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Abstract Learning models from observations of a system is a powerful
tool with many applications. In this paper, we consider learning Discrete
Time Markov Chains (DTMC), with different methods such as frequency
estimation or Laplace smoothing. While models learnt with such meth-
ods converge asymptotically towards the exact system, a more practical
question in the realm of trusted machine learning is how accurate a
model learnt with a limited time budget is. Existing approaches provide
bounds on how close the model is to the original system, in terms of
bounds on local (transition) probabilities, which has unclear implication
on the global behavior.
In this work, we provide global bounds on the error made by such a learn-
ing process, in terms of global behaviors formalized using temporal logic.
More precisely, we propose a learning process ensuring a bound on the
error in the probabilities of these properties. While such learning process
cannot exist for the full LTL logic, we provide one ensuring a bound that
is uniform over all the formulas of CTL. Further, given one time-to-failure
property, we provide an improved learning algorithm. Interestingly, fre-
quency estimation is sufficient for the latter, while Laplace smoothing is
needed to ensure non-trivial uniform bounds for the full CTL logic.

1 Introduction

Discrete-Time Markov Chains (DTMC) are commonly used in model checking
to model the behavior of stochastic systems [3,4,7,25]. A DTMC is described
by a set of states and transition probabilities between these states. The main
issue with modeling stochastic systems using DTMCs is to obtain the trans-
ition probabilities. One appealing approach to overcome this issue is to observe
the system and to learn automatically these transition probabilities [8,29], e.g.,
using frequency estimation or Laplace (or additive) smoothing [12]. Frequency
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estimation works by observing a long run of the system and estimating each in-
dividual transition by its empirical frequency. However, in this case, the unseen
transitions are estimated as zeros. Once the probability of a transition is set to
zero, the probability to reach a state could be tremendously changed, e.g., from
1 to 0 if the probability of this transition in the system is small but non-zero.
To overcome this problem, when the set of transitions with non-zero probabil-
ity is known (but not their probabilities), Laplace smoothing assigns a positive
probability to the unseen transitions, i.e., by adding a small quantity both to
the numerator and the denominator of the estimate used in frequency estima-
tion. Other smoothing methods exist, such as Good-Turing [15] and Kneser-Sey
estimations [7], notably used in natural language processing. Notwithstanding
smoothing generates estimation biases, all these methods converge asymptotic-
ally to the exact transition probabilities.

In practice, however, there is often limited budget in observing and learning
from the system, and the validity of the learned model is in question. In trusted
machine learning, it is thus crucial to measure how the learned model differs from
the original system and to provide practical guidelines (e.g., on the number of
observations) to guarantee some control of their divergence.

Comparing two Markov processes is a common problem that relies on a
notion of divergence. Most existing approaches focus on deviations between the
probabilities of local transitions (e.g., [10,26,5]). However, a single deviation in
a transition probability between the original system and the learned model may
lead to large differences in their global behaviors, even when no transitions are
overlooked, as shown in our example 1. For instance, the probability of reaching
certain state may be magnified by paths which go through the same deviated
transition many times. It is thus important to use a measure that quantifies
the differences over global behaviors, rather than simply checking whether the
differences between the individual transition probabilities are low enough.

Technically, the knowledge of a lower bound on the transition probabilities is
often assumed [14,1]. While it is a soft assumption in many cases, such as when
all transition probabilities are large enough, it is less clear how to obtain such a
lower bound in other cases, such as when a very unlikely transition exists (e.g.,
a very small error probability). We show how to handle this in several cases:
learning a Markov chain accurate w.r.t. this error rate, or learning a Markov
chain accurate over all its global behaviors, which is possible if we know the
underlying structure of the system (e.g., because we designed it, although we do
not know the precise transition probabilities which are governed by uncertain
forces). For the latter, we define a new concept, namely conditioning of a DTMC.

In this work, we model global behaviors using temporal logics. We consider
Linear Temporal Logic (LTL) [23] and Computational Tree Logic (CTL) [11].
Agreeing on all formulas of LTL means that the first order behaviors of the
system and the model are the same, while agreeing on CTL means that the
system and the model are bisimilar [2]. Our goal is to provide stopping rules in
the learning process of DTMCs that provides Probably Approximately Correct
(PAC) bounds on the error in probabilities of every property in the logic between
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the model and the system. In Section 2, we recall useful notions on DTMCs and
PAC-learning. We point out related works in Section 3. Our main contributions
are as follows:

– In Section 4, we show that it is impossible to learn a DTMC accurate for all
LTL formulas, by adapting a result from [13].

– We provide in Section 6 a learning process bounding the difference in probab-
ility uniformly over all CTL properties. To do so, we use Laplace smoothing,
and we provide rationale on choosing the smoothing parameter.

– For the particular case of a time-to-failure property, notably used to compute
the mean time between failures of critical systems (see e.g., [24]), we provide
tighter bounds in Section 5, based on frequency estimation.

In Section 4, we formally state the problem and the specification that the
learning process must fulfill. We also show our first contribution: the impossib-
ility of learning a DTMC, accurate for all LTL formulas. Nevertheless, we prove
in Section 5 our second contribution: the existence of a global bound for the
time-to-failure properties, notably used to compute the mean time between fail-
ures of critical systems (see e.g., [24]) and provide an improved learning process,
based on frequency estimation. In Section 6, we present our main contribution:
a global bound guaranteeing that the original system and a model learned by
Laplace smoothing have similar behaviors for all the formulas in CTL. We show
that the error bound that we provide on the probabilities of properties is close
to optimal. We evaluate our approach in Section 7 and conclude in Section 8.

2 Background

In this section, we introduce the notions and notations used throughout the
paper. A stochastic system S is interpreted as a set of interacting components
in which the state is determined randomly with respect to a global probability
measure described below.

Definition 1 (Discrete-Time Markov Chains). A Discrete-Time Markov
Chain is a triple M = (S, µ,A) where:

– S is a finite set of states;
– µ : S → [0, 1] is an initial probability distribution over S;
– A : S × S → [0, 1] is a transition probability matrix, such that for every
s ∈ S,

∑
s′∈S A(s, s′) = 1.

We denote by m the cardinal of S and A = (aij)1≤i,j≤m = (A(i, j))1≤i,j≤m
the probability matrix. Figs. 1 and 2 show the graph of two DTMCs over 3 states
{s1, s2, s3} (with µ(s1) = 1). A run is an infinite sequence ω = s0s1 · · · and a
path is a finite sequence ω = s0 · · · sl such that µ(s0) > 0 and A(si, si+1) > 0
for all i, 0 ≤ i ≤ l. The length |ω| of a path ω is its number of transitions.

The cylinder set of ω, denoted C(ω), consists of all the runs starting by a
path ω. Markov chainM underlies a probability space (Ω,F ,P), where Ω is the
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set of all runs from M; F is the sigma-algebra generated by all the cylinders
C(ω) and P is the unique probability measure [31] such that P(C(s0 · · · sl)) =

µ(s0)
∏l
i=1A(si−1, si). For simplicity, we assume a unique initial state s0 and

denote P(ω) = P (C(ω)). Finally, we sometimes use the notation PAi to emphasize
that the probability distribution is parameterized by the probability matrix A,
and the starting state is i.

2.1 PAC-learning for properties

To analyze the behavior of a system, properties are specified in temporal logic
(e.g., LTL or CTL, respectively introduced in [23] and [11]). Given a logic L and
ϕ a property of L, decidable in finite time, we denote ω |= ϕ if a path ω satisfies
ϕ. Let z : Ω×L → {0, 1} be the function that assigns 1 to a path ω if ω |= ϕ and
0 otherwise. In what follows, we assume that we have a procedure that draws
path ω with respect to PA and outputs z(ω, ϕ). Further, we denote γ(A,ϕ)
the probability that a path drawn with respect to PA satisfies ϕ. We omit the
property or the matrix in the notation when it is clear from the context. Finally,
note that the behavior of z(., ϕ) can be modeled as a Bernoulli random variable
Zϕ parameterized by the mean value γ(A,ϕ).

Probably Approximately Correct (PAC) learning [27] is a framework for
mathematical analysis of machine learning. Given ε > 0 and 0 < δ < 1, we
say that a property ϕ of L is PAC-learnable if there is an algorithm A such that,
given a sample of n paths drawn according to the procedure, with probability of
at least 1−δ, A outputs in polynomial time (in 1/ε and 1/δ) an approximation of
the average value for Zϕ close to its exact value, up to an error less than or equal
to ε. Formally, ϕ is PAC-learnable if and only if A outputs an approximation γ̂
such that:

P (|γ − γ̂| > ε) ≤ δ (1)

Moreover, if the above statement for algorithm A is true for every property in
L, we say that A is a PAC-learning algorithm for L.

2.2 Monte-Carlo estimation and algorithm of Chen

Given a sample W of n paths drawn according to PA until ϕ is satisfied or
violated (for ϕ such that with probability 1, ϕ is eventually satisfied or viol-

s1 s2 s3

1 0.1

0.9

1

Figure 1: An example of DTMC M1

s1 s2 s3

0.45 0.1

0.9

0.05

0.5 0.9 0.1

Figure 2: DTMC M2
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ated), the crude Monte-Carlo estimator, denoted γ̂W (A,ϕ), of the mean value
for the random variable Zϕ is given by the empirical frequency: γ̂W (A,ϕ) =
1
n

∑n
i=1 z(ωi) ≈ γ(A,ϕ).

The Okamoto inequality [22] (also called the Chernoff bound in the literature)
is often used to guarantee that the deviation between a Monte-Carlo estimator
γ̂W and the exact value γ by more than ε > 0 is bounded by a predefined con-
fidence parameter δ. However, several sequential algorithms have been recently
proposed to guarantee the same confidence and accuracy with fewer samples4.
In what follows, we use the Massart bound [?], implemented in the algorithm of
Chen [6].

Theorem 1 (Chen bound). Let ε > 0, δ such that 0 < δ < 1 and γ̂W be the
crude Monte-Carlo estimator, based on n samples, of probability γ.

If n ≥ 2
ε2 log

(
2
δ

) [
1
4 − (| 12 − γ̂W | −

2
3ε)

2
]
,

P(|γ − γ̂W | > ε) ≤ δ.

To ease the readability, we write nsucc =
∑n
i=1 z(ωi) and H(n, nsucc, ε, δ) =

2
ε2 log

(
2
δ

) [
1
4 − (| 12 − γ̂W | −

2
3ε)

2
]
. When it is clear from the context, we only

write H(n). Then, the algorithm A that stops sampling as soon as n ≥ H(n) and
outputs a crude Monte-Carlo estimator for γ(A,ϕ) is a PAC-learning algorithm
for ϕ. The condition over n is called the stopping criteria of the algorithm. As
far as we know, this algorithm requires fewer samples than the other sequential
algorithms (see e.g., [18]). Note that the estimation of a probability close to 1/2
likely requires more samples since H(n) is maximized in γ̂W = 1/2.

3 Related work

Our work shares similar statistical results (see Section 2.3) with Statistical Model
Checking (SMC) [31]. However, the context and the outputs are different. SMC
is a simulation-based approach that aims to estimate one probability for a given
property [9,28], within acceptable margins of error and confidence [17,18,32]. A
challenge in SMC is posed by unbounded properties (e.g., fairness) since the
sampled executions are finite. Some algorithms have been proposed to handle
unbounded properties but they require the knowledge of the minimal probability
transition of the system [14,1], which we avoid. While this restriction is light in
many contexts, such as when every state and transition appears with a suffi-
ciently high probability, contexts where probabilities are unknown and some are
very small seems much harder to handle. In the following, we propose 2 solutions
not requiring this assumption. The first one is the closest to SMC: we learn a
Markov chain accurate for a given time-to-error property, and it does not require
knowledge on the Markov chain. The second one is much more ambitious than
SMC as it learns a Markov chain accurate for all its global behaviors, formal-
ized as all properties of a temporal logic; it needs the assumption that the set

4 We recall the Okamoto-Chernoff bound in the extended version(as well as the Mas-
sart bound), but we do not use it in this work.
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of transitions is known, but not their probabilities nor a lower bound on them.
This assumption may seem heavy, but it is reasonable for designers of systems,
for which (a lower bound on) transition probabilities are not known (e.g. some
error rate of components, etc).

For comparison with SMC, our final output is the (approximated) transition
matrix of a DTMC rather than one (approximated) probability of a given prop-
erty. This learned DTMC can be used for different purposes, e.g. as a component
in a bigger model or as a simulation tool. In terms of performances, we will show
that we can learn a DTMC w.r.t. a given property with the same number of
samples as we need to estimate this property using SMC (see Section 5). That
is, there is no penalty to estimate a DTMC rather than estimate one probability,
and we can scale as well as SMC. In terms of expressivity, we can handle un-
bounded properties (e.g. fairness properties). Even better, we can learn a DTMC
accurate uniformly over a possibly infinite set of properties, e.g. all formulas of
CTL. This is something SMC is not designed to achieve.

Other related work can be cited: In [13], the authors investigate several dis-
tances for the estimation of the difference between DTMCs. But they do not pro-
pose algorithms for learning. In [16], the authors propose to analyze the learned
model a posteriori to test whether it has some good properties. If not, then they
tweak the model in order to enforce these properties. Also, several PAC-learning
algorithms have been proposed for the estimation of stochastic systems [5,10]
but these works focus on local transitions instead of global properties.

4 Problem statement

In this work, we are interested to learn a DTMC model from a stochastic system
S such that the behaviors of the system and the model are similar. We assume
that the original system is a DTMC parameterized by a matrix A of transition
probabilities. The transition probabilities are unknown, but the set of states of
the DTMC is assumed to be known.

Our goal is to provide a learning algorithm A that guarantees an accurate
estimation of S with respect to certain global properties. For that, a sampling
process is defined as follows. A path (i.e., a sequence of states from s0) of S
is observed, and at steps specified by the sampling process, a reset action is
performed, setting S back to its initial state s0. Then another path is generated.
This process generates a set W of paths, called traces, used to learn a matrix
ÂW . Formally, we want to provide a learning algorithm that guarantees the
following specification:

P(D(A, ÂW ) > ε) ≤ δ (2)

where ε > 0 and δ > 0 are respectively accuracy and confidence parameters and
D(A, ÂW ) is a measure of the divergence between A and ÂW .

There exist several ways to specify the divergence between two transition
matrices, e.g., the Kullback-Leibler divergence [19] or a distance based on a
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matrix norm. However, the existing notions remain heuristic because they are
based on the difference between the individual probabilistic transitions of the
matrix. We argue that what matters in practice is often to quantify the similarity
between the global behaviors of the systems and the learned model.

In order to specify the behaviors of interest, we use a property ϕ or a set
of properties Ψ on the set of states visited. We are interested in the difference
between the probabilities of ϕ (i.e., the measure of the set of runs satisfying ϕ)
with respect to A and ÂW . We want to ensure that this difference is less than
some predefined ε with (high) probability 1− δ. Hence, we define:

Dϕ(A, ÂW ) = |γ(A,ϕ)− γ(ÂW , ϕ)| (3)

DΨ (A, ÂW ) = max
ϕ∈Ψ

(Dϕ(A, ÂW )) (4)

Our problem is to construct an algorithm which takes the following as inputs:

– confidence δ, 0 < δ < 1,
– absolute error ε > 0, and
– a property ϕ (or a set of properties Ψ),

and provides a learning procedure sampling a set W of paths, outputs ÂW ,
and terminates the sampling procedure while fulfilling Specification (2), with
D = Dϕ (= DΨ ).

In what follows, we assume that the confidence level δ and absolute error ε
are fixed. We first start with a negative result: if Ψ is the set of LTL formulas
[2], such a learning process is impossible.

Theorem 2. Given ε > 0, 0 < δ < 1, and a finite set W of paths randomly
drawn with respect to a DTMC A, there is no learning strategy such that, for
every LTL formula ϕ,

P(|γ(A,ϕ)− γ(ÂW , ϕ)| > ε) ≤ δ (5)

Note that contrary to Theorem 1, the deviation in Theorem 2 is a difference
between two exact probabilities (of the original system and of a learned model).
The theorem holds as long as ÂW and A are not strictly equal, no matter how ÂW
is learned. To prove this theorem, we show that, for any number of observations,
we can always define a sequence of LTL properties that violates the specification
above. It only exploits a single deviation in one transition. The proof, inspired
by a result from [13], is given in the extended version.

Example 1. We show in this example that in general, one needs to have some
knowledge on the system in order to perform PAC learning - either a positive
lower bound ` > 0 on the lowest probability transition, as in [14,1], or the support
of transitions (but no knowledge on their probabilities), as we use in Section 6.
Further, we show that the latter assumption does not imply the former, as even
if no transitions are overlooked, the error in some reachability property can
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be arbitrarily close to 0.5 even with arbitrarily small error on the transition
probabilities.

Let us consider DTMCs A, Â, B̂ in Fig. 3, and formula F s2 stating that s2
is eventually reached. The probabilities to satisfy this formula in A, Â, B̂ are

respectively PA(F s2) = 1
2 , PÂ(F s2) = 2τ−η

4τ = 1
2 −

η
4τ and PB̂(F s2) = 0.

Assume that A is the real system and that Â and B̂ are DTMCs we learned
from A. Obviously, one wants to avoid learning B̂ from A, as the probability of
F s2 is very different in B̂ and in Â (0 instead of 0.5). If one knows that τ > `
for some lower bound ` > 0, then one can generate enough samples from s1 to
evaluate τ with an arbitrarily small error η

2 << ` on probability transitions with

an arbitrarily high confidence, and in particular learn a DTMC similar to Â.
On the other hand, if one knows there are transitions from s1 to s2 and to s3,

then immediately, one does not learn DTMC B̂, but a DTMC similar to DTMC
Â (using e.g. Laplace smoothing [12]). While this part is straightforward with
this assumption, evaluating τ is much harder when one does not know a priori
a lower bound ` > 0 such that τ > `. That is very important: while one can
make sure that the error η

2 on probability transitions is arbitrarily small, if τ is
unknown, then it could be the case that τ is as small as η

2(1−ε) >
η
2 , for a small

ε > 0. This gives us PÂ(F s2) = 1
2 −

1−ε
2 = ε

2 , which is arbitrarily small, whereas

PA(F s2) = 0.5, leading to a huge error in the probability to reach s2. We work
around that problem in Section 6 by defining and computing the conditioning
of DTMC Â. In some particular cases, as the one discussed in the next section,
one can avoid that altogether (actually, the conditioning in these cases is perfect
(=1), and it needs not be computed explicitly).

5 Learning for a time-to-failure property

In this section, we focus on property ϕ of reaching a failure state sF from an
initial state s0 without re-passing by the initial state, which is often used for
assessing the failure rate of a system and the mean time between failures (see
e.g., [24]). We assume that with probability 1, the runs eventually re-pass by s0
or reach sF . Also, without loss of generality, we assume that there is a unique
failure state sF in A. We denote γ(A,ϕ) the probability, given DTMC A, of
satisfying property ϕ, i.e., the probability of a failure between two visits of s0.

Assume that the stochastic system S is observed from state s0. Between
two visits of s0, property ϕ can be monitored. If sF is observed between two

s1 s2s3
ττ

1− 2τ

s1 s2s3

τ − 1
2
ητ + 1

2
η

1− 2τ

s1

1

Figure 3: Three DTMCs A, Â, B̂ (from left to right), with 0 < η < 2τ < 1
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instances of s0, we say that the path ω = s0 · ρ · sF satisfies ϕ, with s0, sF /∈ ρ.
Otherwise, if s0 is visited again from s0, then we say that the path ω = s0 · ρ · s0
violates ϕ, with s0, sF /∈ ρ. We call traces paths of the form ω = s0 · ρ · (s0 ∨ sF )
with s0, sF /∈ ρ. In the following, we show that it is sufficient to use a frequency
estimator to learn a DTMC which provides a good approximation for such a
property.

5.1 Frequency estimation of a DTMC

Given a set W of n traces, we denote nWij the number of times a transition from

state i to state j has occurred and nWi the number of times a transition has been
taken from state i.

The frequency estimator of A is the DTMC ÂW = (âij)1≤i,j≤m given by

âij =
nWij
nWi

for all i, j, with
∑m
i=1 n

W
i =

∑m
i=1

∑m
j=1 n

W
ij = |W |. In other words,

to learn ÂW , it suffices to count the number of times a transition from i to j
occurred, and divide by the number of times state i has been observed. The
matrix ÂW is trivially a DTMC, except for states i which have not been visited.
In this case, one can set âij = 1

m for all states j and obtain a DTMC. This has

no impact on the behavior of ÂW as i is not reachable from s0 in ÂW .
Let ÂW be the matrix learned using the frequency estimator from the set

W of traces, and let A be the real probabilistic matrix of the original system S.
We show that, in the case of time-to-failure properties, γ(ÂW , ϕ) is equal to the
crude Monte Carlo estimator γ̂W (A,ϕ) induced by W .

5.2 PAC bounds for a time-to-failure property

We start by stating the main result of this section, bounding the error between
γ(A,ϕ) and γ(ÂW , ϕ):

Theorem 3. Given a set W of n traces such that n = dH(n)e, we have:

P
(
|γ(A,ϕ)− γ(ÂW , ϕ)| > ε

)
≤ δ (6)

where ÂW is the frequency estimator of A.

To prove Theorem (3), we first invoke Theorem 1 to establish:

P (|γ(A,ϕ)− γ̂W (A,ϕ)| > ε) ≤ δ (7)

It remains to show that γ̂W (A,ϕ) = γ(ÂW , ϕ):

Proposition 1. Given a set W of traces, γ(ÂW , ϕ) = γ̂W (A,ϕ).

It might be appealing to think that this result can be proved by induction on
the size of the traces, mimicking the proof of computation of reachability prob-
abilities by linear programming [2]. This is actually not the case. The remaining
of this section is devoted to proving Proposition (1).
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We first define qW (u) the number of occurrences of sequence u in the traces
of W . Note that u can be a state, an individual transition or even a path. We
also use the following definitions in the proof.

Definition 2 (Equivalence). Two sets of traces W and W ′ are equivalent if

for all s, t ∈ S, qW (s·t)
qW (s) = qW ′ (s·t)

qW ′ (s)
.

We define a set of traces W ′ equivalent with W , implying that ÂW = ÂW ′ .
This set W ′ of traces satisfies the following:

Lemma 1. For any set of traces W , there exists a set of traces W ′ such that:
(i) W and W ′ are equivalent,

(ii) for all r, s, t ∈ S, qW ′(r · s · t) =
qW ′(r · s)× qW ′(s · t)

qW ′(s)
.

The proof of Lemma 1 is provided in the extended version. In Lemma 1, (i)
ensures that ÂW ′ = ÂW and (ii) ensures the equality between the proportion of
runs of W ′ passing by s and satisfying γ, denoted γ̂sW ′ , and the probability of

reaching sF before s0 starting from s with respect to ÂW ′ . Formally,

Lemma 2. For all s ∈ S, PÂW ′s (reach sf before s0) = γ̂sW ′ .

Proof. Let S0 be the set of states s with no path in ÂW ′ from s to sf without
passing through s0. For all s ∈ S0, let ps = 0. Also, let psf = 1. Let S1 = S\(S0∪
{sf}). Consider the system of equations (8) with variables (ps)s∈S1

∈ [0, 1]|S1|:

∀ s ∈ S1, ps =

m∑
t=1

ÂW ′(s, t)pt (8)

The system of equations (8) admits a unique solution according to [2] (Theorem

10.19. page 766). Then, (PÂW ′s (reach sf before s0))s∈S1
is trivially a solution

of (8). But, since W ′ satisfies the conditions of Lemma 1, we also have that
(γ̂sW ′)s∈S1

is a solution of (8), and thus we have the desired equality. ut

Notice that Lemma 2 does not hold in general with the set W . We have:

γ̂W (A,ϕ) = γ̂s0W (by definition)

= γ̂s0W ′ (by Lemma 1)

= PÂW ′s0 (reach sf before s0) (by Lemma 2)

= PÂWs0 (reach sf before s0) (by Lemma 1)

= γ(ÂW , ϕ) (by definition).

That concludes the proof of Proposition 1. It shows that learning can be as
efficient as statistical model-checking on comparable properties.
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6 Learning for the full CTL logic

In this section, we learn a DTMC ÂW such that ÂW and A have similar be-
haviors over all CTL formulas. This provides a much stronger result than on
time-to-failure property, e.g., properties can involve liveness and fairness, and
more importantly they are not known before the learning. Notice that PCTL [2]
cannot be used, since an infinitesimal error on one > 0 probability can change
the probability of a PCTL formula from 0 to 1. (State)-CTL is defined as follows:

Definition 3. Let Prop be the set of state names. (State)-CTL is defined by
the following grammar ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ |
AXϕ | EXϕ | AFϕ | EFϕ | AFϕ | EGϕ | AGϕ | E(ϕUϕ) | A(ϕUϕ), with
p ∈ Prop. E(xists) and A(ll) are quantifiers on paths, neXt, Globally, Finally
and Until are path-specific quantifiers. Notice that some operators are redundant.
A minimal set of operators is {>,∨,¬,EG,EU,EX}.

As we want to compute the probability of paths satisfying a CTL formula,
we consider the set Ψ of path-CTL properties, that is formulas ϕ of the form
ϕ = Xϕ1, ϕ = ϕ1Uϕ2, ϕ = Fϕ1 or ϕ = Gϕ1, with ϕ1, ϕ2 (state)-CTL formulas.
For instance, the property considered in the previous section is (¬s0)UsF .

In this section, for the sake of simplicity, the finite set W of traces is obtained
by observing paths till a state is seen twice on the path. Then, the reset action
is used and another trace is obtained from another path. That is, a trace ω from
W is of the form ω = ρ · s · ρ′ · s, with ρ · s · ρ′ a loop-free path.

As explained in example 1, some additional knowledge on the system is ne-
cessary. In this section, we assume that the support of transition probabilities is
known, i.e., for any state i, we know the set of states j such that aij 6= 0. This
assumption is needed both for Theorem 5 and to apply Laplace smoothing.

6.1 Learning DTMCs with Laplace smoothing

Let α > 0. For any state s, let ks be the number of successors of s, that we know
by hypothesis, and T =

∑
s∈S ks be the number of non-zero transitions. Let W

be a set of traces, nWij the number of transitions from state i to state j, and

nWi =
∑
j n

W
ij . The estimator for W with Laplace smoothing α is the DTMC

ÂαW = (âij)1≤i,j≤m given for all i, j by:

âij =
nWij + α

nWi + kiα
if aij 6= 0 and âij = 0 otherwise

In comparison with the frequency estimator, the Laplace smoothing adds for
each state s a term α to the numerator and ks times α to the denominator. This
preserves the fact that ÂαW is a Markov chain, and it ensures that âij 6= 0 iff
aij 6= 0. In particular, compared with the frequency estimator, it avoids creating
zeros in the probability tables.
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6.2 Conditioning and Probability Bounds

Using Laplace smoothing slightly changes the probability of each transition by
an additive offset η. We now explain how this small error η impacts the error on
the probability of a CTL property.

Let A be a DTMC, and Aη be a DTMC such that Aη(i, j) 6= 0 iff A(i, j) 6= 0
for all states i, j, and such that

∑
j |Aη(i, j)−A(i, j)| ≤ η for all states i. For all

states s ∈ S, let R(s) be the set of states i such that there exists a path from i
to s. Let R∗(s) = R(s)\{s}. Since both DTMCs have the same support, R (and
also R∗) is equal for A and Aη. Given m the number of states, the conditioning
of A for s ∈ S and ` ≤ m is:

Cond`s(A) = min
i∈R∗(s)

PAi (F≤`¬R∗(s))

i.e., the minimal probability from state i ∈ R∗(s) to move away from R∗(s) in
at most ` steps. Let `s be the minimal value such that Cond`ss (A) > 0. This
minimal `s exists as Condms (A) > 0 since, for all s ∈ S and i ∈ R∗(s), there
is at least one path reaching s from i (this path leaves R∗(s)), and taking a
cycle-free path, we obtain a path of length at most m. Thus, the probability
PAi (F≤m¬R∗(s)) is at least the positive probability of the cylinder defined by
this finite path. Formally,

Theorem 4. Denoting ϕ the property of reaching state s in DTMC A, we have:

|γ(A,ϕ)− γ(Aη, ϕ)| < `s · η
Cond`ss (A)

Proof. Let vs be the stochastic vector with vs(s) = 1. We denote v0 = vs0 . Let
s ∈ S. We assume that s0 ∈ R∗(s) (else γ(A,ϕ) = γ(Aη, ϕ) and the result is
trivial). Without loss of generality, we can also assume that A(s, s) = Aη(s, s) =
1 (as we are interested in reaching s at any step). With this assumption:

|γ(A,ϕ)− γ(Aη, ϕ)| = lim
t→∞

|v0 · (At −Atη) · vs|

We bound this error, through bounding by induction on t:

E(t) = max
i∈R∗(s)

|vi · (At −Atη) · vs|

We then have trivially:

|γ(A,ϕ)− γ(Aη, ϕ)| ≤ lim
t→∞

E(t)

Note that for i = s, limt→∞ vi · (At) · vs = 1 = limt→∞ vi · Atη · vs, and thus
their difference is null.

Let t ∈ N. We let j ∈ R∗(s) such that E(t) = |vj · (At −Atη) · vs|.

12



By the triangular inequality, introducing the term vj · A`sAt−kη · vs − vj ·
A`sAt−kη · vs = 0, we have:

E(t) ≤ |vj · (Atη −A`sAt−`sη ) · vs|+ |(vj ·A`s) · (At−`sη −At−`s) · vs|

We separate vector (vj ·A`s) = w1 +w2 +w3 in three sub-stochastic vectors
w1, w2, w3: vector w1 is over {s}, and thus we have w1 ·At−`sη = w1 = w1 ·At−`s ,
and the term cancels out. Vector w2 is over states of R∗(s), with

∑
i∈R∗ w2[i] ≤

(1−Cond`ss (A)), and we obtain an inductive term ≤ (1−Cond`ss (A))E(t− `s).
Last, vector w3 is over states not in R(s), and we have w3 · At−`sη · vs = 0 =

w3 ·At−`s · vs, and the term cancels out.
We also obtain that |vj · (Atη − A`sAt−`sη ) · vs| ≤ `s · η. Thus, we have the

inductive formula E(t) ≤ (1−Cond`ss (A))E(t− `s)+ `s ·η. It yields for all t ∈ N:

E(t) ≤ (`s · η)

∞∑
i=1

(1− Cond`ss (A))i

E(t) ≤ `s · η
Cond`ss (A)

ut

We can extend this result from reachability to formulas of the form S0USF ,
where S0, SF are subsets of states. This formula means that we reach the set of
states SF through only states in S0 on the way.

We define R(S0, SF ) to be the set of states which can reach SF using only
states of S0, and R∗(S0, SF ) = R(S0, SF ) \ SF . For ` ∈ N, we let:

Cond`S0,SF (A) = min
i∈R∗(S0,SF )

PAi (F≤`¬R∗(S0, SF ) ∨ ¬S0).

Now, one can remark that CondS0,SF (A) ≥ CondS,SF (A) > 0. Let Cond`SF (A) =

Cond`S,SF (A). We have Cond`S0,SF (A) ≥ Cond`SF (A). As before, we let `SF ≤ m
be the minimal ` such that Cond`SF (A) > 0, and obtain:

Theorem 5. Denoting ϕ the property S0USF , we have, given DTMC A:

|γ(A,ϕ)− γ(Aη, ϕ)| < `SF · η
Cond

`SF
SF

(A)

We can actually improve this conditioning: we defined it as the probability to
reach SF or S \R(S, SF ). At the price of a more technical proof, we can obtain a
better bound by replacing SF by the set of states R1(SF ) that have probability
1 to reach SF . We let R∗(SF ) = R(S, SF ) \ R1(SF ) the set of states that can
reach SF with < 1 probability, and define the refined conditioning as follows:

Cond
`

SF (A) = min
i∈R∗(SF )

PAi (F≤`¬R∗(SF ))

13



6.3 Optimality of the conditioning

We show now that the bound we provide in Theorem 4 is close to optimal.
Consider again DTMCs A, Â in Fig. 3 from example 1, and formula F s2

stating that s2 is eventually reached. The probabilities to satisfy this formula in

A, Â are respectively PA(F s2) = 1
2 and PÂ(F s2) = 1

2 −
η
4τ . Assume that A is

the real system and that Â is the DTMC we learned from A.
As we do not know precisely the transition probabilities in A, we can only

compute the conditioning on Â and not on A (it suffices to swap A and Aη in

Theorem 4 and 5 to have the same formula using Cond(Aη) = Cond(Â) ). We
have R(s2) = {s1, s2} and R∗(s2) = R∗(s2) = {s1}. The probability to stay in

R∗(s2) after `s2 = 1 step is (1 − 2τ), and thus Cond1
{s2}(Â) = Cond

1

{s2}(Â) =

1−(1−2τ) = 2τ . Taking Aη = Â, Theorem 5 tells us that |PA(F s2)−PÂ(F s2)| ≤
η
2τ . Notice that on that example, using `s2 = m = 3, we obtain Cond3

{s2}(Â) =

1− (1− 2τ)3 ≈ 6τ , and we find a similar bound ≈ 3η
6τ = η

2τ .

Compare our bound with the exact difference |PA(F s2) − PÂ(F s2)| = 1
2 −

( 1
2 −

η
4τ ) = η

4τ . Our upper bound only has an overhead factor of 2, even while
the conditioning is particularly bad (small) in this example.

6.4 PAC bounds for
∑

j |ÂW (i, j)−A(i, j)| ≤ η
We use Theorem 1 in order to obtain PAC bounds. We use it to estimate indi-
vidual transition probabilities, rather than the probability of a property.

Let W be a set of traces drawn with respect to A such that every ω ∈ W is
of the form ω = ρ · s · ρ′ · s. Recall for each state i, j of S, nWi is the number of
transitions originating from i in W and nWij is the number of transitions ss′ in

W . Let δ′ = δ
mstoch

, where mstoch is the number of stochastic states, i.e., with at
least two outgoing transitions.

We want to sample traces until the empirical transition probabilities
nWij
nWi

are

relatively close to the exact transition probabilities aij , for all i, j ∈ S. For that,
we need to determine a stopping criteria over the number of state occurrences
(ni)1≤i≤m such that:

P

∃i ∈ S,∑
j

∣∣∣∣∣aij − nWij
nWi

∣∣∣∣∣ > ε

 ≤ δ
First, note that for any observed state i ∈ S, if aij = 0 (or aij = 1), then with

probability 1,
nWij
nWi

= 0 (respectively
nWij
nWi

= 1). Thus, for all ε > 0, |aij −
nWij
nWi
| <

ε with probability 1. Second, for two distinct states i and i′, the transition

probabilities
nWij
nWi

and
nW
i′j′

nW
i′

are independent for all j, j′.

Let i ∈ S be a stochastic state. If we observe nWi transitions from i such that

nWi ≥ 2
ε2 log

(
2
δ′

) [
1
4 −

(
maxj | 12 −

nWij
nWi
| − 2

3ε

)2
]

, then, according to Theorem 1,
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P
(∨m

j=1 |aij −
nWij
nWi
| > ε

)
≤ δ′. In particular, P

(
maxj∈S |aij −

nWij
nWi
| > ε

)
≤ δ′.

Moreover, we have:

P

 m∨
j=1

max
j∈S
|aij −

nWij
nWi
| > ε

 ≤ m∑
j=1

P

(
max
j∈S
|aij −

nWij
nWi
| > ε

)
≤ mstochδ

′

≤ δ

In other words, the probability that “there exists a state i ∈ S such that the
deviation between the exact and empirical outgoing transitions from i exceeds
ε” is bounded by δ as soon as for each state i ∈ S, nWi satisfies the stopping
rule of the algorithm of Chen using ε and the corresponding δ′. This gives the
hypothesis

∑
j |Aη(i, j)−A(i, j)| ≤ ε for all states i of Section 6.2.

6.5 A Matrix ÂW accurate for all CTL properties

We now use Laplace smoothing in order to ensure the other hypothesis Aη(i, j) 6=
0 iff A(i, j) 6= 0 for all states i, j. For all i ∈ S, we define the Laplace offset de-

pending on the state i as αi =
(nWi )2ε

10·k2i maxj nWij
, where ki is the number of transitions

from state i. This ensures that the error from Laplace smoothing is at most one
tenth of the statistical error. Let α = (αi)1≤i≤m. From the sample set W , we

output the matrix ÂαW = (âij)1≤i,j≤m with Laplace smoothing αi for state i,
i.e.:

âij =
nWij + αi

nWi + kiαi
if aij 6= 0 and âij = 0 otherwise

It is easy to check that we have for all i, j ∈ S:

∣∣∣∣âij − nWij
nWi

∣∣∣∣ ≤ ε
10·ki

That is, for all states i,
∑
j

∣∣∣∣âij − nWij
nWi

∣∣∣∣ ≤ ε
10 . Using the triangular inequality:

P

∃i ∈ S,∑
j

|aij − âij | >
11

10
ε

 ≤ δ
For all i ∈ S, let H∗(nWi , ε, δ

′) = maxj∈S H(nWi , n
W
ij , ε, δ

′) be the maximal

Chen bound over all the transitions from state i. LetB(ÂαW ) = maxSF
`SF

Cond
`SF
SF

(ÂαW )
.

Since in Theorem 5, the original model and the learned one have symmetric roles,
by applying this theorem on ÂαW , we obtain that:

Theorem 6. Given a set W of traces, for 0 < ε < 1 and 0 < δ < 1, if for all

i ∈ S, nWi ≥
(

11
10B(ÂαW )

)2
H∗(nWi , ε, δ

′), we have for any CTL property ϕ:

P(|γ(A,ϕ)− γ(ÂαW , ϕ)|) > ε) ≤ δ (9)
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Proof. First, âij 6= 0 iff aij 6= 0, by definition of ÂαW . Second, P(∃i,
∑
j |aij −

âij | > 11
10ε) ≤ δ. We can thus apply Theorem 5 on ÂαW , A and obtain (9) for ϕ

any formula of the form S1US2. It remains to show that for any formula ϕ ∈ Ψ ,
we can define S1, S2 ⊆ S such that ϕ can be expressed as S1US2.

Consider the different cases: If ϕ is of the form ϕ = ϕ1Uϕ2 (it subsumes
the case ϕ = Fϕ1 = >Uϕ1) with ϕ1, ϕ2 CTL formulas, we define S1, S2 as the
sets of states satisfying ϕ1 and ϕ2, and we have the equivalence (see [2] for more
details). If ϕ = Xϕ2, define S1 = ∅ and S2 as the set of states satisfying ϕ2.

The last case is ϕ = Gϕ1, with ϕ1 a CTL formula. Again, we define S1 the
set of states satisfying ϕ1, and S2 the set of states satisfying the CTL formula
AGϕ1. The probability of the set of paths satisfying ϕ = Gϕ1 is exactly the
same as the probability of the set of paths satisfying S1US2. ut

6.6 Algorithm

We give more details about the learning process of a Markov Chain, accurate for
every CTL formula. For completeness, we also provide in the extended versiona
similar algorithm for a time-to-failure property.

A path ω is observed from s0 till a state is observed twice. Then ω is added to
W and the reset operation is performed. We use Laplace smoothing to compute
the corresponding matrix ÂαW . The error bound is computed on W , and a new
path ω′ is then being generated if the error bound is not as small as desired.

This algorithm is guaranteed to terminate since, as traces are generated,
with probability 1, nWs tends towards ∞, ÂαW tends towards A, and B(ÂαW )
tends towards B(A).

Algorithm 1: Learning a matrix accurate for CTL

Data:
S, s0, δ, ε

1 W := ∅
2 m = |S|
3 for all s ∈ S, nWs := 0

4 Compute Â := ÂαW
5 Compute B := B(Â)

6 while ∃s ∈ S, nWs <
(

11
10
B(Â)

)2

H∗(nWs , ε,
δ
m

) do

7 Generate a new trace ω := s0 ρ s1 ρ
′ s1, and reset S

8 for all s ∈ S, nWs := nWs + n
{ω}
s

9 add ω to W

10 Compute Â := ÂαW
11 Compute B := B(Â)

Output: ÂαW
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7 Evaluation and Discussion

In this section, we first evaluate Algorithm 1 on 5 systems which are crafted to
evaluate the algorithm under different conditions (e.g., rare states). The objective
of the evaluation is to provide some idea on how many samples would be sufficient
for learning accurate DTMC estimations, and compare learning for all properties
of CTL and learning for one time-to-failure property.

Then, we evaluate our algorithm on very large PRISM systems (millions or
billions of states). Because of the number of states, we cannot learn a DTMC
accurate for all properties of CTL there: it would ask to visit every single state a
number of times. However, we can learn a DTMC for one specific (unbounded)
property. We compare with an hypothesis testing algorithm from [30] which can
handle the same unbounded property through a reachability analysis using the
topology of the system.

7.1 Evaluation on crafted models

We first describe the 5 systems: Systems 1 and 2 are three-state models described
in Fig. 1 and Fig. 2. Systems 3 (resp. 5) is a 30-state (resp. 200-states) clique
in which every individual transition probability is 1/30 (resp. 1/200). System
4 is a 64-state system modeling failure and repair of 3 types of components (3
components each, 9 components in total), see the extended versionfor a full de-
scription of the system, including a PRISM [20] model for the readers interested
to investigate this system in details.

We tested time-to-failure properties by choosing as failure states s3 for Sys-
tems 1, 2, 3, 5, and the state where all 9 components fail for System 4. We also
tested Algorithm 1 (for full CTL logic) using the refined conditioning Cond. We
performed our algorithms 100 times for each model, except for full CTL on Sys-
tem 4, for which we only tested once since it is very time-consuming. We report
our results in Table 1 for ε = 0.1 and δ = 0.05. In particular, we output for

System 1 System 2 System 3 System 4 System 5

# states 3 3 30 64 200

# transitions 4 7 900 204 40,000

# events for

time-to-failure

191 (16%) 991 (10%) 2,753 (7.4%) 1,386 (17.9%) 18,335 (7.2%)

# events

for full CTL

1,463 (12.9%) 4,159 (11.7%) 8,404 (3.8%) 1,872,863 79,823 (1.7%)

Table 1: Average number of observed events N (and relative standard deviation
in parenthesis) given ε = 0.1 and δ = 0.05 for a time-to-failure property and for
the full CTL logic using the refined conditioning Cond.
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each model its number of states and transitions. For each (set of) property, we
provide the average number of observations (i.e. the number of samples times
their average length) and the relative standard deviation (in parenthesis, that is
the standard deviation divided by the average number of observed events).

The results show that we can learn a DTMC with more than 40000 stochastic
transitions, such that the DTMC is accurate for all CTL formulas. Notice that
for some particular systems such as System 4, it can take a lot of events to
be observed before Algorithm 1 terminates. The reason is the presence of rare
states, such as the state where all 9 components fail, which are observed with an
extremely small probability. In order to evaluate the probabilities of CTL prop-
erties of the form: “if all 9 components fail, then CTL property ϕ is satisfied”,
this state needs to be explored many times, explaining the high number of events
observed before the algorithm terminates. On the other hand, for properties that
do not involve the 9 components failing as prior, such as time-to-failure, one does
not need to observe this state even once to conclude that it has an extremely
small probability to happen. This suggests that efficient algorithms could be
developed for subsets of CTL formulas, e.g., in defining a subset of important
events to consider. We believe that Theorem 4 and 5 could be extended to handle
such cases. Over different runs, the results stay similar (notice the rather small
relative standard deviation).

Comparing results for time-to-failure (or equivalently SMC) and for the full
CTL logic is interesting. Excluding System 4 which involves rare states, the
number of events that needs to be observed for the full CTL logic is 4.3 to 7 times
more. Surprisingly, the highest difference is obtained on the smallest System 1.
It is because every run of System 1 generated for time-to-failure is short (s1s2s1
and s1s2s3). However, in Systems 2,3 and 5, samples for time-to-failure can be
much longer, and the performances for time-to-failure (or equivalently SMC) is
not so much better than for learning a DTMC accurate for all CTL properties.

For the systems we tested, the unoptimized Cond was particularly large (more
than 20) because for many states s, there was probability 0 to leave R(s), and
hence `(s) was quite large. These are the cases where Cond is much more efficient,
as then we can choose `s = 1 as the probability to reach s from states in R(s) is
1 (R1(s) = R(s) and R∗(s) = ∅). We used Cond in our algorithm.

Finally, we evaluate experimental confidence by comparing the time-to-failure
probabilities in the learned DTMC and the original system. We repeat our al-
gorithms 1000 times on System 1 and 2 (with ε = 0.1 and δ = 0.05). These
probabilities differ by less than ε, respectively 999 and 995 times out of 1000.
Specification (2) is thus largely fulfilled (the specification should be ensured 950
out of 1000 times), that empirically endorses our approach. Hence, while our
PAC bound over-approximates the confidence in the learned system (which is
unavoidable), it is not that far from experimental values.

7.2 Evaluation on large models

We also evaluated our algorithm on large PRISM models, ranging from hundreds
of thousands to billions of states. With these numbers of states, we cannot use
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the more ambitious learning over all the properties of CTL, which would need
to visit every states a number of times. However, we can use our algorithm for
learning a DTMC which is accurate given a particular (unbounded) property: it
will visit only a fraction of the states, which is enough to give a model accurate
for that property, with a well-learned kernel of states and some other states
representatives for the remaining of the runs. We consider three test-cases from
PRISM, satisfying the property that the sample stops with a conclusion (yes or
no) with probability 1. Namely, herman, leader and egl.

Our prototype tool used in the previous subsection is implemented in Scilab:
it cannot simulate very large systems of PRISM. Instead, we use PRISM to gen-
erate the samples needed for the learning. Hence, we report the usual Okamoto-
Chernoff bound on the number of samples, which is what is implemented in
PRISM. We also compare with the Massart bound used by the Chen algorithm
(see Section 2.2), which is implemented in our tool and is more efficient as it
takes into account the probability of the property.

For each model, we report its parameters, its size, i.e. its number of states, the
number of samples needed using the Massart bound (the conservative Okamoto-
Chernoff bound is in parenthesis), and the average path length. For comparison,
we consider an hypothesis testing algorithm from [30] which can also handle
unbounded properties. It uses the knowledge of the topology to do reachabil-

our learning method sampling with reachability analysis [30]

Model name size samples path length samples path length

herman(17) 129M 506 (38K) 27 219 30

herman(19) 1162M 506 (38K) 40 219 38

herman(21) 10G 506 (38K) 43 219 48

leader(6,6) 280K 506 (38K) 7.4 219 7

leader(6,8) > 280K 506 (38K) 7.4 (MO) (MO)

leader(6,11) > 280K 506 (38K) 7.3 (MO) (MO)

egl(15,10) 616G 38K (38K) 470 1100 201

egl(20,15) 1279T 38K (38K) 930 999 347

egl(20,20) 1719T 38K (38K) 1200 (TO) (TO)

Table 2: Results for ε = 0.01 and δ = 0.001 of our algorithm compared with
sampling with reachability analysis [30], as reported in [14], page 20. Numbers
of samples needed by our method are given by the Massart bound (resp. by the
Okamoto-Chernoff bound in parenthesis). TO and MO means time out (> 15
minutes on an Opteron 6134) and memory out (> 5GB) respectively.

19



ity analysis to stop the sampling if the property cannot be reached anymore.
Hypothesis testing is used to decide with high confidence whether a probabil-
ity exceeds a threshold or not. This requires less samples than SMC algorithms
which estimate probabilities, but it is also less precise. We chose to compare
with this algorithm because as in our work, it does not require knowledge on
the probabilities, such as a lower bound on the transition probabilities needed
by e.g. [14]. We do not report runtime as they cannot be compared (different
platforms, different nature of result, etc.).

There are several conclusions we can draw from the experimental results
(shown in Table 2). First, the number of samples from our algorithm (Chen al-
gorithm implementing the Massart bound) are larger than in the algorithm from
[30]. This is because they do hypothesis testing, which requires less samples than
even estimating the probability of a property, while we learn a DTMC accurate
for this property. For herman and leader, the difference is small (2.5x), because
it is a case where the Massart bound is very efficient (80 times better than
Okamoto-Chernoff implemented in PRISM). The egl system is the worst-case
for the Massart bound (the probability of the property is 1

2 ), and it coincides
with Okamoto-Chernoff. The difference with [30] is 40x in that case. Also, as
shown in egl, paths in our algorithm can be a bit larger than in the algorithm
from [30], where they can be stopped early by the reachability analysis. How-
ever, the differences are never larger than 3x. On the other hand, we learn a
model representative of the original system for a given property, while [30] only
provide a yes/no answer to hypothesis testing (performing SMC evaluating the
probability of a property with the Massart bound would give exactly the same
number of samples as we report for our learning algorithm). Last, the reachab-
ility analysis from [30] does time out or memory out on some complex systems,
which is not the case with our algorithm.

8 Conclusion

In this paper, we provided theoretical grounds for obtaining global PAC bounds
when learning a DTMC: we bound the error made between the behaviors of
the model and of the system, formalized using temporal logics. While it is not
possible to obtain a learning framework for LTL properties, we provide it for the
whole CTL logic. For subsets of CTL, e.g. for a fixed timed-to-failure property,
we obtain better bounds, as efficient as Statistical MC. Overall, this work should
help in the recent trends of establishing trusted machine learning [16].

Our techniques are useful for designers of systems for which probabilities are
governed by uncertain forces (e.g. error rates): in this case, it is not easy to have
a lower bound on the minimal transition probability, but we can assume that
the set of transitions is known. Technically, our techniques provides rationale to
set the constant in Laplace smoothing, otherwise left to an expert to set.

Some cases remain problematic, such as systems where states are visited very
rarely. Nevertheless, we foresee potential solutions involving rare event simula-
tion [21]. This goes beyond the scope of this work and it is left to future work.
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