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Abstract

Motivation: High-throughput phenomic projects generate complex data from small treatment and large control groups
that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of tempor-
ally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors.
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Results: Here we introduce ‘soft windowing’, a methodological approach that selects a window of time that includes
the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping
Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were
assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC
data and compared the results with those obtained from a standard non-windowed approach. Validation was per-
formed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million
analyses. We applied the method to our production analysis pipeline that establishes genotype–phenotype associa-
tions by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as link-
age to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches,
respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human
phenomic projects such as the UK Biobank and the All of Us resources.

Availability and implementation: The method is freely available in the R package SmoothWin, available on CRAN
http://CRAN.R-project.org/package¼SmoothWin.

Contact: hamedhm@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput, large-scale phenotyping studies evaluate variables
of an organism’s biological systems to examine the contribution of
genetic and environmental factors to phenotypes. Standardized phe-
notyping screens that cover a wide range of biological systems have
made useful insights for identifying new genetic contributors to robust
phenotypes when compared with more focussed studies that often tar-
get well-characterized genes with varying reproducibility (Begley and
Ellis, 2012; Edwards et al., 2011; Freedman et al., 2015; Prinz et al.,
2011; Stoeger et al., 2018). Leveraging economies of scale and using
standardized procedures, high-throughput phenotyping screens
addresses these challenges and have been applied in biological screen-
ing of chemical compound libraries, agricultural evaluation of crop
plants, genome-wide CRISPR-based mutagenic cell line screens and
multi-centre phenotypic screening of mutated model organisms (Al-
Tamimi et al., 2016; Dickinson et al., 2016; Flood et al., 2016;
Friggens et al., 2011; Malinowska et al., 2017; Sun et al., 2017; Vitak
et al., 2017; Viti et al., 2015). The continuous generation of large vol-
umes of data introduces new challenges affecting automated
approaches to statistical analysis that have to scale with increasing
data and address the underlying complexity inherent in large projects
(Kurbatova et al., 2015; Meyers et al., 2017; Vaas et al., 2013, 2012).

The International Mouse Phenotyping Consortium (IMPC) is a G7
recognized global research infrastructure dedicated to generating and
characterizing a knockout mouse line for every protein-coding gene
(Bradley et al., 2012; Brown and Moore, 2012; Hrab�e de Angelis et al.,
2015). Currently, the IMPC has phenotyped over 148 000 knockouts
and 43 000 control mice (data release 9.2, January 2019) across 12 re-
search centres in 9 countries. These centres adhere to a set of standar-
dized phenotype assays defined in the International Mouse Phenotyping
Resource of Standardised Screens (IMPReSS), and designed to measure
over 200 parameters on each mouse. As part of these standardized oper-
ating procedures, critical factors that can impact data collection, such as
reagent type or equipment, are reported as required metadata.
Phenotype data are then centrally collected and quality controlled by
trained professionals before being released for analysis. All phenotype
data are processed by the statistical analysis package PhenStat—a freely
available R package that provides a variety of statistical methods for the
identification of genotype to phenotype associations by comparing mu-
tant to control data that have the same critical attributes (Kurbatova
et al., 2015). For quantitative data, linear mixed models are typically
employed with several factors modelled in including genotype, sex, sex–
genotype interaction, body weight and batch (i.e. phenotype measures
collected on the same day). Mutant mouse lines found to have a signifi-
cant deviation in phenotype measurements are assigned a phenotype
term from the Mammalian Phenotype Ontology (Blake et al., 2017).
These associations, as well as the raw data, are disseminated via the
web portal (https://www.mousephenotype.org) using application pro-
gramming interfaces and data downloads.

A challenge with high-throughput phenotyping efforts is the small
sample size for the experimental group (i.e. the knockout mice) that is
produced to maximize the use of finite resources, considering biological
relevance and power analysis (Charan and Kantharia, 2013). All mice
generated by the IMPC are on the inbred C57BL/6N strain. To reduce
genetic drift, IMPC centers maintain wild-type C57BL/6N production
colonies that are periodically rederived using commercial vendors
(Dickinson et al., 2016; Kurbatova et al., 2015). Mutant F0 mice are
bred with wild-type mice from the production colonies to reduce the
confounding effects of any de novo, non-targeted mutations. In add-
ition, the IMPC centres are encouraged to measure these knockout
mice in two or more batches, as this improves the false discovery rate
by modelling in the random effect of day-to-day variation (Karp et al.,
2014). In contrast, large control sample sizes accumulate as they pro-
vide a strong internal control of the pipeline and typically generated
with every experimental batch. Such large control groups represent a
unique dataset that increase the power of the subsequent analyses and
allow the construction of a robust baseline (Bradley et al., 2012).
However, this can lead to the accumulation of heterogeneities including
seasonal effects, changes in personnel and unknown time-dependent
environmental factors (Karp et al., 2014).

A simple approach to cope with heterogeneity in the data is to
set explicit time boundaries (e.g. 1 year) before and after experimen-
tal collection dates. This ‘hard windowing’ approach will capture
different time-frames depending on how much time elapses between
the first and the last batch of experimental data measured. This ap-
proach is unsatisfactory for IMPC data as some mutant lines had
enough experimental mice to measure in one batch, while others
needed multiple batches over 18 months due to breeding difficulties
or other factors. This variation in time-frames can lead to a widely
different number of controls being applied to an analysis, making it
challenging to explore correlations between mutant lines. Thus,
more tuneable approaches were needed.

In this study, we address the complexity of the data collected
over time by proposing a novel windowing strategy that we call ‘soft
windowing’. This approach utilizes a weighting function to assign
flexible weights, ranging from 0 to 1, to the control data points.
Controls that are collected on or near the date of mutants are
assigned the maximal weights, whereas controls at earlier or later
dates are assigned less weight. In contrast to the hard windowing,
the weighting function in the soft windowing allows for different
shapes and bandwidths by alternating the tuning parameters. In add-
ition, we demonstrate how to tune parameters and demonstrate the
implementation of the soft windowing on the IMPC data.

2 System and methods

In high-throughput projects, such as the IMPC, the model parameters
may not stay constant over time that can lead to misleading inferences.
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For example, Figure 1 illustrates changes to the control group trend
and/or variation over time for the Forelimb grip strength normalized
against body weight and Mean cell volume. One approach widely used
in signal processing (Ford, 2003; Kervrann, 2011; Lima et al., 2009;
Poularikas, 2018) is to define a windowing function that includes the
appropriate number of data points to capture the effect of interest
while minimizing the noise. This is defined by

W x; l1; l2ð Þ ¼ f xð Þ l1 � x � l2
0 o:w

�
(1)

where setting f ðxÞ to a constant, e.g. f ðxÞ ¼ 1, leads to hard window-
ing, while setting it to a smooth function results in the soft windowing.
The same approach can be generalized to multiple signals (Huang et al.,
2007; Li et al., 2007; Tang et al., 2009) or applied as a rolling window
(Harel et al., 2008) in the presence of exogenous variables to account
for time dependency in the regression coefficients (Brown et al., 2018).
Alternatively, we propose a soft windowing approach for the regression
methods by defining a weighting function that applies less weight to the
residuals outside the window of interest. This leads to distinct advan-
tages over the hard windowing. First, the entire dataset is included in

the analysis in contrast to the limited data points in the hard window-
ing. Second, the windowing and the parameter estimation are coupled,
which is a direct result of using the weighted least squares (WLS).
Critically, by bounding the controls in a window, we freeze the analysis
and abrogate the need for further analysis assuming no new experimen-
tal data are generated within the time window.

3 Algorithm

Our novel windowing strategy explicitly defines the weighting func-
tion and proposes a simple but effective set of criteria to estimate the
minimal window for the noise-power trade off.

3.1 Weight generating function
Let t ¼ ðt1; t2; . . . ; tnÞ represent a set of n continuous time units, m ¼
ðm1;m2; . . . ;mpÞ the time units when the treatments are measured
(peaks in the windows), l ¼ fðl1L; l1RÞ; ðl2L; l2RÞ; . . . ; ðlpL; lpRÞg a set
of p non-negative left and right bandwidths and k ¼ fðk1L;k1RÞ;
ðk2L; k2RÞ; . . . ; ðkpL; kpRÞg a set of p positive left and right shape
parameters. We impose the continuity on the time to simplify the defin-
ition of a continuous function over the time units, e.g. by converting
dates to UNIX timestamps. Furthermore, we introduce a peak generat-
ing function (PGF) of the form of ci ¼ Fðt; mi � liL; kiLÞ
ð1� Fðt; mi þ liR;kiRÞÞ, i ¼ 1; 2; . . . ; p where Fðx; l; rÞ ¼ PrXðX �
xjl; rÞ is selected from the family of cumulative distribution functions
with location l and scale r. In this study, we select F from the family
of continuous and symmetric distributions (such as the Logistic,
Gaussian, Cauchy and Laplace distributions). Then, we propose a
weight generating function (WGF) of the form of

WGFðt; l; k;mÞ ¼
Xp

i¼1

c�i þ
" X

i6¼j2f1;2;...;pg

Y
i;j

�c�i c�j

þ
X

i 6¼j 6¼h2f1;2;...;pg

Y
i;j;h

c�i c�j c�h

� ð�1Þpþ1
X

c�1c�2 . . . c�p

#
;

t; l;m 2 R; j 2 R
þ

(2)

where c�i ¼ ci

maxci
denotes the normalized PGF. The first term on the

right-hand side of Equation (2) produces the individual windows and
the second term accounts for merging the intersections amongst the
windows. Figure 2 shows the symmetric WGF (SWGF) that is liR ¼ liL
and kiR ¼ kiL; i ¼ 1; 2; . . . ; p, for the different values of k 2
½0:2; 50� coloured from blue (k ¼ 50) to red (k ¼ 0:2) and for the dif-
ferent values of l ¼ 5; 10; 15. The vertical black dashed lines show
the hard window corresponding to the value of l. From this plot, the
function is capable of generating a range of windows from hard (blue)
to soft (red). Furthermore, the weights lay in the ð0; 1� interval for all
values of time; however, they may not cover the entire ð0; 1� spectrum
in a bounded time domain. Then, the weights are normalized to be
ranged in ð0; 1� before inserting into the WGF as shown by c�i in
Equation (2). Figure 3 shows the merge capability of the SWGF for the
logistic F with m ¼ 15; 35 and different values of k ¼ 0:5; 1:5; 3
and l ¼ 6; 8; 10; 12. From this figure, the function is capable of pro-
ducing a range of flexible multimodal windows (top) as well as aggre-
gated windows (bottom) if m1 þ lj j > jm2 � lj for all m1 < m2;
l 2 R. In all cases, the weights lay in the ð0; 1� interval.

3.2 Windowing regression
Let y ¼ xbþ e denote a linear model, with y, x, b and e representing
response, covariates, unknown parameters and independent random
noise e � N 0; r2 < 1

� �
, respectively. Imposing the weights in

Equation (2) on the residuals leads to the following WLS:

Q bð Þ ¼ WGF t; l; k;mð Þ y� xbj jj j22 (3)

where :j jj j2denotes the second norm of a vector. Minimizing Q bð Þ
with respect to b leads to b̂ ¼ ðx0wxÞ�1x0wy, where w is a diagonal

Fig. 1. Examples of longitudinal data from the IMPC selected for high variance in

control population. Scatter plot of the Forelimb grip strength normalized against

body weight (top) and mean cell volume (bottom) from the IMPC Grip Strength and

Haematology procedures, respectively. The dashed black lines represent the overall

trend of the controls (dark green). Mutant mice are in orange
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matrix of weights from WGF and (0) denotes the transpose of a ma-
trix. Weighted linear regression (WLR), in the context of this study,
is equivalent to imposing less weight on the off modal time points
with respect to m. We illustrate this in Figure 4, where 60 observa-
tions are simulated from the following model:

yt ¼ tb1Iðt�20Þ þ tb2Ið20< t< 40Þ þ tb3Iðt�40Þ þ e;

with t ¼ 1; 2; . . . ; 60, b1 ¼ 0; b2 ¼ 1; b3 ¼ 0; e �iid Nð0; 1Þ and I
is the indicator function,

Iðx 2 ½a;b�Þ ¼ 1 x 2 ½a;b�
0 o:w

:

�
In other words, the model is piecewise linear and only significant in the
t 2 20; 40ð Þ interval. Figure 4 (top) shows the global estimation of the

linear regression from the entire data (dotted black line) and the WLR
by WGFðt; 9; 5; 30Þ (dashed blue line) as well as weights from the
WGF on the bottom. This plot shows that the non-WLR leads to a
horizontal line, where no significant gradient is detected, whereas the
WLR tends to model the significant section of the data that leads to fit-
ting the true line. Figure 4 compares the effect of windowing versus
considering the entire dataset, showing the different conclusions.

3.3 Selection of the tuning parameters
Selection of the tuning parameters k and l to define the soft window
has a strong impact on the final estimations and consequently on the
inferences that are made from the statistical results. Indeed, a wide
or over-smooth window can lead to the inclusion of too much noise,
whereas a small window can result in low power in the analysis. An

Fig. 2. Behaviour of the symmetric weight generating function (SWGF) for a spectrum of values for the shape parameter, k, ranging from k ¼ 50 (blue) to k ¼ 0:2 (red), in

intervals of t ¼ 1; 2; . . . ; 70, and for the different values of the bandwith l ¼ 5; 10; 15 (left to right). The black dashed lines show the hard windows corresponding to l. The

grey dotted vertical lines show the window peaks. These plots show the capability of the WGF to generate different forms of the window

Fig. 3. Merging behaviour of the SWGF for different values of the shape parameter k ¼ 0:5; 1:5; 3 and the bandwidth l ¼ 6; 8; 10; 12 on a sequence of time points

t ¼ 1; 2; . . . ; 60. The vertical dashed grey lines show the corresponding hard windows to l. This plot shows the capability of SWGF to generate multimodal windows as well

as merging individual windows
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additional challenge is the direct linear correlation between increas-
ing the number of peaks, m, and to the total number of the parame-
ters for the windows l; kð Þ that results in significant growth in the
computational complexity of the final fitting. This is due to tuning
the window in the general form of WLS in Equation (3) requires 2p
dimensions in space to search for the optimal l and k. To cope with
this complexity, we propose to fix l and k so all windows are sym-
metric and have the same shape and bandwidth. We then select the
tuning parameters by searching the space on the grid of ðl;kÞ values
and look for the most significant change in mean and/or variation of
the residuals/predictions. The grid is searched by generating a series
of scores from applying t-test (to detect changes in mean) and F-test
(to detect change in variation) to the consecutive residuals/predic-
tions at each step of expanding (l ! l þ k; k > 0Þ and/or reshaping
(k! kþ a; a > 0) the windows. This technique is based on the as-
sumption that the mean and the variation of the residuals/predic-
tions should remain unchanged in different time periods (St.
Laurent, 1994).

To gain the necessary power in the analysis, we apply the statistical
tests to the values of l that correspond to a minimum T observations in
the windows. Then one can define the quantity of TðlÞ that is the total
number of observations that is included in the hard window corre-
sponding to l. We should stress that the definition of TðlÞ in the soft
windowing can be challenging because the WGF assigns weights to the
entire dataset in the final fitting. To address this complexity, we pro-
pose the Sum of Weights Score by SWSðk; lÞ ¼

Pn
i¼1 WGFðti; k; l;mÞ,

that is the summation of weights from WGF for specific l and k. Note
that SWSðl; kÞ � TðlÞ with the equality for sufficiently large k. Because
l is generally unknown, a value of TðlÞ ¼ T independent of l needs to
be decided before the analysis. Our experiments, inspired by the z-test
minimal sample size ðn > 30Þ, show that setting SWS � T with

T � maxð35;
ffiffiffiffiffiffiffiffi
np2
p

Þ Single peak
35p Multiple peaks

(

provides sufficient statistical power and precision for the analysis of
each sex-parameter in IMPC.

Once the bandwidth, l, is selected, the shape parameter, k, can
be optimized on a grid of values similar to l.

This algorithm is implemented for a broad range of models in
the R package SmoothWin that is available from https://cran.r-pro
ject.org/package¼SmoothWin. The main function of the package,
SmoothWinð. . .Þ, allows an initial model for the input and, given a
range of values for the bandwidth and shape, it performs soft win-
dowing on the input model. Furthermore, it allows plotting of the
results for diagnostics and further inspections. One also can generate
the weights from SWGF using the expWeighð. . .Þ function.

4 Implementation

4.1 Sensitivity analysis
The sensitivity of the soft windowing to the tuning parameters in
particular, the minimum observation required in the window (T), is
tested on the two IMPC examples introduced in Figure 1 for Mean
cell volume and Forelimb grip strength normalized against body
weight. To this end, the tuning parameters l, k and T are set to

l The total range of the experiment time divided into 500 loga-

rithmic distanced values;

k the values in ½0:5; 10� interval divided into 50 logarithmic

distanced values;

T the values from 14 to the n divided into 25 logarithmic dis-

tanced values

where n is the total observation in the dataset. We should stress that
l and k are selected to cover the entire experiment range and avoid
bias by selecting the incomplete ranges. Then we only study the ef-
fect of T on the final fittings.

Figure 5 shows the sensitivity of the P-values to the change in the
minimum observation required for the soft windowing, T. The left
plots show the change in the P-value corresponded to the genotype
effect in the linear mixed model (with genotype, sex, genotype–sex
interaction and body weight in the fixed effect term and the batch in
the random effect) for different values of T. The dashed blue vertical
lines show the maximum toleration of T before a step-change in the
P-values being observed. The right-hand side plots show the final fit-
ting of the windowed model. The controls (triangles) weight are col-
our coded on a spectrum of green–purple, inside the window
(green), on the border (grey) and outside the window (purple).
Figure 5 shows the sensitive of soft windowing to the T, for in-
stance, selection of a high value for T could lead to including too
much noise in the final fitting.

4.2 Simulation study
To assess the performance of the soft windowing method, we imple-
mented a resampling approach to construct a sample of artificial
mutants from the IMPC control data by relabelling some controls as
mutant. We then examined the difference in the number of false pos-
itives that were detected by the standard (non-windowed) analysis
versus the soft-windowed approach. Since the resampling is only
performed on the controls, we expect less false positives from the
soft-windowed results.

Mutant data in the IMPC have a special structure, resulting from
mice being born in the same litters and being phenotyped closely to-
gether in time (batch effect), which must be replicated in the resam-
pling approach. We address this by utilizing structured resampling
that replaces the mutants with the closest random controls in time.
We create artificial mutant groups by randomly sliding the true mu-
tant structure over the time domain of controls, collecting as many
controls as there were mutants in the original set and repeating this
procedure five times per dataset (Supplementary Fig. S1 shows an il-
lustration of three iterations of the structured resampling on the
Bone Mineral Content parameter).

For non-windowed and soft-windowed analyses, the same statis-
tical model is fitted. That is the linear mixed model implemented in
the R package PhenStat with genotype, sex, genotype–sex interac-
tions and body weight for the fixed effect terms and the batch in the

Fig. 4. (Left) Comparison between the inferences from the windowed linear regres-

sion on the simulated data (blue dashed line) and without windowing (dotted black

line). (Right) The corresponding weights from WGF centred on m ¼ 30. With win-

dowing, we attempt to model the effective section of the data (blue dots)
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random effect. This setup implies that the difference in the results is
a direct consequence of the control selection strategy by soft win-
dowing. The outcome of the simulation study consists of 18 IMPC
procedures across 11 centres and over 2:5 million analyses and
P-values. Comparing the results from the IMPC standard and soft-
windowed analyses on resampled data, we detect an overall of
14 201 and 12 716 false positives (FP), respectively, at the signfi-
cance level used by the IMPC, 0.0001: This constitutes more than a
10% relative improvement in FPs when the soft-windowed method
is applied. Table 1 shows the top 10 IMPC procedures with the sig-
nificant changes in the FPs. From this table, the procedures Body
Composition, Open Field, Urinalysis, Heart Weight, Acoustic
Startle and Pre-pulse Inhibition account for the highest relative re-
duction of 68% in FPs, whereas the Clinical Blood Chemistry,
X-Ray, Insulin Blood Levels, Electrocardiogram and Eye
Morphology account for the maximum increase of 32% in FPs.
Supplementary Figure S2 shows parameters from the Body
Composition and Clinical Blood Chemistry procudures that showed
the biggest loss and gain in false positives for assocaited data param-
eters, respectively. This plot shows an improvement in decreasing
FPs in all IMPC_DXA parameters, which contrasts with an increase
in the FPs for IMPC_CBC parameters. We further examined the top
two IMPC_CBC parameters, Alanine aminotransferase
(IMPC_CBC_013) and Aspartate aminotransferase (IMPC_CBC_012)
in Supplementary Figure S3, and noted a high level of randomly devi-
ated points from the mean of controls that can bias the outcome of the
structured resampling.

4.3 Soft windowing as part of the IMPC statistics

pipeline
We next show the performance of the soft windowing approach on
IMPC data by integrating it into the standard IMPC statistics pipe-
line in PhenStat (Kurbatova et al., 2016). To this end, each dataset is

processed by the PhenStat for the initial estimation of a fully satu-
rated linear mixed model including genotype, sex, genotype–sex
interaction and body weight in the fixed effect term and the batch in
the random effect. The resulting fit is then passed into the soft win-
dowing algorithm in the R package SmoothWin for the determin-
ation of the optimal windowing weights. After determining the
optimal weights, the final model is fitted using a weighted linear
mixed model and utilizing a backward elimination approach to opti-
mize the final model.

Using data release 9.2 (January 2019), we re-analysed
14 millionþ data points from which 10 millionþ are mutant ani-
mals across the range of IMPC phenotyping procedures. The origin-
al IMPC standard analysis that did not apply the soft windowing
approach to select the control data encompassed 403 000þanalyses
and P-values. This analysis led to 12 728 significant P-values
(<0:0001Þ, compared with 16 415 significant P-values when the soft
windowing was applied, an increase of 30% in total significant
P-values. The IMPC assigns mouse lines with phenotype terms from
the Mouse Phenotype Ontology (MPO) when a significant deviation
from the control data is detected for a given data parameter
(Meehan et al., 2017). Our windowing approach led to 17 391
MPO associations gained and 15 996 associations lost. To explore
these differences further, we created an online tool that displays the
entire control dataset for a given mouse line-parameter assay with
the statistical summaries for both the non-windowed methodology
and the soft-windowed approach. Users may filter on a number of
attributes, arrange filter order, zoom in on data visualization or
navigate directly to the results (https://wwwdev.ebi.ac.uk/mi/impc/
dev/phenotype-archive/media/images/windowing/).

Figure 6 shows the corresponding visualization on the IMPC
website for the complete dataset (including males and females) pre-
viously shown for males only in Figure 1 (top) for the Forelimb grip
strength normalized against body weight parameter from the IMPC
Grip Strength procedure. The soft window is indicated, as well as

Fig. 5. The sensitivity analysis of the soft windowing approach to the minimum observation required in the window. The left plots show the variation of the final Genotype

P-values with different values of T. The vertical dashed blue lines show the maximum toleration of the algorithm before including too much noise in the final fittings. The right

plots show the optimal soft-windowed linear mixed model fitted to the data. The controls (triangles) weight are colour coded from green (inside the windows) to grey (on the

window borders) and purple (outside the window). The mutants are shown with the black plus (þ) on the plots
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Fig 6. The soft windowing visualization in the IMPC website for the Forelimb grip strength normalized against body weight from the IMPC Grip Strength procedure. The plot

shows the response over time as well as the fitted soft windows. The tables underneath show the comparison between the descriptive statistics obtained from the standard

(non-windowed) analysis on the left and the soft-windowed approach on the right. The P-values correspond to the genotype effect after applying the statistical analyses taking

the corresponding controls based on the non-window and soft-windowed approaches, respectively

Table 1. Top 10 IMPC procedures with the highest change in the total number of false positives

Procedure name No. P-valuesa NFPb WFPc Relative changed

Body composition (IMPC_DXA) 167 789 3809 2293 37.58

Clinical blood chemistry (IMPC_CBC) 320 949 1472 2414 62.12

Open field (IMPC_OFD) 182 894 1507 830 35.52

Haematology (IMPC_HEM) 243 640 3125 2746 46.77

Heart weight (IMPC_HWT) 16 236 553 409 42.52

Acoustic startle and pre-pulse inhibition(IMPC_ACS) 73 177 352 243 40.84

X-ray (IMPC_XRY) 7016 27 135 83.33

Insulin blood level (IMPC_INS) 9465 63 164 72.25

Electrocardiogram (IMPC_ECG) 122 257 378 471 55.48

Eye morphology (IMPC_EYE) 15 739 86 153 64.02

aTotal number of the analysis and P-values.
bFalse positives from the non-windowed results.
cFalse positives from the soft-windowed results.
dRelative percentage change of the false positives ((WFP/(NFP þWFP))%).
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changes in the total number of controls (here 1; 572 fewer after soft
windowing—counting soft windowing weights >10�7).
Furthermore, the P-value corresponding to the genotype effect
shows a significant change in magnitude, from 2:05	 10�4 to
6:75	 10�18 after applying the soft windowing. We then tested if
our soft-windowed analysis changed our human disease model dis-
covery rate. We have previously described the IMPC Phenodigm
translational pipeline that automatically detects phenotypic similar-
ities between the IMPC strains and over 7 000 rare diseases
described in the Online Mendelian Inheritance in Man (OMIM),
Orphanet and the Deciphering Developmental Disorders (DDD)
databases (Meehan et al., 2017). This pipeline generates qualitative
scores on how well a mouse line’s associated phenotypes overlap
with the phenotypes of the human rare disease populations (Akawi
et al., 2015; Firth et al., 2009; Meehan et al., 2017; Mungall et al.,
2015; OMIM Browser, 2017; Rath et al., 2012). By comparing the
disease model resulting from our soft-windowed analysis versus
non-windowed analysis for IMPC data release 9:2, we find a slight
increase in the number of disease models (106 versus 99 models
using a threshold of 50% phenotype overlap from a set of 2082
mouse lines that contain mutations—Supplementary File SI).

5 Discussion

High-throughput phenomics is a powerful tool for the discovery of
new genotype–phenotype associations and there is an increasing
need for innovative analyses that make effective use of the volumin-
ous data being generated. Batch effects are inevitable when a large
amount of data is collected at different times and/or sites and, there-
fore, need to be accounted for in the statistical analysis. In this
study, we developed a novel ‘soft windowing’ method that selects a
window of time to include controls that are locally selected with re-
spect to experimental animals, thus reducing the noise level in the
data collected over long periods of time (years). Soft windowing has
notable advantages over a more traditional hard windowing ap-
proach. In contrast to the limited data points included in the hard
windowing method, the entire dataset is considered for the analysis.
To this end, we engineered a weighting function to produce weights
in the form of a window of time. Control data collected proximally
to mutants were assigned the maximal weight, while data collected
earlier or later had less weight. This method has the capability of
producing indivdual windows as well as merging intersected ones.
Moreover, the method was implemented to automatically select
window size and shape.

The performance of the method was shown on a simulated scen-
ario that uses real control data collected by the IMPC high-
throughput pipelines to assess detection of false positives. We also
showed the enhancements to the IMPC statistical pipeline that
establishes genotype–phenotype associations by comparing mutants
versus control data using our soft-windowed approach.

There are two known conditions that affect the method: (i) the
WGF can be slow when there are too many (>20) distinct windows,
however, we have optimized the algorithm to be fast enough for the
typical IMPC number of peaks (�3s for 1500 samples and 16 peaks
under k ¼ 1 and l ¼ 30); and (ii) our resampling scenario indiciated
that our soft windowing approach is sensitive to the data that have a
high level of outliers or random deviation from the mean. This may
result from a bias in the design of the resampling but may also indi-
cate that using all available controls may be appropriate for the
cases with extreme variability.

Our soft windowing approach addresses the scaling issues associ-
ated with analysing an ever-increasing set of control data in long-
term projects by eliminating controls with weights sufficiently close
to zero from future analysis. In the case of the IMPC, once a window
of control data is determined for a dataset, there would be no fur-
ther requirement to re-analyse the dataset with each subsequent data
release. This will reduce the computational resources needed with
the resulting gene-phenotype associations remaining stable, greatly
facilitating data exchange with research groups trying to functional-
ly validate genes and their disease variants. Our findings also have
important implications for such efforts as the UK BioBank and the

All of Us initiatives where large cohort sizes coupled with mobile
medical sensors are generating phenotype data at an unprecedented
rate (Sankar and Parker, 2017; Sudlow et al., 2015). Researchers
performing restrospective analysis to analyse exposures for a
defined outcome group (e.g. metabolic disease) are challenged
by the variability and longitudinal characteristics associated with
these datasets. The methods described here can be used with these
human health resources to maximize analytical power and help
researchers find the genetic and environmental contributers to
human diseases.
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