is possible to evaluate the displacement field solution of the cylindrical bending problem and then proceed to calculate the classical bending moment, the higher-order bending moment, and energy (per unit area dx 1 dx 3 ) definitions which are reported in the following eq.( 146):

M c (κ) = h/2 -h/2 σ • e 1 -µ L 2 c 3 i=1 ∂ xi m i e 1 -µ L 2 c 3 i=1 m i (e 1 ) i • D τ e 1 x 2 dx 2 = h 3 12 4µ macro (λ macro + µ macro ) λ macro + 2µ macro - 2 3 λ macro 4µ macro λ macro + 2µ macro - 9a 1 3a 1 + a 3 1 f 2 1 L c h 2 - 4λ macro λ macro + 2µ macro 1 f 3 1 a 1 λ macro 3a 1 + a 3 + 2(3a 1 -2a 3 )µ macro 9(3a 1 + a 3 ) L c h 3 κ , M m (κ) = h/2 -h/2 3 i=1 (m i (e 1 ) i ) R 3×3 e 1 , e 2 - 3 i=1 (m i (e 2 ) i ) R 3×3 e 1 , e 1 - 3 i=1 (m i (e 1 ) i ) R 3×3 e 2 , e 1 dx 2 = h 3 12 2 3 λ macro 4µ macro λ macro + 36a 2 µ macro (3a 1 + a 3 )λ macro + 9(a 1 + 2a 2 ) 3a 1 + a 3 1 f 2 1 L c h 2 (146) - 4λ macro λ macro + 2µ macro 1 f 3 1 a 1 (3a 1 -2a 3 ) (λ macro + 2µ macro ) 2(3a 1 + a 3 ) 2 + (3a 1 -2a 3 ) 2 µ macro (λ macro + 2µ macro ) 9(3a 1 + a 3 ) 2 λ macro L c h 3 κ , W tot (κ) = +h/2 -h/2 W Du, D 2 u dx 2 = 1 2 h 3 12 4µ macro (λ macro + µ macro ) λ macro + 2µ macro + 2 3 λ macro 8µ 2 micro 2λ micro µ micro + λ 2 micro + 36a 2 µ macro (3a 1 + a 3 )λ macro + 18(a 1 + a 2 ) 3a 1 + a 3 1 f 2 1 L c h 2 - 4λ macro λ macro + 2µ macro 1 f 3 1 (2(3a 1 -2a 3 )µ macro + 9a 1 λ macro ) 2 18(3a 1 + a 3 ) 2 λ macro L c h 3 κ 2 .
As before d dκ

W tot (κ) = M c (κ) + M m (κ) = M c (κ)
. The plot of the bending moments and the strain energy divided by h 3 12 κ and 1 2

h 3
12 κ 2 , respectively, while changing L c is shown in Fig. 28. 12 Summary and conclusions

The present contribution presents the ansatz for solving the problem of pure cylindrical bending of elastic micromorphic continua. This ansatz is used to derive the solutions of different subclasses of micromorphic continua like the full micromorphic theory, microstrain theory and relaxed micromorphic theory with different approaches for the micro-curvature terms. The limiting case of very thin specimens (compared to the intrinsic length) is investigated and it is pointed out which theories yield bounded values of the flexural stiffness, thus providing hints on the choice of the type of theory and the respective parameters. Furthermore, the provided analytical solutions show the sensitivity of the flexural stiffness with respect to the constitutive parameters and thus offer a puzzle stone to identify these parameters. Finally, the analytical solutions are valuable benchmarks for numerical solution methods like FEM. 

A Appendix

With the ansatz eq.( 24) the following relations hold:

dev CurlP = CurlP =   0 0 -κ -P 11 (x 2 ) 0 0 0 P 33 (x 2 ) 0 0   , tr (CurlP ) = 0 , skew CurlP = 1 2   0 0 -κ -P 11 (x 2 ) -P 33 (x 2 ) 0 0 0 κ + P 11 (x 2 ) + P 33 (x 2 ) 0 0   , (147) 
dev sym CurlP = sym CurlP = 1 2

  0 0 P 33 (x 2 ) -κ -P 11 (x 2 ) 0 0 0 P 33 (x 2 ) -κ -P 11 (x 2 ) 0 0   .
Given eq.( 147) we observe CurlP 

= 1 2 (a 1 + a 2 ) P 11 (x 2 ) + κ 2 + P 33 (x 2 ) 2 -2(a 1 -a 2 )P 33 (x 2 ) κ + P 11 (x 2 ) . (149) 

B Generalized Neumann boundary conditions for the relaxed micromorphic model and the Cosserat model

Partial integration for the matrix-Curl operator can be written as

∂Ω P × ν, Q dS = Ω Curl P , Q -P , Curl Q dx , ( 150 
) ∂Ω P × ν, Curl A dS = Ω Curl P , Curl A -P , Curl Curl A dx ,
where P, Q ∈ C 1 Ω, R 3×3 are sufficiently smooth square 3 × 3 matrix fields and ν is the outward unit normal vector to ∂Ω.

Inserting P = δA and Q = CurlA for A ∈ C 1 Ω, so(3) , for a test field δA and argument A ∈ so(3), we obtain

∂Ω δA × ν, Curl A dS = Ω Curl δA, Curl A -δA, Curl Curl A dx . (151) 
The scalar-product on the left-hand side is interpreted row-wise. Making use of the permutation properties of the scalar product, namely

a × ν, b R 3 = det [b, a, ν] = -det [a, b, ν] = -a, b × ν (152) we arrive at ∂Ω δA, Curl A × ν dS = Ω δA, Curl Curl A -Curl δA, Curl A dx . ( 153 
) Since δA ∈ C 1 Ω, so(3) this gives equivalently ∂Ω δA, skew (Curl A × ν) dS = Ω δA, skew (Curl Curl A) -Curl δA, Curl A dx . ( 154 
) Replacing Q = m = Curl A yields ∂Ω δA, skew (m × ν) dS = Ω δA, skew (Curl m) -Curl δA, m dx , (155) 
where the appropriate localization shows skew (m × ν) Γ = 0 since δA is arbitrary on Γ.

C The Lie-algebra so(3), the 3D-Curl on so(3) and Nye's relation

Given A ∈ so(3) A =   0 -a 3 a 2 a 3 0 -a 1 -a 2 a 1 0   (156) 
the operator axl: so

(3) ∈ R 3 is introduced axl   0 -a 3 a 2 a 3 0 -a 1 -a 2 a 1 0   :=   a 1 a 2 a 3   , A • v = (axlA) × v, ∀v ∈ R 3 . (157) 
Given the definition eqs. ( 156)-(157), the following identities hold (Nye's relation)

-CurlA = (DaxlA) T -tr (DaxlA) T • 1, DaxlA = -(CurlA) T + 1 2 tr (CurlA) T • 1 . (158) 
If we now have A = skew Du it is possible to show that

-(Curl skew Du) T = D axl (skew Du) , 1 2 curlu = axl (skew Du) , (159) 
which leads to the following identity for the full Curl, Curl skew Du 2 = 1 4 Dcurl u 2 . It is also highlighted here that, thanks to eq.( 159) 1 this relation holds Curl skew Du = -Curl sym Du (see [START_REF] Ghiba | A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions[END_REF]), since 0 = CurlDu = Curl skew Du + Curl sym Du , which implies that choosing the symmetric or the skew-symmetric part of the gradient of the displacement does not make any difference besides a sign. Moreover tr(CurlS) = 0 for any symmetric matrix S ∈ Sym(3)

D Cylindrical bending for the isotropic Cosserat continuum with classical notation

In [START_REF] Neff | A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy[END_REF] (eq.(2.2)) there is the correspondence between the isotropic Cosserat model with rotation vector and the Curl representation in dislocation format. Both have three curvature parameters and the identification is given by

α = 1 3 (4a 3 -a 1 ) , β = a 1 -a 2 2 , γ = a 1 + a 2 2 . (160) 
Setting ϑ := axl(A) and taking into account eqs. ( 157)-( 160), the expression of the strain energy for the isotropic Cosserat continuum can be equivalently written as:

W (Du, A, Curl A) = µmacro sym Du 2 + λmacro 2 tr 2 (Du) + µc skew Du -A 2 + µ L 2 c 2 a 1 dev sym Curl A 2 + a 2 skew Curl A 2 + a 3 3 tr 2 (Curl A) dislocation tensor format (161) = W (Du, ϑ, Dϑ) = µmacro sym Du 2 + λmacro 2 tr 2 (Du) + µc 2 curlu -2ϑ 2 + µ L 2 c 2 α tr 2 (Dϑ) + β Dϑ T , Dϑ + γ Dϑ 2 micro-rotation vector format , since skew Du -A 2 = 2 axl(skew Du -Anti(ϑ)) 2 = 2 1 2 curlu -ϑ 2 = 1 2 curlu -2ϑ 2 . ( 162 
)
The equilibrium equations without body forces in the classical notation are now the following

Div [2µmacro sym Du + λmacrotr (Du) 1] -µc curl [curl u -2ϑ] = 0 , (163) 
µ L 2 c Div α tr (Dϑ) 1 + β (Dϑ) T + γ Dϑ + 2µc (curl u -2ϑ) = 0 .
The boundary conditions at the upper and lower surface (free surface) are

t(x 2 = ± h/2) = ± σ(x 2 ) • e 2 = 0 , η(x 2 = ± h/2) = ± m(x 2 ) • e 2 = 0 , (164) 
where σ = 2µmacro sym Du + λmacrotr (Du) 1 + 2µc (skew Du -Anti(ϑ)), e 2 is the unit vector aligned to the x 2 -direction, and the second-order moment stress tensor m := µ L 2 c α tr (Dϑ) 1 + β (Dϑ) T + γ Dϑ . The relation to the higher-order stress tensor reported in Sect. 6 is the following:

dev m T = -dev (m) , tr (m) = 1 2 tr (m) . (165) 
According to the reference system shown in Fig. 1, the ansatz for the displacement field and the micro-rotation vector is

u(x 1 , x 2 ) =    -κ 1 x 1 x 2 v(x 2 ) + κ 1 x 2 1 2 0    , ϑ(x 1 , x 2 ) =   0 0 -κ 2 x 1   . (166) 
Substituting the ansatz eq.(166) in eq.( 163) the equilibrium equations result in

2µc(κ 1 -κ 2 ) -κ 1 λe + (λe + 2µe) v (x 2 ) = 0 , 2x 1 µc(κ 2 -κ 1 ) = 0 , 2x 1 µc(κ 1 -κ 2 ) = 0 , (167) 
which are exactly the same as the eq.( 86) in Section 6. Since also the boundary conditions eq.( 164) are equivalent to the boundary condition eq.( 83) in Section 6, further calculations are avoided. It is nevertheless interesting to show the definition of the higher-order bending moment:

Mm(κ) = h/2 -h/2 m e 1 , e 3 dx 2 = h/2 -h/2 (m × e 1 ) e 2 , e 1 dx 2 = h µ L 2 c γ κ , (168) 
given that (m × e 1 ) e 2 , e 1 = (m, e 2 × e 1 ) , e 1 = -m e 3 , e 1 = -m T e 1 , e 3 = -m e 1 , e 3 .

D.1 Lakes formula

In order to connect ourselves to the existing literature, we provide the reader with an excerpt taken from Lakes [START_REF] Lakes | Elastic freedom in cellular solids and composite materials[END_REF] to which we compare our results: "Cosserat solids may be characterized via size effects in rigidity. Exact analytical solutions for size effects form the basis of a variety of experiments for the characterization of Cosserat solids. For example, Gauthier and Jahsman [START_REF] Gauthier | A quest for micropolar elastic constants[END_REF] give Ω, the ratio of rigidity to its classical value, for cylindrical bending of a plate

Ω := 1 + 24 2 b (1 -ν) h 2 , b = γ 4µ (170) 
with h the plate thickness". In plate bending, the anticlastic curvature due to the Poisson's effect is constrained, in contrast to (classical) beam bending.

M Lakes tot = E Jx 3 R 1 + 24 l b h 2 (1 -ν) = E 1 -ν 2 h 3 12 1 R 1 + 24 γ 4µ 1 h 2 (1 -ν) = E 1 -ν 2 h 3 12 1 R 1 + 24γ (1 + ν) 2 E 1 h 2 (1 -ν) = E 1 -ν 2 h 3 12 1 R + γ h R , M tot = 4µe (λe + µe) λe + 2µe h 3 12 κ + h γ κ = E 1 -ν 2 h 3 12 1 R + γ h R , (171) κ 
= 1 R , γ := µ L 2 c γ , E = E 1 -ν 2 , Jx 3 = h 3 12 , h = 2a , µ = E 2(1 + ν) ,
where γ = a 1 +a 2

2

. It is possible to define a dimensionless bending moment by dividing by the classical Cauchy bending moment eq.( 13) 1 obtaining [START_REF] Gauthier | A quest for micropolar elastic constants[END_REF][START_REF] Lakes | Experimental methods for study of Cosserat elastic solids and other generalized elastic continua[END_REF] Ω :=

M tot Mc = 1 + 24 γ 4µ 1 h 2 (1 -ν) = 1 + 24 b h 2 (1 -ν) , (172) 
which coincide with eq.( 170).

E Equilibrium equation and boundary conditions for the full micromorphic and micro-strain model

The only critical part in this calculus is connected to the used isotropic curvature expression

Wcurv = µ L 2 c 2 Ω 3 i=1 a 1 dev sym ∂x i P 2 R 3×3 + a 2 skew ∂x i P 2 R 3×3 + 2 9 a 3 tr 2 ∂x i P dx . (173) 
The first variation of Wcurv with respect to P is 

δWcurv = µ L 2 c Ω 3 
δWcurv = µ L 2 c Ω 3 i=1 ∂x i a 1 dev sym (∂x i P ) , δP R 3×3 + a 2 skew (∂x i P ) , δP R 3×3 + 2 9 
a 3 tr (∂x i P ) 1, δP R 3×3 dx -µ L 2 c Ω 3 i=1 a 1 ∂x i dev sym (∂x i P ) , δP R 3×3 + a 2 ∂x i skew (∂x i P ) , δP R 3×3 (176) + 2 9 
a 3 ∂x i tr (∂x i P ) 1, δP R 3×3 dx ,
or, defining m i = µ Lc a 1 dev sym (∂x i P ) + a 2 skew (∂x i P ) + 2 9 a 3 tr (∂x i P ) 1 , i = 1, 2, 3, we can equivalently write

δWcurv = Ω 3 i=1 ∂x i m i , δP R 3×3 dx - Ω 3 i=1 ∂x i m i , δP R 3×3 dx (177) = Ω Div   m 1 , δP R 3×3 m 2 , δP R 3×3 m 3 , δP R 3×3   dx - Ω 3 i=1 ∂x i m i , δP R 3×3 dx .
After applying the divergence theorem to the first integral of eq.( 176) and eq.( 177) respectively, we obtain

δWcurv = µ L 2 c ∂Ω 3 i=1 a 1 dev sym (∂x i P ) + a 2 skew (∂x i P ) + 2 9 a 3 tr (∂x i P ) 1 n i , δP R 3×3 dS -µ L 2 c Ω 3 i=1 a 1 dev sym ∂ 2 x i P + a 2 skew ∂ 2 x i P + 2 9 a 3 tr ∂ 2 x i P 1, δP R 3×3 dx = ∂Ω 3 i=1 m i n i , δP R 3×3 dS -µ L 2 c Ω a 1 dev sym ∆P + a 2 skew ∆P (178) + 2 9 
a 3 tr (∆P ) 1 , δP R 3×3 dx ,
or equivalently in the form of eq.( 177)

δWcurv = ∂Ω   m 1 , δP R 3×3 m 2 , δP R 3×3 m 3 , δP R 3×3   , n R 3 dS -µ L 2 c Ω 3 i=1 a 1 dev sym (∆P ) + a 2 skew (∆P ) (179) + 2 9 
a 3 tr (∆P ) 1, δP R 3×3 dx .
Since δP is arbitrary in Ω, and on ∂Ω, and since δWcurv = 0 for a stationary point, we are now in a position to write the curvature terms of the equilibrium equation and the boundary condition without body forces and external load for the micromorphic model in Ω -µ L 2 c a 1 dev sym It is clear that the proposed curvature energy is isotropic [START_REF] Münch | Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy[END_REF]. However, the expression is not the most general isotropic curvature term, which would have 5 independent constants (see also [START_REF] Dell'isola | Generalized Hooke's law for isotropic second gradient materials[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] and Appendix G). The first variation with respect to u is The product rule implies that (here reported just for the curvature part of the energy as an example) Now, the only term that needs further attention is the third one in eq.( 187), since only the normal component to the surface of Dδu is independent with respect to δu. We introduce these three operators

∆P ∈ R 3×3 + a 2 skew ∆P ∈ R 3×3 + 2 9 a 3 tr ∆P ∈ R 3×3 1 = 0 R 3×3 , on ∂Ω 3 i=1 m i n i = 0 R 3×3 ,              ( 
D τ = (1 -n ⊗ n) • (∂x 1 , ∂x 2 , ∂x 3 ) , D n a = (n ⊗ n) • (∂x 1 , ∂x 2 , ∂x 3 ) , D n b = (∂x 1 , ∂x 2 , ∂x 3 ) • n , (191) 
which, using the fact that (Dδu) T = (∂x 1 , ∂x 2 , ∂x 3 ) ⊗ δu and that D τ + D n a = (∂x 1 , ∂x 2 , ∂x 3 ), allows us to write the third term in eq.( 187) as While the term involving the normal derivative of the virtual displacement (D n b ∂u = Du • n) is independent of δu, the term involving the tangential projection of Dδu (δu ⊗ D τ = Dδu • (1 -n ⊗ n)) is not, and must be further manipulated. It is known ( [START_REF] Madeo | A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF]) that this tangential term can be still manipulated integrating by parts and using the surface divergence theorem so implying (see eq.(3.5) in [START_REF] Madeo | A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model[END_REF])

∂Ω B, δu ⊗ D τ = - ∂Ω D [B • (1 -n ⊗ n)] • (1 -n ⊗ n) , δu + ∂∂Ω Bν, δu , ( 193 
)
where ν is the normal to ∂∂Ω. In our bending problem there is no ∂∂Ω and the normal is constant, so that the preceding equation reduce to

∂Ω B, δu ⊗ D τ = - ∂Ω DB • (1 -n ⊗ n) • (1 -n ⊗ n) , δu (194) 
= -

∂Ω DB • (1 -n ⊗ n) , δu = - ∂Ω B • D τ , δu .
Hence, in our particular case, the first term in eq.( 192) can be written as: The curvature energy in eq.( 17) can be represented in index form as 

Wcurv = µ L 2 c 2
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 122 Figure 1: (a) Transversal section of the plate with the definition of the edges limiting the considered portion (Γ 3 , Γ 4 , Γ + , Γ + ). The equation of the bottom half circumference of radius R tangent to the x 1 axis in the origin is x2 = R -R 2 -x 2 1 .The second order approximation of the series expansion at x 1 = 0 isx 2 | x1=0 = R -(R -x 2 1 2R + . . . ) ≈ κ x 21 2 where κ = 1 R is the curvature. (b) Mean axis of the transversal section (a). (c) Schematic representation of the considered plate's portion.
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 2 λmacro +µmacro ) , the Young modulus Emacro = µmacro(3λmacro+2µmacro) λmacro+µmacro = 2µmacro (1 + νmacro), and the bulk modulus κmacro = 2µmacro +3λmacro 3 .
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 2 Figure 2: (a) Deformed shape for Poisson's ratio ν macro → 1 /2, and (b) deformed shape for Poisson's ratio ν macro → 0; (c) plot of the component (Du) 11 of the gradient of the displacement across the thickness h. The value used for the curvature is κ = 1.5.
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 2 λmacro +µmacro ) , the 3D Young modulus Emacro = µmacro(3λmacro +2µmacro) λmacro+µmacro , and the micro and the meso expression of the Poisson's ratio in plane stress νmicro = λ micro 2(λ micro +µ micro ) and the νe = λe 2(λe +µe ) , respectively.
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  2µ e sym (Du -P ) + 2µ c skew (Du -P )] = 0 ,

4 1 cosh(x) = 2 e 2 Figure 3 : 2 c 2 CurlP 2

 1223222 Figure 3: Deformed shape of a relaxed micromorphic plate for zero Poisson's ratio ν e = ν micro = 0 and with one-constant curvature energy µ L 2 c

Figure 4 :

 4 Figure 4: (Relaxed micromorphic model, one curvature parameter, zero Poisson) (a) Bending moments and energy while varying L c . Observe that the bending stiffness remains bounded as L c → ∞ (h → 0). This is one of the distinguishing features of the relaxed micromorphic model; (b) dimensionless stiffness where D micro = Dmicro Dmacro is the stiffness normalized against the classical linear elastic stiffness. Since the two pictures show exactly the same features, in the following we will only show variant (a). The values of the parameters used are: µ e = 1, µ micro = 1, µ = 1.

Figure 5 :

 5 Figure 5: (Relaxed micromorphic model, one curvature parameter, zero Poisson) (a) Distribution across the thickness of P 11 while varying L c . On the vertical axis we have the dimensionless thickness while on the horizontal we have the quantity P 11 . Notice that the red curve correspond to the limit for L c → 0 while the blue curve correspond to the limit for L c → ∞. (b) distribution across the thickness of P 11 while varying L c obtained via a COMSOL ® simulation in which a finite cylindrical bending problem is solved by using the consistent coupling kinematic boundary conditions eq.(34). The values of the parameters used are: µ micro = 1, µ e = 1, µ = 1, h = 1, κ = 7/200.

Figure 6 :

 6 Figure 6: (a) 3D-deformed shape of a finite relaxed micromorphic plate for which a finite cylindrical bending problem is solved by using the consistent coupling kinematic boundary conditions; (b) plot of the distribution across the thickness of P 11 on the deformed shape; (c) meshed finite plate. The values of the parameters used are: µ micro = 1, µ e = 1, µ = 1, h = 1, κ = 7/200.

Figure 7 :

 7 Figure 7: (Relaxed micromorphic model, one curvature parameter, arbitrary Poisson) Bending moments and energy while varying L c . Observe that the bending stiffness remains bounded as L c → ∞ (h → 0). This is a distinguishing feature of the relaxed micromorphic model. The values of the parameters used are: µ e = 1, λ e = 1, µ micro = 1, λ micro = 1, µ = 1.
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 2 Curl a 1 dev sym Curl P + a 2 skew Curl P + a 3 3 tr (Curl P ) 1 = 0.
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 3232 , respectively, while changing L c is shown in Fig.8.

Figure 8 :

 8 Figure 8: (Relaxed micromorphic model, zero Poisson) Bending moments and energy while varying L c . Observe that the bending stiffness remains bounded as L c → ∞ (h → 0). This is a distinguishing feature of the relaxed micromorphic model. The values of the parameters used are: µ e = 1, µ micro = 1, µ = 1, a 1 = 2, a 2 = 1.

Figure 9 :

 9 Figure 9: (Relaxed micromorphic model, general case) (a) Distribution across the thickness of P 11 while varying L c (continuous line) and the distribution across the thickness of (Du) 11 . On the vertical axis we have the dimensionless thickness while on the horizontal axis we have the quantity P 11 . Notice that the red curve corresponds to the limit for L c → 0 while the blue curve correspond to the limit for L c → ∞. (b) dimensionless parametric plot of P 11 across the thickness for a given L c for the relaxed micromorphic model. The values of the parameters used are: µ e = 2/3, λ e = 1/3, µ micro = 2, λ micro = 1, µ = 1, a 1 = 1, a 2 = 1.
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 4 
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 3232 , respectively, while changing L c is shown in Fig.10.

Figure 10 :

 10 Figure 10: (Relaxed micromorphic model, general case) Bending moments and energy while varying L c . Observe that the bending stiffness remains bounded as L c → ∞ (h → 0). This is a distinguishing feature of the relaxed micromorphic model. The values of the parameters used are: µ e = 1, λ e = 1, µ micro = 1, λ micro = 1, µ = 1, a 1 = 2, a 2 = 1.

Figure 11 :

 11 Figure 11: Bending stiffness while varying L c for the relaxed micromorphic model and for the Cosserat model. Observe that the bending stiffness remains bounded for the relaxed micromorphic model while it blows up for the Cosserat model as L c → ∞ which is connected to the limit µ micro → ∞, see Sect.6. For best comparison, the characteristic length scale of the Cosserat model has been chosen L Coss c := L relax c √ 2 . The values of the parameters used are: µ e = 2, λ e = 1, µ micro = 2/3, λ micro = 1/3, µ = 1, a 1 = 1, a 2 = 1. Of course the micro-parameters are only relevant for the relaxed micromorphic model.
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 22 Curl (ω1) ∈ so(3). The equilibrium equations without body forces are then Div σ:= [2µ macro dev sym Du + κ e tr (Du -ω1) 1 + 2µ c skew (Du -A)] = 0 , 2µ c skew (Du -A) -µ L 2 c skew Curl a 1 dev sym Curl A + a 2 skew Curl (A + ω1) + a 3 3 tr (Curl A) 1 = 0 . (72) tr 2µ macro dev sym Du +κ e tr (Du -ω1) 1 -κ micro tr (ω1) 1 -µ L Curl skew Curl (ω1 + A) = 0 .

3 and κmicro = 2µ micro +3λ micro 3 Figure 12 :

 312 Figure12:(Micro-stretch model) Distribution across the thickness of ω(x 2 ) while varying L c . On the vertical axis we have the dimensionless thickness while on the horizontal we have the quantity ω(x 2 ). Notice that the red curve correspond to the limit for L c → 0 while the blue curve correspond to the limit for L c → ∞. The same reasoning regarding the increase of P 11 ∼ ω(x 2 ) for L c → ∞ done for the relaxed micromorphic model applies here. The values of the parameters used are: µ e = 2/3, κ e = 7/9, µ micro = 2, κ micro = 7/3, µ = 1, a 1 = 1/2, a 2 = 1/2, κ = 7/200.

Figure 13 :

 13 Figure 13: (Micro-stretch model in dislocation format) Energy expression while varying L c . Observe that the bending stiffness is unbounded as L c → ∞ (h → 0), while for L c → 0 we recover the classical stiffness D macro . The values of the parameters used are: µ e = 2/3, κ e = 7/9, µ micro = 2, κ micro = 7/3, µ = 1, a 1 = 1, a 2 = 1/2.

Figure 14 :

 14 Figure 14: (Cosserat model) Plot of A 11 (blue line) and (Du) 11 (red line) across the thickness.

3 12 κ and 1 2 h 3 12 κ 2

 3232 ) and this parameter L c is traditionally called the bending length scale of the Cosserat model (see Appendix D.1). There is no counterpart to this observation in the relaxed micromorphic model or in the micro-stretch model. Again, d dκ W tot (κ) = M c (κ) + M m (κ) . The plot of the bending moments and the strain energy divided by h , respectively, while changing L c is shown in Fig.15

  .

Figure 15 :

 15 Figure 15: (Cosserat model) Bending moments and strain energy while varying L c . Note the singularity of the bending stiffness as L c → ∞ (h → 0). The values of the parameters used are: µ macro = 1, λ macro = 1, µ = 1, a 1 = 2, a 2 = 1.
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 22222 Curl (ω1)2 . The equilibrium equations without body forces are 7 Div σ:= [2µ macro dev sym Du + κ e tr (Du -ω1) 1] = 0, σ -κ micro tr (ω1) 1 -µ L Curl Curl (ω1) = 0.
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 232 while changing L c is shown in Fig.17

  .

Figure 17 :

 17 Figure 17: (Micro-void model) Bending stiffness while varying L c . Observe that the bending stiffness remains bounded as L c → ∞ (h → 0). In this sense, the micro-voids model in dislocation format is consistent with the relaxed micromorphic model in cylindrical plate bending. The values of the parameters used are: µ e = 1, κ e = 5/3, µ micro = 1, κ micro = 5/3, µ = 1, a 1 = 1.

  0 , where σ = 2µ e sym Du + λ e tr (Du) 1, e 2 is the unit vector aligned to the x 2 -direction, and the second order moment stress m = µ L 2 c (a 1 dev sym Curl skew Du + a 2 skew Curl skew Du + a3 3 tr (Curl skew Du) 1 . The operator Anti is defined as the inverse of axl in the context of eq.(1). The term (Anti [(1 -e 2 ⊗ e 2 ) • m • e 2 ] + -Anti [(1 -e 2 ⊗ e 2 ) • m • e 2 ] -) measures the discontinuity of Anti [(1 -e 2 ⊗ e 2 ) • m • e 2 ] across the boundary.

Figure 18 :

 18 Figure 18: (Couple stress model) Plot of (Du) 11 across the thickness.

Figure 19 :

 19 Figure 19: (Couple stress model) Bending moments and strain energy while varying L c with a 1 = a 2 = 1. Note the singularity of the bending stiffness as L c → ∞ (h → 0). The values of the parameters used are: µ macro = 1, λ macro = 1, µ = 1, a 1 = 2, a 2 = 1.
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 323293 xi P . The equilibrium equations (see the Appendix E) without body forces are the following Div σ:= [2µ e dev sym (Du -P ) + κ e tr (Du -P ) 1 + 2µ c skew (Du -P )] = 0 , σ -2µ micro dev sym P -κ micro tr (P ) 1 (112) +µL 2 c a 1 dev sym ∆P + a 2 skew ∆P + 2 tr (∆P ) 1 = 0 ,

-

  

Figure 20 :

 20 Figure20: (Micromorphic model, classical case) Distribution across the thickness of P 11 while varying L c . On the vertical axis we have the dimensionless thickness while on the horizontal we have the quantity P 11 . Notice that the red curve correspond to the limit for L c → 0 while the blue curve correspond to the limit for L c → ∞. Again the response is opposite to the relaxed micromorphic model. L c → ∞ implies P 11 → 0 (blue line). The values of the parameters used are: µ e = 1/3, λ e = 1/8, µ micro = 2, λ micro = 1, µ = 1, a 1 = 1/2, a 2 = 1/2, a 3 = 3/2, κ = 7/200..
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 232 , respectively, in Fig. 21 for selected parameter sets while changing L c . Still we have d dκ W tot (κ) = M c (κ) + M m (κ) = M c (κ) .

Figure 21 :

 21 Figure 21: (Micromorphic model, classical case) Bending moments and energy while varying L c . Observe that the bending stiffness is unbounded as L c → ∞ (h → 0). This is a major difference with respect the relaxed micromorphic model. The values of the parameters used are: µ e = 1, λ e = 1, µ micro = 1, λ micro = 1, µ = 1, a 1 = 2, a 2 = 1, a 3 = 1/2.

Figure 22 :

 22 Figure 22: (a) (Classical micromorphic model) Limit for µ e → ∞ of the unbounded stiffness of the Classical micromorphic model. The limit is given by the corresponding unbounded stiffness of the second gradient model W SG . The purple line represent the unbounded stiffness for µ e = 0. (b) (Relaxed micromorphic model) Limit for µ e → ∞ of the bounded stiffness of the relaxed micromorphic model. The limit µ e → ∞ (since ν e = λ e = 0) gives a linear elastic solution with stiffness D micro which remains bounded. Letting µ e → 0 simply decouples the problem.
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 23221 xi Du . The equilibrium equations (see the Appendix F) without body forces are Div 2µ macro sym Du + λ macro tr (Du) 1 (130) -µL dev sym ∆ (Du) + a 2 skew ∆ (Du) + 2 9
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 232 , respectively, while changing L c is shown in Fig.25
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Figure 25 :

 25 Figure 25: (Second gradient model, one curvature parameter, zero Poisson's ratio ν macro =0) Bending moments and energy while varying L c . Observe that the bending stiffness is unbounded as L c → ∞ (h → 0). This is a major difference with respect the relaxed micromorphic model. The values of the parameters used are: µ macro = 1, µ = 1.
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 3232 always, d dκ W tot (κ) = M c (κ) + M m (κ) = M c (κ) .The plot of the bending moments and the strain energy divided by h , respectively, while changing L c is shown in Fig.26.

Figure 26 :Figure 27 :

 2627 Figure 26: (Second gradient model, one curvature parameter) Bending moments and energy while varying L c . Observe that the bending stiffness is unbounded as L c → ∞ (h → 0). This is a major difference with respect to the relaxed micromorphic model. The values of the parameters used are: µ macro = 1, λ micro = 1, µ = 1.
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 3 Full isotropic curvature and arbitrary Poisson's ratios ν macro

η(x 2 = 3 i=1(m i (e 2 ) 2 c 3 i=1a 1 2 9 a 3

 23223123 ± h/2) = ± i ) e 2 = 0 , where σ = 2µ macro sym Du + λ macro tr (Du) 1, m i = µ L dev sym (∂ xi Du) + a 2 skew (∂ xi Du) + tr (∂ xi Du) 1 , i = 1,2, 3, is the higher-order stress tensor, (e 2 ) i is the scalar i th component of the unit vector e 2 , and

Figure 28 :

 28 Figure 28: (Second gradient model, general case) Bending moments and energy while varying L c . Observe that the bending stiffness is unbounded as L c → ∞ (h → 0). This is a major difference with respect the relaxed micromorphic model. The values of the parameters used are: µ macro = 1, λ macro = 1, µ = 1, a 1 = 2, a 2 = 1, a 3 = 1/2.

3 i=1mF 3 i=1 a 1 dev sym ∂x i Du 2 R 3×3 + a 2 skew ∂x i Du 2 R 3×3 + 2 9 a 3

 33223 180)If P = S is symmetric, then δS ∈ Sym(3) as well and, like in the micro-strain model, eq.(180) turns into on Ω -µ L 2 c a 1 dev sym ∆S i n i = 0 R 3×3 . Equilibrium equation for the second gradient elastic model tr 2 ∂x i Du dx .

Ω µ L 2 c 3 i=1a 1 9 a 3 3 i=1a 1 9 a 3

 31933193 , sym Dδu R 3×3 + λmacro tr (Du) tr (Dδu) dx + dev sym (∂x i Du) , dev sym (∂x i Dδu) R 3×3 +a 2 skew (∂x i Du) , skew (∂x i Dδu) R 3×3 + 2 tr (∂x i Du) tr (∂x i Dδu) dx = Ω 2µmacro sym Du, Dδu + λmacro tr (Du) 1, dev sym (∂x i Du) , ∂x i Dδu R 3×3 + a 2 skew (∂x i Du) , ∂x i Dδu R 3×3 + 2 tr (∂x i Du) 1, ∂x i Dδu R 3×3 dx .

+ 2 9 a 3 1 TΩ µ L 2 c 3 i=1∂x i a 1 9 a 3 3 i=1a 1 9 a 3 tr ∂ 2 x i Du 1 , 1 , 2 , 3 , 3 i=1a 1 9 a 3 tr ∂ 2 x i Du 1 , 2 c 3 i=1a 1 2 9 a 3 1 T∂Ω µ L 2 c 3 i=1a 1 9 a 3

 931319331921123319212312313193 tr (∂x i Du) 1, ∂x i Dδu R 3×3 dx . Since div S T 1 δu = Div S 1 , δu R 3 + S 1 , ∇δu R 3×3 , we can express δW as δW = Ω div 2µmacro sym Du + λmacro tr (Du) δu dx -Ω Div [2µmacro sym Du + λmacro tr (Du) 1] , δu R 3 dx + dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1, Dδu R 3×3 dx dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 Dδu R 3×3 dx , or equivalently δW = Ω div 2µmacro sym Du + λmacro tr (Du) 1 δu dx -Ω Div [2µmacro sym Du + λmacro tr (Du) 1] , δu R 3 dx + Dδu R 3×3 m Dδu R 3×3 m Dδu R 3×3 dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 Dδu R 3×3 dx , where m i = µ L dev sym (∂x i Du) + a 2 skew (∂x i Du) + tr (∂x i Du) 1, Dδu R 3×3 . After applying the divergence theorem to the first and the third term of eq.(185) we obtain δW = ∂Ω 2µmacro sym Du + λmacro tr (Du) δu, n R 3 dS -Ω Div [2µmacro sym Du + λmacro tr (Du) 1] , δu R 3 dx + dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du)

∂Ω µ L 2 c 3 i=1a 1 9 a 3 ∂Ω µ L 2 c 3 i=1a 1 9 a 3 3 i=1a 1 9 a 3 3 i=1a 1 9 a 3 3 i=1a 1 9 a 3

 231933193319331933193 dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i , D δu R 3×3 dS = dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i , δu ⊗ D τ dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i , δu ⊗ D n a dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i , δu ⊗ D τ dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i n, D n b δu R 3 dS .

∂Ω µ L 2 c 3 i=1a 1 9 a 3 3 i=1a 1 9 a 3 ΩDiv µ L 2 c 3 i=1a 1 9 a 3 tr ∂ 2 xi 3 i=1a 1 9 a 3 tr ∂ 2 xi∂Ω µ L 2 c 3 i=1a 1 9 a 3 ∂Ω µ L 2 c 3 i=1a 1 9 a 3 3  2 c 3 i=1 a 1 2 9 a 3 3 i=1a 1 9 a 3 tr ∂ 2 xi-µ L 2 c 3 i=1a 1 9 a 3 tr ∂ 2 x i Du 1 n 3 i=1a 1 9 a 3 2 c 3 i=1a 1 9 a 3

 319331933192319231933193323123319231921319323193 dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i , δu ⊗ D τ dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du)1 n i • D τ , δu R 3 dS .It is now possible to write all togetherδW = -Ω Div [2µmacro sym Du + λmacro tr (Du) 1] , δu R 3 dx + dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 Du 1 , δu R 3 dx + ∂Ω 2µmacro sym Du + λmacro tr (Du) 1 n, δu R 3 dS dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 Du 1 n, δu R 3 dS dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i • D τ , δu R 3 dS + dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i n, D n δu R 3 dS ,or in an equivalent wayδWcurv = -Ω Div ( σ) , δu R 3 dx + • n • n, D n δu R 3 dx . (198)where m i = µ L dev sym (∂x i Du) + a 2 skew (∂x i Du) + tr (∂x i Du) 1 and σ = 2µmacro sym Du + λmacro tr (Du) 1.We are now in a position to write the equilibrium equation and the boundary conditions without body forces and external load for the strain gradient model for the cylindrical plate bending since the only variations that remain are δu and D n b δu which are independent with respect each other:Div σ -µ L 2 c dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 Du 1 = 0 R 3 in Ω 2µmacro sym Du + λmacro tr (Du) 1 n dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i • D τ = 0 R 3 on ∂Ω µ L dev sym (∂x i Du) + a 2 skew (∂x i Du) + 2 tr (∂x i Du) 1 n i n = 0 R 3 on ∂Ω G Relationsof parameters in terms of the classical Mindlin-Eringen formulation G.1 Reduced Mindlin-Eringen formulation in terms of the classical Mindlin-Eringen formulation

  2 c P 33 (x 2 ) -λ e (P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 ) -v (x 2 ) + κ 1 x 2 ) -2µ e P 33 (x 2 ) -λ micro P 11 (x 2 ) -λ micro P 22 (x 2 ) -P 33 (x 2 ) (λ micro + 2µ micro ) = 0 .

  1 it is possible to evaluate v (x 2 ) and consequently v (x 2 ) v (x 2 ) = λ e (κ + P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 )) + 2µ e P 22 (x 2 )

				λ e + 2µ e		,	(40)
	v (x 2 ) =	λ e (κ x 2 + P 11 (x 2 ) + P 22 (x 2 ) + P 33 (x 2 )) + 2µ e P 22 (x 2 ) λ e + 2µ e	+ c 0 .
	By substituting back eq.(40) in eq.(39), we can evaluate P 22 (x 2 ) and its derivatives from equation eq.(39) 5
	P 22 (x 2 ) = -	λ micro (P 11 (x 2 ) + P 33 (x 2 )) λ micro + 2µ micro	+	λ e + 2µ e λ micro + 2µ micro	c 0 ,	(41)
	P 22 (x 2 ) = -	λ micro (P 11 (x 2 ) + P 33 (x 2 )) λ micro + 2µ micro	,	P 22 (x 2 ) = -	λ micro (P 11 (x 2 ) + P 33 (x 2 )) λ micro + 2µ micro	.

  The indeterminate couple stress elastic energy turns into W (Du, Curl skew Du) = µ macro sym Du

		2 + +a 1 dev sym Curl skew Du λ macro 2 tr 2 (Du) + 2 + a 3 3 tr 2 (Curl skew Du) . µ L 2 c a 2 skew Curl skew Du 2	2	(101)
	Since, however, tr(Curl skew Du) = 0 and dev sym Curl skew Du	2 = sym Curl skew Du	2 =
	skew Curl skew Du	2 = 1 2 Curl skew Du	2 for a plane problem, we left with
	W (Du, Curl skew Du) = µ macro sym Du	2 +	λ macro 2	tr 2 (Du)	
		+	µ L 2 c 2		a 1 sym Curl skew Du	2 + a 2 skew Curl skew Du	2 , (102)
		= µ macro sym Du	2 +	λ macro 2	tr 2 (Du) +	µ L 2 c 2	a 1 + a 2 2	Curl skew Du	2 .
	The equilibrium equations without body forces are		
	Div 2µ e sym Du + λ e tr (Du) 1 + µ L 2 c skew Curl a 1 dev sym Curl skew Du	(103)
			+a 2 skew Curl skew Du +	a 3 3	tr (Curl skew Du)

  Du, P , DP ) = µ e dev sym (Du -P )

		+ µ micro dev sym P	2 + 2 + κ micro κ e tr 2 (Du -P ) + µ c skew (Du -P ) 2 2 tr 2 (P )	2
		+	µ L 2 c 2	3 i=1	a 1 dev sym ∂ xi P	2	+ a 2 skew ∂ xi P	2	+	2 9	a 3 tr 2 ∂ xi P
		= µ e dev sym (Du -P ) + µ micro dev sym P 2 + 2 + κ micro κ e tr 2 (Du -P ) + µ c skew (Du -P ) 2 2 tr 2 (P )	2	(110)
		+	µ L 2 c 2	a 1 dev sym DP	2 + a 2 skew DP	2 +	2 9	a 3 tr 2 DP	.
	The meaning of dev sym DP , skew DP , and tr (DP ) for the third order tensor DP can be inferred from
	eq.(110), i.e. we define								
		3								
	dev sym DP	2 :=	dev sym ∂ xi P					
		i=1							

2

,

skew DP 2 :=

  Journal of the Mechanics and Physics of Solids, 56(12):3541-3564, 2008. [45] A. Waseem, A.J. Beveridge, M.A. Wheel, and D.H. Nash. The influence of void size on the micropolar constitutive properties of model heterogeneous materials. European Journal of Mechanics-A/Solids, 40:148-157, 2013. [46] J.F.C. Yang and R.S. Lakes. Experimental study of micropolar and couple stress elasticity in compact bone in bending. Journal of Biomechanics, 15(2):91-98, 1982. [47] L. Zhang, Binbin L., S. Zhou, B. Wang, and Y. Xue. An application of a size-dependent model on microplate with elastic medium based on strain gradient elasticity theory. Meccanica, 52(1-2):251-262, 2017.

models.

  2 = dev CurlP 2 , sym CurlP 2 = dev sym CurlP 2

				(148)
	and also		
	a 1 dev sym CurlP 2 + a 2 skew CurlP 2 +	a 3 3	tr 2 (CurlP )
	=	1 2	a 2

1 κ + P 11 (x 2 ) -P 33 (x 2 ) 2 + a 2 κ + P 11 (x 2 ) + P 33 (x 2 )

  tr (∂x i P ) 1, ∂x i δP dx . dev sym (∂x i P ) , ∂x i δP + a 2 skew (∂x i P ) , ∂x i δP

				+	2 9	a 3 ∂x i tr (∂x i P ) 1, δP R 3×3 dx
			3		
		+	i=1	a 1 +	2 9	a 3 tr (∂x
						+	2 9	a 3 tr (∂x i P ) tr (∂x i δP ) dx
		3			
	= µ L 2 c		a 1 dev sym (∂x i P ) , ∂x i δP + a 2 skew (∂x i P ) , ∂x i δP	(174)
	Ω	i=1			
	+ a 3 The product rule implies that 2 9
						R 3×3	(175)

i=1 a 1 dev sym (∂x i P ) , dev sym (∂x i δP ) + a 2 skew (∂x i P ) , skew (∂x i δP )

3 i=1 ∂x i a 1 dev sym (∂x i P ) , δP R 3×3 + a 2 skew (∂x i P ) , δP R 3×3 + 2

9

a 3 tr (∂x i P ) 1, δP R 3×3 dx = 3 i=1

a 1 ∂x i dev sym (∂x i P ) , δP R 3×3 + a 2 ∂x i skew (∂x i P ) , δP i P ) 1, ∂x i δP dx , thus δWcurv can be written as

3

  i=1 ∂x i a 1 dev sym (∂x i Du) , Dδu R 3×3 + a 2 skew (∂x i Du) , Dδu R 3×3 + 29a 3 tr (∂x i Du) 1, Dδu R 3×3 dx = 3 i=1 a 1 ∂x i dev sym (∂x i Du) , Dδu R 3×3 + a 2 ∂x i skew (∂x i Du) , Dδu R 3×3 a 3 ∂x i tr (∂x i Du) 1, Dδu R 3×3 dx + 3 i=1 a 1 dev sym (∂x i Du) , ∂x i Dδu R 3×3 + a 2 skew (∂x i Du) , ∂x i Dδu R 3×3

		(184)
	+	2 9

  Dδu R 3×3 dx . ∂Ω 2µmacro sym Du + λmacro tr (Du) 1 δu, n R 3 dS -Div [2µmacro sym Du + λmacro tr (Du) 1] , δu R 3 dx Dδu R 3×3 m 1 , Dδu R 3×3 m 1 , Dδu R 3×3 Du 1, Dδu R 3×3 dx .Integrating by part the fourth term of eq.(187) it is possible to write Du 1 , δu R 3 dx and using the divergence theorem on the first term of eq.(189) we have Du 1 n, δu R 3 dS

	or equivalently									
	δW =									
						m 1 , 
	+	∂Ω							 , n R 3 dS	(188)
	-	Ω	µ L 2 c x i -3 i=1 a 1 dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 9 a 3 tr ∂ 2 Ω µ L 2 c 3 i=1 a 1 dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 9 a 3 tr ∂ 2 x i Du 1, Dδu R 3×3 dx
	= -	Ω	div µ L 2 c	3 i=1	a 1 dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du +	2 9	a 3 tr ∂ 2 x i Du 1	T	δu dx	(189)
			+ x i -Ω Div µ L 2 c 3 i=1 a 1 dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 9 a 3 tr ∂ 2 Ω div µ L 2 c 3 i=1 a 1 dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 9 a 3 tr ∂ 2 x i Du 1	T	δu dx	(190)
		= -		∂Ω	µ L 2 c	3 i=1	a 1 dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du +	2 9	a 3 tr ∂ 2 x i

1 , D δu R 3×3 n i dS (187) -Ω µ L 2 c 3 i=1 a 1 dev sym ∂ 2 x i Du + a 2 skew ∂ 2 x i Du + 2 9 a 3 tr ∂ 2 x i Du 1, Ω

  jk P mm,i δ jk P nn,i

	a 1	1 2	P jk + P kj -	1 3	δ jk Pmm	,i	1 2	P jk + P kj -	1 3	δ jk Pmm	,i
	+ a 2 a 3 δ = 1 2 P jk -P kj ,i 1 2 P jk -P kj ,i + 2 9 µ L 2 c 2 a 1 1 2 P jk,i + P kj,i -1 3 δ jk P mm,i 1 2 P jk,i + P kj,i -	1 3	δ jk P mm,i
	+ a 2	1 2	P jk,i -P kj,i	1 2	P jk,i -P kj,i	+	2 3	a

3 P mm,i P nn,i
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Note that under the plane stress hypothesis the first Lamé parameter become λmacro = 2 λmacro µmacro λmacro+2µmacro , while the shear modulus µmacro = µmacro , the Young modulus E = E = µmacro (3λmacro +2µmacro ) λmacro +µmacro

The equivalent formulation in terms of a rotation vector ϑ := axl(A) ∈ R 3 is given in the appendix.
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( jnp P in,pinp P jn,p ) ( jmq P im,qimq P jm,q ) = 1 2 ( jnp P in,pinp P jn,p ) jmq P im,q = 1 2 ( jnp jmq P in,p P im,qinp jmq P jn,p P im,q ) = 1 2 (δmnδpq -δnqδmp) P in,p P im,q -1 2

δ ij δ im δ iq δ nj δnm δnq δ pj δpm δpq P jn,p P im,q = 1 2 (δmnδpq -δnqδmp) P in,p P im,q 

tr 2 CurlP = inp P in,p jmq P jm,q = (δ ij δnmδpq + δ im δnqδ pj + δ iq δ nj δpm -δ pj δnmδ iq -δpmδnqδ ij -δpqδ nj δ im ) P in,p P jm,q =P im,p P im,p + P in,j P ji,n + P ij,m P jm,i -P im,j P jm,i -P in,m P im,n -P ij,p P ji,p

=χ ijk χ ijk + χ ijk χ jki + χ ijk χ kij -χ ijk χ jik -χ ijk χ kji -χ ijk χ ikj .

Inserting all the expressions written before in eq.( 20) we have