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Abstract
The zygotic embryos of angiosperms develop buried deep within seeds and
surrounded by two main extra-embryonic tissues: the maternally derived
seed coat tissues and the zygotic endosperm. Generally, these tissues are
considered to play an important role in nurturing the developing embryo by
acting as conduits for maternally derived nutrients. They are also critical for
key seed traits (dormancy establishment and control, longevity, and
physical resistance) and thus for seed and seedling survival. However,
recent studies have highlighted the fact that extra-embryonic tissues in the
seed also physically and metabolically limit embryonic development and
that unique mechanisms may have evolved to overcome specific
developmental and genetic constraints associated with the seed habit in
angiosperms. The aim of this review is to illustrate how these studies have
begun to reveal the highly complex physical and physiological relationship
between extra-embryonic tissues and the developing embryo. Where
possible I focus on Arabidopsis because of space constraints, but other
systems will be cited where relevant.

Keywords
Seed, Embryo, Endosperm, Communication, Nutrition

     Reviewer Status

  Invited Reviewers

 version 1
published
14 Jan 2020

   1 2 3

, Wuhan University, Wuhan,Mengxiang Sun

China
1

, University of Paris-Saclay,Enrico Magnani

Versailles, France
2

, Swedish University ofClaudia Köhler

Agricultural Sciences and Linnean Center for
Plant Biology, Uppsala, Sweden

3

 14 Jan 2020,  (F1000 Faculty Rev):18 (First published: 9
)https://doi.org/10.12688/f1000research.21527.1

 14 Jan 2020,  (F1000 Faculty Rev):18 (Latest published: 9
)https://doi.org/10.12688/f1000research.21527.1

v1

Page 1 of 8

F1000Research 2020, 9(F1000 Faculty Rev):18 Last updated: 14 JAN 2020

https://f1000research.com/browse/f1000-faculty-reviews
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/9-18/v1
https://f1000research.com/articles/9-18/v1
https://f1000research.com/articles/9-18/v1
https://orcid.org/0000-0002-1425-9545
https://f1000research.com/articles/9-18/v1
https://doi.org/10.12688/f1000research.21527.1
https://doi.org/10.12688/f1000research.21527.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.21527.1&domain=pdf&date_stamp=2020-01-14


 

 Gwyneth C Ingram ( )Corresponding author: gwyneth.ingram@ens-lyon.fr
  : Conceptualization, Writing – Original Draft Preparation, Writing – Review & EditingAuthor roles: Ingram GC

 No competing interests were disclosed.Competing interests:
 The author was financed by the French Agence National de Recherche (ANR-17-CE20-0027). Grant information:

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
 © 2020 Ingram GC. This is an open access article distributed under the terms of the  , whichCopyright: Creative Commons Attribution License

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Ingram GC. How to cite this article: Family plot: the impact of the endosperm and other extra-embryonic seed tissues on angiosperm

 F1000Research 2020,  (F1000 Faculty Rev):18 (zygotic embryogenesis [version 1; peer review: 3 approved] 9
)https://doi.org/10.12688/f1000research.21527.1

 14 Jan 2020,  (F1000 Faculty Rev):18 ( ) First published: 9 https://doi.org/10.12688/f1000research.21527.1

Page 2 of 8

F1000Research 2020, 9(F1000 Faculty Rev):18 Last updated: 14 JAN 2020

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.21527.1
https://doi.org/10.12688/f1000research.21527.1


Introduction
The multicellular female gametophyte, situated within the ovule, 
represents the starting point for angiosperm seed development.  
In most cases, this is triggered by the arrival of the pollen tube 
(the male gametophyte, containing two genetically identical  
sperm cells) and the subsequent quasi-simultaneous fertiliza-
tion of the egg cell (1n), to give the diploid zygote, and of the  
homodiploid (2n) central cell, to give the triploid endosperm.  
These two genetically distinct “siblings” then develop concomi-
tantly within the surrounding maternal tissues. The embryo usu-
ally develops almost completely surrounded by the endosperm,  
although it can directly contact maternal tissues at the micro-
pylar pole1. In many cases, it appears that cytoplasmic contact 
between maternal tissues, the endosperm, and the embryo are 
lost soon after fertilization2, meaning that molecular trans-
port between the three tissues must occur via the transcellu-
lar pathway, involving transmembrane transport in and out of  
cells and diffusion across the cell wall (apoplastic) compartment.

As in many angiosperm species, the early development of the 
endosperm of the model species Arabidopsis thaliana initi-
ates with a coenocytic phase, characterized by nuclear divisions 
in the absence of cytokinesis and by rapid expansion3. During 
this early phase, the endosperm acts as a major metabolic sink, 
absorbing nutrients from maternal tissues and sequestering them 
in its large central vacuole4. Seed size, and thus nutrient storage 
potential, are determined during this phase. Nutrients are then 
re-exported from the endosperm for absorption by the embryo5–7,  
a process facilitated by the ephemeral basal region of embryo 
called the suspensor8,9. Its role in conducting maternal reserves 
to the embryo has led to parallels being drawn between the 
angiosperm endosperm and the mammalian placenta10–12.  
Intriguingly, and consistent with this analogy, as in the pla-
centa, the angiosperm endosperm, which contains both male 
and female genomes owing to double fertilization, appears to be 
a focus for parental conflicts over resource allocation, particu-
larly in outcrossing or partially outcrossing plants13. Specifically, 
maternal interests are predicted to minimize, or at least equili-
brate, nutritional investment between seeds (since mothers are  
nutrient providers and equally related to all their offspring), 
whereas paternal interests are predicted to act to maximize mater-
nal nutrient investment. Consistent with this, paternal excess 
in the endosperm (which can occur, for example, when pollen 
from tetraploid plants is used to fertilize diploid ovules) tends 
to increase seed size, whilst maternal interests have the oppo-
site effect. This conflict is proposed to play out, at least par-
tially, at the genomic level through the acquisition of gamete  
and allele-specific epigenetic regulation (imprinting)13–16.

Interestingly, in situations of either paternal or maternal excess 
in the endosperm, specific developmental syndromes, poten-
tially linked to seed size changes, and which are at least in part 
due to changes in the dosage of imprinted genes (showing  
preferential expression from either the paternal or the maternal 
allele), are also observed17. These syndromes frequently lead 
to reduction or loss of seed viability named the “triploid block”,  
which can thus cause an immediate post-zygotic hybridization  
barrier between plants of differing ploidy18–22. Here some of 
the mechanisms underlying this phenomenon in Arabidopsis  
thaliana are discussed. Seed development is examined more 

generally in light of possible parental conflicts, with the aim of 
shedding new light on key interactions between the developing  
embryo and surrounding tissues23.

Coordinating early post-fertilization development: the 
role of auxin
Maternal interests (which according to kinship theory should 
restrict resource uptake by the endosperm) are, in part, managed 
by the repressive activity of a central cell/endosperm-specific 
variant of Polycomb Repressive Complex 2 (PRC2) called Ferti-
lization Independent Seed (FIS)-PRC224–28. FIS-PRC2 represses  
the initiation of endosperm proliferation (and thus maternal 
resource allocation) in the absence of fertilization. To medi-
ate this function in Arabidopsis, FIS-PRC2 has recently been 
shown to act by repressing genes encoding auxin biosynthetic  
enzymes, and auxin production in the central cell has been 
shown to be sufficient to trigger endosperm proliferation and 
expansion. Thus fertilization, which introduces transcription-
ally active copies of these genes carried by sperm cells to the 
endosperm, can trigger endosperm proliferation29. Intriguingly, 
auxin efflux from the endosperm has also been shown to be  
necessary for the post-fertilization differentiation of mater-
nal tissues, which is necessary for efficient resource provi-
sion to the developing endosperm30. Furthermore, auxin derived 
from maternal tissues adjacent to the suspensor, and presum-
ably actively transported to the embryo, appears to be required 
for early embryonic patterning in Arabidopsis1. Although, in  
Arabidopsis, direct links between endosperm-derived auxin 
and embryo development remain elusive, work in maize has led 
to suggestions that the endosperm auxin maximum could both  
guide and regulate early embryo growth31.

The pressure is on: endosperm expansion versus 
embryo establishment
In Arabidopsis, the major endosperm/seed growth phase is driven 
by expansion of the coenocytic endosperm. Importantly, this 
early expansion, combined with controlled endosperm elimina-
tion (see below), conditions the final size of the embryo by deter-
mining the space available for embryo expansion later in seed 
development (reviewed in 32–34). Early endosperm expansion 
is likely driven, at least in part, by the accumulation of osmoti-
cally active metabolites, including sugars and amino acids, in 
the central endosperm vacuole4,35,36. Consistent with the paren-
tal conflict theory, seed growth is also known to be physically  
constrained by maternal tissues (the seed coat)37,38. This con-
straint has recently been shown to involve an active response to 
the tension that builds up in maternal tissues due to the expan-
sion of the endosperm37. How tension is perceived within the 
seed coat remains poorly understood. However, it likely regulates  
growth through modification of specific cell walls within the 
seed coat, potentially via the degradation of gibberellic acid, 
a growth-promoting hormone. This model suggests that the 
internal pressure of the endosperm must be tightly regulated  
over time in order to achieve optimal seed expansion, since 
either excessive or insufficient endosperm pressure could lead to  
growth defects. The activity of invertases, and other enzymes 
within the endosperm, which cleave sucrose (the main sugar 
absorbed by the endosperm) into hexoses, thereby lowering 
the osmotic potential of the endosperm, could play important 
roles in this regulation4,36,39–41. However, other potentially key  
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processes, such as the regulation of nutrient transporter activity  
and water movement, remain poorly understood.

In Arabidopsis, the major endosperm/seed growth phase ends 
with endosperm cellularization, which involves cell wall out-
growth into the endosperm cavity and nuclear partitioning42–44.  
Endosperm cellularization and final seed size are tightly linked, 
with premature cellularization associated with small seed 
size (as seen in maternal excess situations) and lack of cellu-
larization associated with large seeds (seen in paternal excess  
situations, and when FIS-PRC2 function is defective)36,45. 
One factor underlying this coupling could be the reported link 
between a decrease in hexose/sucrose ratio in the endosperm 
and cellularization36,40. This decrease, although not well under-
stood mechanistically, could explain an observed decrease in 
the turgor pressure of the endosperm, which should reduce its 
growth potential35. The cellularization process has also been 
proposed to increase direct contact between the apoplast of the 
embryo and that of maternal tissues through the establishment of  
“apoplastic bridges”46. These have been proposed to enable the 
embryo to establish itself more efficiently as a sink by effectively 
bypassing the endosperm. This might explain why the embryos 
of mutants defective in endosperm cellularization (including 
those lacking FIS-PRC2 activity) fail to develop past the heart 
stage36. It could also provide an additional explanation for the 
link between seed growth and endosperm cellularization since, 
by increasing embryo sink strength, cellularization could deplete 
nutrients available for uptake by the endosperm. Promotion of 
endosperm cellularization by FIS-PRC2 is mediated in part through  
repression of the endosperm-specific AGL62 gene, encoding a 
negative regulator of cellularization36,47,48. AGL62 is not directly 
imprinted but is regulated by the PHERES1 transcription factor, 
the expression of which is repressed by FIS-PRC249,50. Interest-
ingly, other PHERES1-binding targets include HAIKU2 and  
MINISEED338,51, which negatively regulate cellularization dur-
ing early post-fertilization development as well as promoting 
seed expansion and thus embryo growth50. Endosperm cellu-
larization is also inhibited by auxin, and clear links between 
retarded cellularization in paternal excess situations and  
excessive auxin production have recently been established52.

Interestingly, some species appear to have developed alterna-
tive strategies allowing the mother plant to bypass the endosperm 
during resource allocation to the embryo, with notable exam-
ples being found in certain members of the Crassulaceae, where 
the embryonic suspensor forms invasive haustorial exten-
sions within maternal tissues, increasing the surface for direct  
nutrient transfer53. In Arabidopsis, maternally active signaling 
peptides produced in the central cell positively regulate the  
expansion of the suspensor54,55, which could represent a mater-
nal strategy to increase the ability of young embryos to acquire  
nutrients from the endosperm. Finally, the transfer of nutrient  
storage functions to maternal sporophytic tissues (usually in the 
form of a nucellus-derived perisperm) has also been proposed  
to represent such a strategy56,57.

Making space: endosperm elimination permits 
embryo growth
Endosperm cellularization, despite potentially opening the 
way for direct nutrient flow from the maternal apoplast to 

that of the embryo, also encloses it within a “solid” tissue. 
Endosperm breakdown would therefore be predicted to pro-
mote embryo growth through both physically providing space 
for embryo expansion and the release/recycling of nutrients  
stored within the endosperm tissues to fuel embryo growth 
and storage product accumulation. It might also be expected to 
reduce endosperm sink strength. In Arabidopsis, the endosperm 
is a largely ephemeral tissue that breaks down almost com-
pletely during seed development. The importance of this process 
is borne out by the phenotypes associated with loss of function  
of the endosperm-specific RETARDED GROWTH OF 
EMBRYO1/ZHOUPI (ZOU) protein. zou mutants show a com-
plete lack of endosperm breakdown, leading to a restriction of 
embryo expansion and a dramatically reduced final embryo  
size58,59. To what extent this phenotype is also a consequence 
of a lack of endosperm nutrient recycling and/or of inap-
propriate maintenance of endosperm sink strength remains 
unclear. However, a recent study has linked limited endosperm 
breakdown around the developing maize embryo to nutrient  
recycling (Doll et al., unpublished data).

The ZOU gene is not imprinted but, interestingly, like the repres-
sor of cellularization AGL62, has recently shown to be bound 
by the PHERES1 protein (encoded by an imprinted gene)50. 
The role of FIS-PRC2 in regulating endosperm breakdown 
remains difficult to assess, however, since endosperm lack-
ing FIS-PRC2 never cellularize. Strongly increased pressure 
within zou mutant seeds compared to wild-type siblings post- 
cellularization shows that physical constraints imposed upon the 
embryo by the endosperm are alleviated by the activity of the  
ZOU protein to allow embryo expansion37,60.

Coming unstuck: resolving a fusional relationship
zou mutants are defective not only in endosperm breakdown/
embryo growth but also in two other processes that illustrate 
graphically the degree to which zygotic embryogenesis is influ-
enced by the surrounding endosperm tissues: namely embryo 
cuticle biogenesis61 and the physical separation of the embryo 
from the surrounding endosperm62. In Arabidopsis, the formation 
of an intact embryonic cuticle is critical for embryo survival at  
germination. However, cuticle integrity is established early in 
seed development, whilst the embryo is still embedded within 
the endosperm63. The fact that cuticle reinforcement post- 
germination is strongly influenced by environmental cues64–67  
raises the question of how cuticle integrity is monitored 
prior to embryo germination. It also raises important ques-
tions regarding the properties and functions of the embryonic  
cuticle, which appears to be permeable to small hydrophilic 
molecules, consistent with the importance of the embryonic 
surface in the uptake of nutrients from the endosperm63,68. The  
cuticle could thus act as a molecular “filter”, the properties of  
which appear to vary over the embryonic surface68.

Recent work suggests that the close proximity of the concomi-
tantly developing embryo and endosperm could indeed hinder 
the development of the embryonic cuticle, a problem which has  
been overcome through the recruitment of an integrity-monitoring 
pathway involving a molecular dialogue between the develop-
ing embryo and surrounding endosperm tissues69,70. This dialogue  
has very recently been shown to depend on proteins produced 
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in both tissues and on the bidirectional diffusion of an embryo-
derived, progressively matured peptide (TWISTED SEED1)71,  
through cuticle “gaps”63 (Doll et al., unpublished data). This 
molecular exchange is necessary to ensure the filling of “gaps” 
in the embryonic cuticle, but not, apparently, for cuticle bio-
synthesis per se, and triggers cytoplasmic and transcriptional  
responses similar to those triggered by abiotic and biotic stress63. 
The expression of the endosperm-specific component in this 
dialogue, a subtilisin protease, depends upon the function of 
ZOU. Importantly, this mechanism, depending as it does upon 
endosperm-specific components, is likely not required during  
somatic embryogenesis, the process via which embryogen-
esis occurs through the reprogramming of single somatic 
cells. Indeed, somatic embryos, which are not surrounded by 
endosperm and thus potentially perceive other environmen-
tal cues, appear able to form an intact cuticle in the absence  
of endosperm tissues in several species (reviewed in 72).

Although the cuticles of juxtaposed organs prevent post-genital 
organ fusion post-germination in plants (reviewed in 73), the 
formation of the embryonic cuticle is not sufficient to ensure 
the physical separation necessary for the invasive growth of the 
embryo through surrounding endosperm cells that occurs during 
seed development. A recent study has revealed that this process  
requires an additional modification of the embryo–endosperm 
interface which, in Arabidopsis, takes the form of a  
glycoprotein-rich “sheath” that is necessary for the embryo 
to separate from, and slide past, neighboring endosperm tis-
sues62. Although the material that composes the sheath is depos-
ited on the embryo surface (outside the cuticle), it originates 
in the endosperm, and its production depends upon ZOU, and 
more particularly the KERBEROS peptide, whose production 
is ZOU dependent. How the presence of the sheath affects other  
processes, such as apoplastic nutrient transfer to the embryo, 
again remains very poorly understood. However, active secre-
tion of glycoprotein-like matrices has been observed at the 
endosperm–embryo interface of other seeds including those of 
Solanum species74, suggesting that this process may be wide-
spread in angiosperms. Interestingly, sheath deposition at the 
embryo surface depends on the signaling pathway involved in 
cuticle integrity monitoring (described above), again indicating  
a complex dialogue between the embryo and endosperm62.

Conclusion
The word “altruistic” has frequently been employed to describe 
the relationship between the angiosperm endosperm and its 
“sibling”, the zygotic embryo55,75. Intriguingly, some recent  
research even suggests that the relatedness of the endosperm to 

the embryo can influence resource redistribution76. Nonetheless, 
developing within the endosperm imposes significant physical 
and metabolic constraints upon the embryo, which have the poten-
tial to impede or even to prevent its development entirely20,34,77. 
Some of these constraints arise from the need of the embryo, 
originating from a single cell within the multicellular female  
gametophyte, to individualize itself and generate a func-
tional surface prior to germination and exposure to environ-
mental constraints. One of the advantages attributed to dou-
ble fertilization is the coordination of endosperm development 
with that of the embryo, thus minimizing resource wastage78.  
However, forcing the concomitant development of two struc-
tures within the confines of the seed coat may have rendered the  
ability of the embryo to physically and chemically separate from  
surrounding tissues very difficult, necessitating the acquisition of  
novel molecular dialogues with surrounding tissues that could  
allow the embryo to distinguish “inside” from “outside”.

Another profound effect of double fertilization was that the 
introduction of a male genome into the nutrient-storing tissue 
of the seed opened the door to parental conflicts over resource 
allocation. These conflicts, played out principally in the 
endosperm and mediated, in part, by genomic imprinting, have  
been proposed to be a key driver in rapid angiosperm  
speciation since they underlie rapidly established post-zygotic 
hybridization barriers. Key regulators involved in endosperm 
development (including auxin biosynthetic enzymes/transporters 
necessary for endosperm proliferation and seed coat dif-
ferentiation, factors regulating endosperm cellularization 
and subsequent breakdown, and, indeed, factors influenc-
ing the formation of the embryo surface) appear to have been  
subsumed directly, or indirectly, into genetic networks acting  
downstream of imprinted genes. Their analysis has helped 
to pinpoint critical processes implicated in controlling the  
physical and nutritional relationships between seed tissues.

Despite recent advances in seed biology, however, remark-
able voids in our understanding of fundamental processes 
remain. These include questions as simple as how the influx 
of water and nutrients into seeds is regulated (both at the level 
of transporters and apoplastic interfaces) and how the physi-
cal properties of different compartments (turgor pressure and  
cell wall stiffness) are controlled. The complex structure of 
the seed and the fact that the embryo is buried deep within 
it have contributed to the slow rate of progress in answering 
these questions. However, recent advances in spatially resolved 
metabolite analysis and imaging should provide a considerable  
boost to ongoing research.
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