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Using the Chebyshev spectral method, the effect of high frequency (HF) vibrations on
a cubic cell heated from the side and containing a liquid metal is investigated. This study
extends the numerical and theoretical two-dimensional results presented in the authors’
past work [Phys. Fluids 31, 043605 (2019)] about the influence of HF vibration direction
on the flow structure in a rectangular crucible filled with a liquid metal. The vibration
direction can now be three dimensional, and not limited to the main flow plane. In practice,
the study considers that the vibration vector is contained in one of the three principal
planes of the cavity (xz, xy, and yz planes). Two different cases, i.e., under weightlessness
and gravity conditions, are considered for each type of vibration to better understand the
separate effect of both vibration and buoyancy forces and also their combined effects. Each
type of vibration has its own features and affects the flow intensity and patterns differently.

DOI: 10.1103/PhysRevFluids.5.123501

I. INTRODUCTION

Buoyant flows of liquid metals are omnipresent in many engineering and technological appli-
cations such as “crystal growth from the melt” techniques [1]. Among these techniques, we can
mention the Czochralski (CZ), the Kyropoulos (KY), the horizontal and vertical Bridgman (HB and
VB), and the Floating zone (FZ) techniques. During the solidification process, such flows can have
significant effects on the quality of the grown crystals and therefore have to be controlled [2–6].

Several strategies have been proposed to control these buoyant flows. High frequency (HF)
vibrations can be used even for not electrically conducting fluids (which is not the case of magnetic
fields) and offer promising possibilities to control the flow. It is well known that external vibrations
imposed to an enclosure, filled with a fluid subject to temperature gradients, generate thermovibra-
tional convection [7]. To solve such problems, a first possibility is to solve directly the conservation
equations, with the vibration modeled as an oscillatory component of gravity, as it is done in [8] for
a thermodiffusion process operated under rather low frequency vibration (g jitters). Nevertheless, if
the characteristic time of vibration is far smaller than the other characteristic times, such simulations
become excessively expensive. An alternative for small amplitude and high-frequency vibrations
is the averaging method [7,9]. As explained in detail by Gershuni and Lyubimov [7], when the
vibration period is much smaller than the characteristic hydrodynamic time, the flow field can be
decomposed into a fast part and a time-averaged part: the first part oscillates with the high vibration
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frequency and the second part measures the response of the fluid to this vibration, either steady or
oscillatory with lower frequencies. The averaging method then allows us to derive a complete set of
time-averaged equations governing these time-averaged fields.

The effect of high frequency vibrations has been extensively studied in two-dimensional cavities.
An overview of the literature on this topic can be found in [10–19]. It is however crucial to
investigate these effects when the problem cannot be modeled through a two-dimensional approach.
To our best knowledge, only a few works have explored this domain.

Biringen et al. [20] studied the effect of gravity modulation on three-dimensional Rayleigh-
Bénard convection for water (Pr = 7) and air (Pr = 0.71). They have found that, for some
vibrational parameter combinations and random modulations in the low-gravity environment, local
perturbations are generated, which can potentially influence experimental results. Savino et al. [21]
have investigated the effect of high frequency vibration on fluid flow contained in a cubic enclosure
under the action of an oscillatory acceleration with an orientation along the direction perpendicular
to the applied temperature gradient. Their work aimed to design microgravity experiments using
silicone oil with high Prandtl number value (Pr = 10). They have found a qualitative agreement with
the two-dimensional results obtained by Farooq and Homsy [22]. Shevtsova et al. [23] performed
three-dimensional simulations in a cubic cell filled with isopropanol at high Prandtl number value
(Pr = 27.8) under microgravity conditions (g = 9.81×10−2) and harmonic oscillations perpendicu-
lar to the imposed vertical temperature gradient. The authors found a very good agreement between
experimental results in microgravity environment and three-dimensional numerical results using
the real microgravity oscillatory profiles recorded by the on-board accelerometer, with similar flow
structure characteristics.

Most of the existing studies have considered the effect of only one direction of vibrations. It is,
however, interesting to know the response of the three-dimensional buoyant flow to the influence
of vibrations with different directions. This can help us to select efficient vibrations that can either
stabilize or enhance the fluid motion and to avoid vibrations that disturb the flow without interesting
effect.

The main objective of the present work is to investigate the effect of high frequency (HF)
vibrations on a silicon buoyant melt flow contained in a cubic enclosure heated from the side
and subjected to HF vibrations with different directions. These three-dimensional results will also
be helpful to evaluate the range of validity of the two-dimensional assumption usually adopted in
previous studies.

The paper is organized as follows: we first describe the mathematical formulation of the fully
three-dimensional (3D) model. The 3D simulation results are then validated by comparison with 3D
results [21] and with previously published 2D results for the whole range of vibration directions
contained in the main flow plane, i.e., the plane of the 2D approach [18]. The 3D simulations
results obtained for the cases where the vibration direction is contained in one of the three principal
planes (i.e., the planes perpendicular to the three axes of the cavity) are then presented, first in
weightlessness conditions (pure thermovibrational effect) and then in gravity conditions. Special
attention is given to the comparison between the effects obtained on the buoyant flow for vibrations
contained in the different principal planes. The final section provides some concluding remarks.

II. MATHEMATICAL FORMULATION

In this section, we describe the mathematical model used to perform the numerical simulation
of the buoyant flow of molten silicon contained in parallelepipedic crucibles heated from the side
and submitted to high frequency (HF) vibrations. Note that the model is derived in the general case
of a parallelepipedic cavity, but the numerical results, which are presented in Secs. IV and V, are
focused on the case of a cubic cavity.

The geometry of the problem is shown in Fig. 1(a). Two aspect ratios can be defined for this
cell, Ax = L/H and Ay = W/H , where L, H, and W are the length, height, and width of the
crucible, respectively. The molten silicon has a small Prandtl number Pr = 0.01. A temperature
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FIG. 1. (a) The geometry of the problem and the reference buoyant flow in a parallelepipedic cell of length
L, width W , and height H . The cavity can be subjected to a high frequency vibration of amplitude b and angular
frequency �. n is the unit vector indicating the direction of the vibration and g0 is the static gravity acceleration.
Hot and cold walls are colored in red and blue, respectively. Contours of velocity magnitude are plotted in the
vertical transverse and longitudinal planes. (b) The coordinates system. The direction of vibration given by n
is defined with θ and ϕ, the polar and azimuthal angles, respectively.

difference �T is applied between the right and left vertical sidewalls [Fig. 1(a)], which are thermally
conducting and maintained at fixed temperatures Th (hot temperature) and Tc (cold temperature),
respectively, while the other walls are thermally insulated.

The equations governing the melt flow include the effect of both the static gravity acceleration
g0 and the additional vibrational component [7,18]. The resulting acceleration g is then

g = g0 + b�2 sin (�t ) n, (1)

where b is the amplitude of the vibration, � is the angular frequency (� = 2π f where f is the
frequency), and n is the unit vector indicating the direction of the vibration, which is given by the
polar and azimuthal angles θ and ϕ, respectively [Fig. 1(b)].
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By using the averaging method proposed by Gershuni and Lyubimov [7] in the case of high-
frequency harmonic vibrations and using H , H2/ν, ν/H , �T/Ax = (Th − Tc)/Ax, and ρν2/H2 as
scales for length, time, velocity, temperature, and pressure [the temperature is (T − T0)Ax/�T ,
where T0 = (Th + Tc)/2 is the mean temperature] as in our previous works [18,19], the dimension-
less governing equations for a Newtonian and incompressible buoyant flow under the effect of HF
vibrations are

∂V
∂t

+ (V · ∇)V = −∇p + ∇2V + Gr T γ + Grv(W · n)∇T, (2)

∂T

∂t
+ V · ∇T = 1

Pr
∇2T, (3)

∇ · V = 0, (4)

∇ · W = 0, (5)

∇ × W = ∇T × n. (6)

V is the average velocity, often simply called velocity in the following. W is the pulsation velocity,
which corresponds to the solenoidal part of the vector field T n. The expression of the vibrational
force in Eq. (2) comes from that given in Eq. (1.17a) in [7]. The dimensionless parameters, Prandtl
number Pr, Grashof number Gr, and vibrational Grashof number Grv, are defined respectively as

Pr = ν

χ
, Gr = gβ�T H4

L ν2
, and Grv = (b�β�T )2H4

2 L2 ν2
.

The vector n indicating the direction of vibration [Fig. 1(a)] can be expressed in Cartesian
coordinates as a function of the polar θ and azimuthal ϕ angles [Fig. 1(b)] as

n = sin θ cos ϕ i + sin θ sin ϕ j + cos θ k.

Equation (2) and the curl of Eq. (6) [together with Eq. (5)] provide six equations governing
velocity and pulsation velocity components u, v, w and Wx, Wy, Wz in x, y, and z directions,
respectively. These equations can be written as follows:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂P

∂x
+ Grv(Wx sin θ cos ϕ + Wy sin θ sin ϕ + Wz cos θ )

∂T

∂x
+ ∇2u,

(7)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂P

∂y
+ Grv(Wx sin θ cos ϕ + Wy sin θ sin ϕ + Wz cos θ )

∂T

∂y
+ ∇2v,

(8)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂P

∂z
+ Grv(Wx sin θ cos ϕ + Wy sin θ sin ϕ + Wz cos θ )

∂T

∂z

+ Gr T + ∇2w, (9)

∇2Wx = sin θ cos ϕ∇2T −
(

sin θ cos ϕ
∂

∂x
+ sin θ sin ϕ

∂

∂y
+ cos θ

∂

∂z

)
∂T

∂x
, (10)

∇2Wy = sin θ sin ϕ∇2T −
(

sin θ cos ϕ
∂

∂x
+ sin θ sin ϕ

∂

∂y
+ cos θ

∂

∂z

)
∂T

∂y
, (11)

∇2Wz = cos θ∇2T −
(

sin θ cos ϕ
∂

∂x
+ sin θ sin ϕ

∂

∂y
+ cos θ

∂

∂z

)
∂T

∂z
. (12)
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Boundary conditions

On all the solid walls of the enclosure, no-slip and nonpermeability conditions are imposed
for the average velocity V and the pulsation velocity W , respectively. As in our previous work
[18], the heated walls are the vertical walls at x = 0 and x = Ax, which have uniform temperatures
T = −AX /2 and T = AX /2, respectively. The remaining walls are thermally insulated.

For the average velocity, the boundary conditions can be written as follows:

u = v = w = 0 at x = 0, x = Ax, y = 0, y = Ay, z = 0, and z = 1.

Taking into account Eq. (6), the nonpermeability conditions for the pulsation velocity can be
derived. We obtain

Wx = 0 at x = 0 and x = Ax,

∂Wx

∂y
= −∂T

∂x
sin θ sin ϕ at y = 0 and y = Ay,

∂Wx

∂z
= −∂T

∂x
cos θ at z = 0 and z = 1,

∂Wy

∂x
= ∂T

∂x
sin θ sin ϕ at x = 0 and x = Ax,

Wy = 0 at y = 0 and y = Ay,

∂Wy

∂z
= −∂T

∂y
cos θ at z = 0 and z = 1,

∂Wz

∂x
= ∂T

∂x
cos θ at x = 0 and x = Ax,

∂Wz

∂y
= −∂T

∂z
sin θ sin ϕ at y = 0 and y = Ay,

Wz = 0 at z = 0 and z = 1.

Finally, for the temperature, we have

T = −Ax/2 at x = 0 and T = Ax/2 at x = Ax,

∂T

∂y
= 0 at y = 0 and y = Ay,

∂T

∂z
= 0 at z = 0 and z = 1.

For simplicity, when the vibration vector n is contained in one of the principal planes of the cavity
xz, xy, and yz, the corresponding vibration is denoted as xz vibration, xy vibration, and yz vibration,
and the vibration angles, which are thus defined in these planes with respect to the first axis of these
planes, are αxz, αxy, and αyz, respectively. For example, αxz is the angle between the x axis and the
unit vector n for vibrations with a direction contained in the xz plane. Note that the vibration angles
α are related to the angles ϕ and θ by the following relations:

ϕ = 0 and θ + αxz = π/2 for xz vibration,
ϕ = αxy and θ = π/2 for xy vibration,
ϕ = π/2 and θ + αyz = π/2 for yz vibration.
Equations (7)–(12) can then be written as a function of either αxy, αxz, or αyz only in each of these

three cases.
Some specific directions of vibration are common to two planes (intersection between these two

planes) and they correspond to the principal axes, i.e., the x axis, y axis, and z axis. More precisely,
vibration in the x direction can be found for αxy = 0 and αxz = 0, vibration in the y direction can be

123501-5



FAIZA MOKHTARI et al.

FIG. 2. Comparison of the maximum horizontal (along x) and vertical (along z) velocity components, umax

and wmax, obtained by 2D and 3D computations for xz vibrations in all possible directions (Gr = 1000 and
Grv = 10 000). The 3D computations are performed for a 1×1×1 cubic cell and a 1×8×1 rectangular duct.
Due to symmetry properties, the curves of minimum velocity have exactly the same variations, but with an
opposite sign.

found for αxy = π/2 and αyz = 0, and vibration in the z direction can be found for αxz = π/2 and
αyz = π/2.

The accurate spectral collocation method [24] has been used to solve numerically the system of
Eqs. (3)–(5) and (7)–(12). Such a method already showed its efficiency in the investigation of the
influence of high frequency vibration direction on the structure of a two-dimensional differentially
heated cavity buoyant flow (Bouarab et al. [18]). The Navier-Stokes equations are solved in a
primitive variables (V , P) formulation, replacing the incompressibility equation (4) by an explicit
pressure Poisson equation with relevant Neumann boundary conditions derived from the Navier-
Stokes equations, as detailed in Johnston and Liu [25] and Johnston et al. [26].

III. VALIDATION OF THE 3D RESULTS

Comparison of the fully three-dimensional results with those available in the literature and ob-
tained either in 2D [18] or in 3D [21] studies shows a very good agreement. A series of computations
has been performed in the case of xz vibration, i.e., when the vibration vector is contained in the
main flow plane (xz plane), which is also the computation domain for the two-dimensional models.
The vibrations can be oriented in all possible directions, i.e., from αxz = 0◦ to αxz = 180◦. The
thermovibrational convection results in a 1×1×1 cubic cell and in a 1×8×1 (Ax = 1, Ay = 8) cavity
are compared with those obtained in a 2D rectangular cavity having the same aspect ratio Ax = 1
(square cavity). The 2D and 3D maximum of the horizontal and vertical velocity components in the
main flow plane (i.e., the xz plane), namely umax and wmax, are plotted as a function of αxz in Fig. 2
for Gr = 1000 and Grv = 10 000. Due to symmetry properties, these plots also correspond to the
absolute values of the minimum velocities, i.e., |umin| and |wmin|.

For the 1×1×1 cubic cavity, the plots of umax and wmax with respect to αxz are similar to those
obtained in the 2D square cavity. The values of umax and wmax obtained with the 3D model are
found to be relatively close to those obtained with the 2D model, except in the neighborhood of the
optimal vibration direction (αxz = 45◦) where the convection level reaches its maximum. This can
be due to the fact that for this intense flow, the viscous effects due to the no-slip condition imposed
on the walls at y = 0 and y = Ay = 1 (i.e., very close to the main flow plane at y = Ay/2 = 0.5) are

123501-6
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FIG. 3. Temperature and velocity fields in the reference buoyant case (without vibration) in the differen-
tially heated cubic cell (1×1×1 cavity) for Gr = 1000 (Grv = 0). Left and right boundaries at x = 0 and x = 1
are respectively at cold and hot temperatures. Isotherms and velocity vectors are plotted at the three middle
planes, x = 0.5, y = 0.5, and z = 0.5.

significant. A better agreement is, however, found on the overall αxz range for the 1×8×1 cavity,
i.e., when the transverse aspect ratio Ay is larger and consequently the influence of viscous effects
due to the lateral walls at y = 0 and y = Ay = 8 is less significant. To quantify this agreement, we
have calculated the relative differences on umax and wmax between the 3D results obtained for Ay = 8
(i.e., in the 1×8×1 cavity) and the corresponding 2D results. These differences are really small and
remain below 1% for all the considered vibration directions.

In the following, we focus our numerical study on the case of a cubic cavity. We first describe
the reference buoyant case (Sec. IV) and then present the results obtained when vibration is applied
to the cavity (Sec. V).

IV. REFERENCE BUOYANT CASE

In the reference case without vibration (Grv = 0), a buoyant flow appears in the differentially
heated cubic cavity, which results from the induced horizontal temperature gradient inside the fluid.
For relatively small values of the Prandtl and Grashof numbers (as Pr = 0.01 and Gr = 1000), the
flow consists of a single convective cell. Fluid rises near the hot wall (globally in the z direction),
travels along the upper horizontal wall (in the x direction), goes down at the cold wall (along
z), and returns to the hot wall along the lower horizontal wall (along x). The resulting flow is
usually called the “Hadley flow.” It corresponds here to a counterclockwise convective cell which
occupies the whole cavity. Temperature and flow fields corresponding to the reference case without
vibration for the cubic cavity are shown in Fig. 3 for Gr = 1000 and Pr = 0.01. We see that the flow
corresponds to an almost circular cell and that the temperature field remains almost diffusive. The
values of umax and wmax are very close and equal to about 3.62. This thermal convective flow has
different symmetries connected with the symmetries of the geometry, the boundary conditions, and
the equations themselves. Three different symmetries can be defined:

(i) a reflection symmetry SP (left-right symmetry) with respect to the middle vertical plane
(y = Ay/2),

SP : (x, Ay/2 + y, z) → (x, Ay/2 − y, z) ⇒ (u, v,w, T ) → (u,−v,w, T );

123501-7
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(ii) a π -rotational symmetry SA with respect to the central axis parallel to the y axis (x = Ax/2,
z = 0.5),

SA : (Ax/2 + x, y, 0.5 + z) → (Ax/2 − x, y, 0.5 − z) ⇒ (u, v,w, T ) → (−u, v,−w,−T );

(iii) a symmetry SC with respect to the center of the cavity C(Ax/2, Ay/2, 0.5),

SC : (Ax/2 + x, Ay/2 + y, 0.5 + z) → (Ax/2 − x, Ay/2 − y, 0.5 − z) ⇒ (u, v,w, T )

→ (−u,−v,−w,−T ).

Note that the central symmetry SC can also be defined as the product of the two other symmetries
SP and SA. All these symmetries, however, can be broken when the value of Gr is increased. Details
on the evolution of such symmetries in a 4×2×1 cavity for different convection levels (increase
of Gr) and different Prandtl numbers can be found in [27]. As will be explained thereafter, these
symmetries can also be kept or lost depending on the direction of the applied vibration.

V. COMPARISON OF THE EFFECT OF xz VIBRATION, xy VIBRATION, AND yz VIBRATION

In this section, the main features of the thermovibrational convection induced for each kind of
vibration are highlighted. We will consider the buoyant flow induced in the melt contained in a
1×1×1 cubic crucible for Gr = 1000 and Pr = 0.01 and investigate the effect of vibration on such
flow. For each xz vibration, xy vibration, and yz vibration, the vibrational Grashof number will be
fixed to Grv = 10 000 and the vibration angle α will be varied in the whole possible range [0 °,180 °].
In order to better understand this thermovibrational convection, simulations of the flows induced by
vibrations in weightlessness conditions (i.e., without buoyancy force) will be first performed. The
particular choice of Grv and Gr with Grv/Gr = 10 follows our previous observations in [18] that
this ratio has to be sufficiently high to induce a rich flow dynamics with, in particular, a possible
flow inversion when the vibration orientation is changed. Moreover, considering a silicon melt
(β = 1.1×10−4 K−1, ν = 3.2×10−7 m2/s) submitted to a temperature gradient �T/L = 10 K/cm
in a cavity of a few centimeters (for example L = H = 2.6 cm), the selected value of the vibrational
Grashof number Grv = 10 000 will correspond to vibration characteristics similar to those indicated
for the experiment in [23], i.e., amplitudes b in the range of cm down to mm associated with
frequencies f of ten to a few hundred Hz (b f ∼ 0.1 m/s).

All these numerical simulations will be performed with the general system of equations (3)–(5)
and (7)–(12). In particular, as indicated in (2), the general expression of the vibrational force is that
given by FV = Grv(W · n)∇T . Note, however, that in our differentially heated cell, the temperature
gradient is mainly horizontal, close to diffusive for not too strong velocities, particularly for low-
Prandtl number fluids as the silicon melt, i.e., with dT/dx ≈ [Ax/2 − (−Ax/2)]/Ax ≈ 1 and small
values of dT/dz and dT/dy. This indicates that the vibrational force is also mainly directed along
the x direction and can be approximately written as FV = Grv(W · n)ex, where ex is the unit vector
in the x direction. Such approximation of the force will be used in the following to deepen our
physical understanding of the numerical results.

A. Flows induced by vibrations in weightlessness conditions

The characteristics of the flows induced by vibrations in weightlessness conditions are shown in
Figs. 4–9. These weightlessness flows are denoted as WF in the figures. We will present successively
the results obtained for the different kinds of vibration, i.e., the xz vibration, xy vibration, and the
yz vibration.

1. xz vibration

This vibration plane is vertical and perpendicular to the imposed temperature boundaries (cold
and hot walls). It is also the vibration plane for the 2D model [18]. As shown in Fig. 2 for the test
cases, the effects due to such vibrations, especially for large width 3D cavities, are almost the same
as those obtained in the 2D case.

123501-8
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FIG. 4. Contours of pulsation velocities Wx (a) and Wz (b) for αxz = 60◦ (identical result for αxz = 120◦)
and contours of the xz-vibrational force (main component of FV xz/Grv along ex) for αxz = 60◦ (c) and αxz =
120◦ (d) in the main xz plane of the differentially heated cubic cell (1×1×1 cavity) for xz vibration with
Grv = 10 000 and under weightlessness conditions (Gr = 0).

When the vibration vector n is in the xz plane, the azimuthal and polar angles defining the
direction of vibration are given as ϕ = 0 and θ = π

2 − αxz and the expression of the vibrational
force FV = Grv(W · n)ex simplifies to

FV xz = Grv(Wx cos αxz + Wz sinαxz )ex. (13)

This xz-vibrational force involves only Wx and Wz, i.e., the components of the pulsation velocity
in the plane of vibration. Note also that, as expressed in Eq. (6), the cross product of the temperature
gradient ∇T and the unit vibration vector n controls the variations of the pulsation velocity
components. In the case of xz vibration, it gives

∂Wz

∂y
− ∂Wy

∂z
= ∂T

∂y
sinαxz,

∂Wx

∂z
− ∂Wz

∂x
= ∂T

∂z
cosαxz − ∂T

∂x
sinαxz,

∂Wy

∂x
− ∂Wx

∂y
= −∂T

∂y
cosαxz.

As mentioned above, dT/dx ≈ 1, dT/dz ≈ 0, and dT/dy ≈ 0. The velocity components in the
transverse direction y, as well as the variations of the velocity components in this y direction, can
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FIG. 5. Horizontal velocity contours, isotherms (white lines), and velocity vectors in the main xz plane of
the differentially heated cubic cell (1×1×1 cavity) for xz vibration with Grv = 10 000 and under weightless-
ness conditions (Gr = 0) for αxz = 60◦ (a) and αxz = 120◦ (b).

also be considered small. The equations controlling the pulsation velocity can then be reduced to a
single main equation given by

∂Wx

∂z
− ∂Wz

∂x
= −sinαxz, (14)

together with the continuity equation for the pulsation velocity reduced to

∂Wx

∂x
+ ∂Wz

∂z
= 0. (15)

It is interesting to look at the spatial variation of the pulsation velocities Wx and Wz. In Figs. 4(a)
and 4(b), Wx and Wz are plotted in the main xz plane for xz vibration with Grv = 10 000 and
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FIG. 6. Velocity and temperature fields in the differentially heated cubic cell (1×1×1 cavity) under weight-
lessness conditions (Gr = 0) and for Grv = 10 000. Vibration is applied in the z direction (i.e., corresponding
to αxz = 90◦ or αyz = 90◦). Left and right boundaries at x = 0 and x = 1 are respectively at cold and hot
temperatures. Isotherms and velocity vectors are plotted at the three middle planes, x = 0.5, y = 0.5, and
z = 0.5. A four counter-rotating cells structure is obtained, the axis of the cells being parallel to the y direction.
Under weightlessness conditions, an exactly similar four cells structure is also obtained for vibration applied
in the y direction, but the cells will have their axis parallel to the z direction.

FIG. 7. Maximum velocity components in the differentially heated cubic cell (1×1×1 cavity) as a function
of αxz, the vibration angle in the xz plane (case of xz vibration) for Grv = 10 000 and under weightlessness
conditions (Gr = 0, flows denoted as WF for weightlessness flows). The case without vibration (Grv = 0)
corresponds here to the no-flow situation (blue dashed line). Insets give contours of longitudinal velocity in
the middle yz plane (x = 0.5) for αxz = 45◦ and αxz = 135◦. The three curves are symmetric about αxz = 90◦.
This corresponds here to similar flows for 90◦ − αxz and 90◦ + αxz, but with opposite rotation direction. These
curves also give the characteristic velocities as a function of αxy for the xy vibration under weightlessness
conditions. For that, the curves of vmax and wmax have to be permuted, whereas the curve of umax is unchanged.
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FIG. 8. 3D flow (fluid particles trajectories) in the differentially heated cubic cell (1×1×1 cavity) under
weightlessness conditions (Gr = 0) when yz vibration is imposed in the direction αyz = 45◦ with Grv = 10 000.

αxz = 60◦ in weightlessness conditions. We see that both ∂Wx/∂z and −∂Wz/∂x appearing in (14)
have negative values and contribute together to give −sinαxz. For the cubic cavity with Ax = 1, the
two pulsation velocities Wx and Wz are almost similar, Wz being obtained from Wx by a π/2 rotation.
In fact, combining (14) and (15), we get the same Laplacian equation ∂2/∂x2 + ∂2/∂z2 = 0 for Wx

FIG. 9. Maximum velocity components in the differentially heated cubic cell (1×1×1 cavity) as a function
of αyz, the vibration angle in the yz plane (case of yz vibration) for Grv = 10 000 and under weightlessness
conditions (Gr = 0, flows denoted as WF for weightlessness flows). The case without vibration (Grv = 0)
corresponds here to the no-flow situation (blue dashed line). Insets give contours of transverse velocity v and
streamlines in the middle yz plane (x = 0.5) and for different values of αyz. The three curves are symmetric
about αyz = 90◦. This corresponds here to exactly similar flows for 90◦ − αyz and 90◦ + αyz.
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and Wz, and the respective boundary conditions given in Sec. II actually lead to similar fields within
a π/2 rotation. The presence of sinαxz in these boundary conditions, as in the right-hand side of
(14), also indicates that Wx and Wz remain unchanged when the value of αxz changes from 90◦−α to
90◦ + α. To confirm this result, we checked that the plots of Wx and Wz obtained for αxz = 120◦ are
exactly the same as those corresponding to αxz = 60◦ [Figs. 4(a) and 4(b)].

For the 2D model [18], it was shown that, when the vibration effects are dominant (Grv � Gr),
the flow obtained for αxz = 90◦ + α is similar to that obtained for αxz = 90◦−α, but with opposite
rotation direction, corresponding in fact to an up-down symmetry between these flows. We can
reasonably assume that such a result is also valid for the 3D case with xz vibration when weight-
lessness conditions are considered. If T1, Wx,1, and Wz,1 are the fields defined at x1, y1, and z1 and
solutions for αxz = 90◦−α, the fields obtained for αxz = 90◦ + α and defined at x2 = x1, y2 = y1,
and z2 = −z1 are T2 = T1, Wx,2 = −Wx,1, and Wz,2 = Wz,1. The corresponding forces FV xz,1 and
FV xz,2 in the general case are respectively

FV xz,1 = Grv[Wx,1 cos (90◦ − α) + Wz,1 sin (90◦ − α)]∇T1

= Grv[Wx,1 sin (α) + Wz,1 cos (α)]∇T1

and

FV xz,2 = Grv[Wx,2 cos (90◦ + α) + Wz,2 sin (90◦ + α)]∇T2

= Grv{−Wx,1[− sin (α)] + Wz,1 cos (α)}∇T1 = FV xz,1.

For example, this shows that the force obtained for αxz = 90◦ + α is the up-down symmetric of
the force obtained for αxz = 90◦−α. This is illustrated in Figs. 4(c) and 4(d) by the plot of the forces
obtained for αxz = 60◦ and 120◦. Such forces will generate similar flows, with up-down symmetry
between them and opposite rotation direction. These flows will have the same characteristics, e.g.,
the same maximal velocities. Such symmetric flows are illustrated in Figs. 5(a) and 5(b) by the plots
of the velocity vectors in the xz plane for the cases αxz = 60◦ and 120◦ in weightlessness conditions.
Note that these single cell flows in the xz plane have the same symmetries as the buoyant flow, i.e.,
Sp, SA, and SC symmetries. This result is valid for the whole αxz range from 0◦ to 180◦. When the xz
vibration will be applied to the buoyant flow, it is then expected that all these symmetries will still
be found.

We can consider the particular cases corresponding to αxz = 0◦ and 90◦. When vibration is
imposed in the x direction (αxz = 0◦), Eq. (14) gives ∂Wx/∂z−∂Wz/∂x = 0 and the boundary
conditions give ∂Wx/∂z = 0 and ∂Wz/∂x = 0. Both Wx and Wz are then expected to be very small
and the vibrational force, reduced to FV xz(0◦) = FV x ≈ GrvWxex, is also very small, leading then to
a very weak flow.

When vibration is imposed in the z direction (αxz = 90◦), Eq. (14) gives ∂Wx/∂z−∂Wz/∂x =
−1 and the boundary conditions give ∂Wx/∂z = −1 and ∂Wz/∂x = 1. The pulsation velocities are
similar to those shown in Figs. 4(a) and 4(b), but they have their maximal magnitude [maximal value
close to 0.3, compared to 0.25 in Figs. 4(a) and 4(b) for αxz = 60◦ ]. However, only the component
Wz is included in the vibration force as FV xz(90◦) = FV z ≈ GrvWzex. This vibrational force, mainly
along x, depends only on the vertical pulsation velocity Wz, which has opposite sign in the right
and left parts (along x) of the cavity. This horizontal force, opposite in the right and left parts of
the cavity and more intense at midheight, will not generate a usual single cell flow, but a symmetric
four counter-rotating cells flow (Fig. 6). The cells have their axis parallel to the y direction. The
velocities go outwards at midheight, so that the upper-left and lower-right cells have a clockwise
rotation in xz planes whereas the upper-right and lower-left cells have a counterclockwise rotation.
Due to the opposite forces involved, the resulting flow will also have a rather limited intensity. Such
four cells flow was also observed by Farooq and Homsy [22], Savino et al. [21], and Shevtsova
et al. [23].
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The variation of the characteristic velocities umax, vmax, and wmax as a function of αxz for the xz
vibration in weightlessness conditions is given in Fig. 7. The three curves also correspond to |umin|,
|vmin|, and |wmin|, respectively. We see that the curves of the characteristic velocities are symmetric
with respect to αxz = 90◦. In fact, as shown before and as indicated by the flows given as insets, the
flow has opposite rotation direction below and above αxz = 90◦. For these single cell flows, we see
that the vertical velocity is slightly smaller than the horizontal velocity, especially around αxz = 45◦
and 135◦ where they have their maximal intensities. In contrast, the transverse component remains
small.

2. xy vibration

This xy-vibration plane is perpendicular to the imposed temperature boundaries, as was the xz-
vibration plane. In the absence of buoyancy, the xy vibration is then expected to give exactly the
same effects as the xz vibration, with only a change of plane corresponding to a π/2 rotation around
the x axis. The flows that have principally been obtained in the xz plane when αxz is changed for
the xz vibration are now obtained in the xy plane when αxy is changed for the xy vibration. The
same characteristic behaviors and velocities are thus obtained, and the results presented for the xz
vibration in the previous subsection can all be transposed to give the results obtained for the xy
vibration [e.g., wmax (vmax) as a function of αxz for the xz vibration in Fig. 7 also gives vmax (wmax)
as a function of αxy for the xy vibration, whereas the curve of umax is similar].

For xy vibration, the flow then consists mainly in a single cell flow, which, however, occurs in the
xy plane and changes its rotation direction when αxy is below or above 90◦. For αxy = 90◦, we obtain
the four counter-rotating cells flow, but the cells have now their axis parallel to the z direction (see
Fig. 6 and its caption). Note that the symmetries of such flow are different from those of the buoyant
flow: a reflection symmetry with respect to the middle xy plane, a π -rotation symmetry with respect
to the middle z axis, and the central symmetry. When the xy vibration will be applied to the buoyant
flow, it is then expected that the only symmetry that will still hold is the central symmetry.

3. yz vibration

The yz vibration plane is different from the previous vibration planes, as it is parallel to the cold
and hot walls and is consequently at an almost uniform temperature, particularly for small Prandtl
numbers.

In the case of yz vibration, we have ϕ = π/2 and θ + αyz = π/2, and the vibrational force FV yz

involves then vertical and transverse pulsation velocities Wz and Wy:

FV yz = Grv(Wy cos αyz + Wz sin αyz )∇T . (16)

This force would be mainly horizontal (as for FV xz and FV xy) and can be written as

FV yz = Grv(Wy cos αyz + Wz sin αyz ) ex.

It is clear that FV yz is perpendicular to the yz-vibration plane and consequently it will act in a
different way compared to FV xz and FV xy.

Since ∂T/∂y ≈ 0, ∂T/∂z ≈ 0, and ∂T/∂x ≈ 1, the cross product of temperature gradient ∇T
and yz-vibration unit vector n results in the following expressions for the pulsation velocity:

∂Wz

∂y
− ∂Wy

∂z
= ∂T

∂y
sin αyz − ∂T

∂z
cos αyz ≈ 0, (17)

∂Wx

∂z
− ∂Wz

∂x
= − sin αyz, (18)

∂Wy

∂x
− ∂Wx

∂y
= cos αyz. (19)

Differently from the xz and xy vibrations, Eq. (17) relating the pulsation velocity components in
the plane of vibration (Wy and Wz) is independent of the temperature gradient along x for yz vibration.
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Their derivatives in the plane of vibration are expected to be small and their main variations are
expected to be along x, as expressed in (18) and (19).

The two particular cases corresponding to αyz = 90◦ (z vibration) and 0◦ (y vibration) have
already been considered in the case of xz and xy vibration, respectively. For αyz = 90◦, a four cells
flow with axis parallel to y has been obtained in connection with the vibrational force which, as Wz,
varies along x (Wy is very weak in this case), and similarly for αyz = 0◦, a four cells flow with axis
parallel to z is obtained in connection with the vibrational force which, as Wy, varies along x (Wz is
very weak in this case). For angles αyz between these two values, the vibrational force will depend
on both Wz and Wy, which also vary in intensity with αyz, and the four cells will have intermediate
orientations connecting the two specific orientations at αyz = 90◦ and αyz = 0◦. Such behavior is
illustrated in Fig. 8 for αyz = 45◦: in this 3D view of streamlines, we clearly see the intermediate
orientation of the cells, here approximately along the diagonal of the yz plane. The progressive
change of the cells’ orientation can also be observed in the insets of Fig. 9 where the streamlines
are plotted in the middle yz plane.

For αyz = 180◦ the flow consists of the same four cells flow as for αyz = 0◦. Consequently, we
can reasonably expect that the transition from αyz = 90◦ to 180◦ will be the same as that from
αyz = 90◦ to 0◦. To go further, we will compare the situations at αyz = 90◦−α and 90◦ + α. When
αyz is changed from 90◦−α to 90◦ + α, Wz is not changed and Wy is changed to its opposite in
agreement with the properties of the sine and cosine functions in (18) and (19), respectively. The
vibrational forces for 90◦−α and 90◦ + α are found to be equal. Indeed, we have

FV yz(90◦ + α) = Grv[Wy(90◦ + α)cos(90◦ + α) + Wz(90◦ + α)sin(90◦ + α)] ∇T

= Grv{−Wy(90◦ − α)[− sin (α)] + Wz(90◦ − α) cos(α)}∇T

= Grv[Wy(90◦ − α) cos (90◦ − α) + Wz(90◦ − α) sin(90◦ − α)]∇T

= FV yz(90◦ − α).

This indicates that, for two orientations αyz which are symmetric with respect to 90◦, the same
vibrational force will be obtained, which will consequently generate the same flow. The equality
of the flow intensity obtained for the vibration orientations at αyz = 90◦−α and 90◦ + α is clearly
highlighted by the symmetry of the curves of umax, vmax, and wmax about the value αyz = 90◦ in
Fig. 9. We have also verified that the corresponding flow patterns are identical (see the insets in
Fig. 9 allowing the comparison for αyz = 30◦ and 150◦, for αyz = 45◦ and 135◦, and for αyz = 60◦
and 120◦). Note that umax is almost constant in the whole αyz range, corresponding to the fact that
the horizontal motion is always present for the different roll orientations. The position of umax in
the cavity, however, must change with αyz. In contrast, vmax is maximal and wmax minimal when the
rolls have a vertical axis for αyz = 0◦, whereas wmax is maximal and vmax minimal when the rolls
have a horizontal transverse axis for αyz = 90◦.

The symmetries of the flows obtained with yz vibration are numerous: reflection symmetries with
respect to the three middle planes, π -rotation symmetries with respect to the three middle axes, and
the central symmetry. As these symmetries include those of the buoyant flow, it is expected that,
when the yz vibration will be applied to the buoyant flow, the typical symmetries of the latter will
be retained.

B. Buoyant flows submitted to vibrations

The main results obtained for buoyant flows submitted to vibrations are shown in Figs. 10–12
(Gr = 1000 and Grv = 10 000). In order to be able to compare the results between the different
vibration orientations, we have plotted the variation of the characteristic velocities for the different
vibration orientations on a same figure, namely in Fig. 10 for umax, in Fig. 11 for wmax and in
Fig. 12 for vmax. These variations are given as solid lines, whereas the results in weightlessness
conditions are recalled as dashed lines. In addition, we have illustrated the flows corresponding to
the xy vibration in Fig. 10, the xz vibration in Fig. 11, and the yz vibration in Fig. 12 by insets.
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FIG. 10. Maximum longitudinal velocity umax (along x) in the differentially heated cubic cell (1×1×1
cavity) as a function of the vibration angle α, when the vibration vector is contained in one of the three principal
planes (xz, xy, and yz planes) for Gr = 1000 and Grv = 10 000. The results are given with solid lines of
different colors. The corresponding results in weightlessness conditions (denoted as WF) are also given as
dashed lines for comparison (note that the same curve, plotted as black dashed line, is obtained for xz and
xy vibration). Blue dashed line corresponds to the pure buoyant flow (reference case with Grv = 0). Insets
give contours of the longitudinal velocity u in the middle yz plane (x = 0.5) for the reference buoyant case
(Grv = 0) and for the pure vibrational cases (weightlessness cases, Gr = 0) and convectovibrational cases for
xy vibration with angles αxy = 45◦ and 135◦.

FIG. 11. Maximum vertical velocity wmax (along z) in the differentially heated cubic cell (1×1×1 cavity) as
a function of the vibration angle α, when the vibration vector is contained in one of the three principal planes
(xz, xy, and yz planes) for Gr = 1000 and Grv = 10 000. The results are given with solid lines of different
colors. The corresponding results in weightlessness conditions (denoted as WF) are also given as dashed lines
for comparison. Blue dashed line corresponds to the pure buoyant flow (reference case with Grv = 0). Insets
give contours of the vertical velocity w and streamlines in the middle xz plane (y = 0.5) for xz vibration with
angles αxz = 45◦, 90◦, and 135◦.
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FIG. 12. Maximum transverse velocity vmax (along y) in the differentially heated cubic cell (1×1×1 cavity)
as a function of the vibration angle α, when the vibration vector is contained in one of the three principal planes
(xz, xy, and yz planes) for Gr = 1000 and Grv = 10 000. The results are given with solid lines of different
colors. The corresponding results in weightlessness conditions (denoted as WF) are also given as dashed lines
for comparison. Blue dashed line corresponds to the pure buoyant flow (reference case with Grv = 0). Insets
give contours of the longitudinal velocity u and streamlines in the middle xz plane (y = 0.5) for yz vibration
with different angles αyz.

1. xz vibration

For buoyant flows submitted to xz vibration, the variations of the maximal velocities with αxz are
given as black curves in Figs. 10–12 and plots of the flow are shown as insets in Fig. 11.

For αxz = 0◦ (vibration imposed in the x direction), the flow is similar to the reference buoyant
flow (umax = wmax = 3.62). This result was expected since, for such vibrations, we have obtained a
very weak flow in weightlessness conditions. For αxz between 0◦ and 90◦, the pure thermovibrational
flow, which consists in a counterclockwise cell, will enhance the buoyant flow which rotates in
the same direction (inset in Fig. 11). The maximum velocity will be obtained for a value of αxz

close to 45◦. This result is in agreement with the numerical and theoretical results obtained in the
two-dimensional studies [18,19]. The velocity amplification achieved by vibrations is important:
for example, for αxz = 45◦, it leads to umax = 12.85 (255% increase, Fig. 10) and to wmax = 12.40
(243% increase, Fig. 11). Around αxz = 90◦, the four cells flow obtained in weightlessness condi-
tions will modify the circular buoyant counterclockwise cell to a diagonal counterclockwise roll,
with small additional clockwise vortices near the upper left and lower right corners (Fig. 13 and
inset in Fig. 11). This diagonal roll is slightly more intense than the pure buoyant flow (umax = 4.36
and wmax = 4.26). For larger values of αxz up to 180◦, the pure thermovibrational flow is a clockwise
cell. Consequently, for this range of αxz, the vibrations will first decrease the intensity of the buoyant
flow, will possibly lead to the occurrence of a clockwise cell (inset in Fig. 11) in a certain range of
αxz (the flow inversion phenomenon is here observed between about 102◦ and 168◦), and will finally
lead back to the pure buoyant flow structure for αxz = 180◦. The clockwise cell has its maximum
intensity (umax = 5.79 and wmax = 5.46) at the middle of the inversion range, i.e., at the vicinity of
αxz = 135◦.

The phenomenon of flow inversion has already been studied for two-dimensional situations
submitted to xz vibration [18]. For a rather elongated cavity and small Prandtl number, it was
shown theoretically in [18] that a necessary condition for flow inversion to occur is Grv/Gr � 2
and that the limit angles α1 and α2 between which the inversion occurs verify the equation
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FIG. 13. Velocity and temperature fields in the differentially heated cubic cell (1×1×1 cavity) for
Gr = 1000 and Grv = 10 000 when vibration is applied in the z direction (i.e., corresponding to αxz = 90◦

or αyz = 90◦). Left and right boundaries at x = 0 and x = 1 are respectively at cold and hot temperatures.
Isotherms and velocity vectors are plotted at the three middle planes, x = 0.5, y = 0.5, and z = 0.5.

Gr + Grv sin(αxz ) cos(αxz ) = 0 and are then given by

α1 = 90◦ + α0/2 and α2 = 180◦ − α0/2 with α0 = asin[2/(Grv/Gr)].

These theoretical expressions predicted very well the flow inversion obtained numerically in
a cavity with Ax = 4 for Pr = 0.01, Gr = 2500, and Grv = 6250 or 62 500. We can expect that
these expressions will be valid in three-dimensional buoyant flows with xz vibration for elongated
cavities (large Ax) rather than for our cubic cavity (Ax = 1). Note that, in the book of Gershuni
and Lyubimov [7], a general condition is given for the quasiequilibrium states in flows affected by
thermogravitational and thermovibrational effects in plane layers [see Eq. (1.114) or Eq. (1.116) in
this book]. The authors consider a layer inclined at an angle α to the vertical (direction of the gravity)
and four different orientations (vertical, longitudinal, horizontal, transversal) of the temperature
gradient [expressed with the unit vector m (mx, mz)] and of the vibration direction [expressed with
the unit vector n (nx, nz)]. For these 16 cases, they give the particular expressions of the quasiequilib-
rium condition. Our quasiequilibrium state corresponding to the flow inversion is not one of these
16 states as, in the situation we consider, it is the vibration direction αxz which is continuously
varied. Equation (1.116) can, however, be used to derive the quasiequilibrium condition in a plane
layer corresponding to our configuration, i.e., a case where the layer is horizontal (α = 90◦), the
temperature gradient is horizontal (mx = 0, mz = 1), and the vibration direction is oriented at an
angle αxz to the horizontal [nx = −sin(αxz ), nz = cos(αxz )]. We get Ra + Rav sin(αxz ) cos(αxz ) = 0,
i.e., the same expression we obtained in our two-dimensional rectangular cavity, only expressed with
the Rayleigh number Ra rather than the Grashof number Gr (Ra = Gr Pr and Rav = Grv Pr). Note
also that Gershuni and Lyubimov [7] found a similar expression Ra + Rav sin(α) cos(α) = 0 for the
quasiequilibrium condition in a plane fluid layer subjected to a horizontal temperature gradient and
vertical vibrations, but the angle α involved in the expression is the angle of the layer to the vertical.

For the values of the Grashof and vibrational Grashof numbers considered here, Gr = 1000 and
Grv = 10 000, the ratio Grv/Gr is 10 and thus the condition for flow inversion to occur is well
satisfied. The numerical values of α1 and α2 obtained in this case and the theoretical values predicted
by the model are summarized in Table I. The inversion range computed numerically is smaller than
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TABLE I. Comparison of numerical and theoretical values for flow inversion limit angles.

α1 α2 α1 α2

Gr Grv α0/2 (theoretical) (theoretical) (numerical 3D) (numerical 3D)

1000 10 000 5.77◦ 95.77◦ 174.23◦ 101.81◦ 168.01◦

the one found theoretically. This difference is due in particular to the small value of Ax for which the
hypothesis of a horizontal flow in the central part of the cavity cannot be made. Note however that, as
predicted by the theoretical model, the numerical values of α1 and α2 have about the same departure
from 90◦ and 180◦, respectively (around 11.9◦, compared to 5.77◦ according to the model).

In the presence of xz vibration, the flow mainly remains a single cell flow with fluid circulation
principally in planes parallel to the xz plane and small transverse v velocities. Such flow keeps all
the symmetries of the buoyant flow for all αxz values. This flow, however, can be counterclockwise
as the buoyant flow, but also clockwise in a certain range of αxz. The xz vibration can enhance the
intensity of the buoyant flow, particularly around αxz = 45◦ (umax = 12.85), but can also lead to
weak flows near the flow inversion limit angles. The most important decrease of the velocities is
numerically observed at αxz = 168◦ and is of about 93% (umax = 0.28).

2. xy vibration

For buoyant flows submitted to xy vibration, the variation of the maximal velocities with αxy is
shown as red curves in Figs. 10–12 and plots of the flow are shown as insets in Fig. 10. Note that,
in Fig. 10, the variation of umax in the weightlessness case for xy vibration is the same as for the xz
vibration and is given as black dashed lines. Let us remind that the flow created by the xy vibration
in weightlessness conditions is the same as that created by the xz vibration, but with a main flow
plane changed from the xz plane to the xy plane (π/2 rotation). The combination of the buoyant
force which creates a flow principally in the xz plane and the vibrational force which creates a flow
principally in the xy plane is expected to lead to strongly 3D flows, with the possibility of rotating
the main flow plane about the x axis between the xz and xy orientations. The vertical velocity
component of the resulting flow is of the same order of magnitude as that of the pure buoyant flow
(see red solid line and blue dashed line in Fig. 11), while the transverse velocity component is of
the same order of magnitude as that of the pure vibrational flow (see red solid line and red dashed
line in Fig. 12).

For αxy = 0◦ (vibration imposed in the x direction), the flow is similar to the reference buoyant
flow (umax = wmax = 3.62). This result was expected since for such vibrations we have obtained
a very weak flow in weightlessness conditions. This flow is also obtained for αxz = 0◦. For αxy

between 0◦ and 90◦, the pure thermovibrational flow is a counterclockwise cell in the xy plane with
a maximum intensity reached when αxy is close to 45 °. In this αxy range, the vibrational force will
be responsible for the rotation of the counterclockwise cell between its initial position in the xz
plane (pure buoyant flow) and a position closer to the xy plane (vibration dominated flow). The
most important rotation is obtained for αxy close to 45◦ (see inset in Fig. 10). Simultaneously, the
vibrations are at the origin of an increase of the longitudinal and transverse velocities (Figs. 10 and
12, respectively) whereas the vertical velocity is almost unchanged (Fig. 11). The value of umax is
increased up to 10.62, whereas vmax is changed from 0.11 for αxy = 0◦ to 8.98 for αxy = 45◦.

For αxy = 90◦ (vibration imposed in the y direction), the flow returns to a minimum intensity.
This flow is, however, slightly different from the buoyant flow, since it is affected by the pure
thermovibrational flow which corresponds to the four cells flow with axis parallel to z. Indeed, we
observe a small enhancement of the longitudinal velocity component with umax = 4.30 (Fig. 10)
and a significant enhancement of the transverse velocity component, which is the same as for the
weightlessness flow, with vmax = 2.03 (Fig. 12). With an almost unchanged vertical motion, close
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FIG. 14. Velocity and temperature fields in the differentially heated cubic cell (1×1×1 cavity) for
Gr = 1000 and Grv = 10 000 when vibration is applied in the y direction (i.e., corresponding to αxy = 90◦

or αyz = 0◦). Left and right boundaries at x = 0 and x = 1 are respectively at cold and hot temperatures.
Isotherms and velocity vectors are plotted at the three middle planes, x = 0.5, y = 0.5, and z = 0.5.

to that induced by pure buoyancy (Fig. 11), the resulting flow structure is a perturbed xz roll with
increased three-dimensional effects compared to the pure buoyant flow (Fig. 14). See particularly
the perturbed velocities in the middle horizontal plane.

For αxy between 90◦ and 180◦, the pure thermovibrational flow is now a clockwise cell in the xy
plane, which, as shown previously, is the symmetric with respect to the middle xz plane of what was
obtained for αxy in the first range, i.e., between 90◦ and 0◦ (90◦ + α versus 90◦−α). As the pure
buoyant flow has this SP symmetry, the resulting flow for αxy between 90◦ and 180◦ will also be
the symmetric with respect to the middle xz plane of what was obtained for αxy in the first range,
i.e., between 90◦ and 0◦. For αxy changing from 180◦ to 90◦, the rotation of the main flow plane
will now be in the opposite direction, from its position as a counterclockwise cell in the xz plane
(pure buoyant flow) towards its position closer to the xy plane, now as a clockwise cell in this plane
(vibration dominated flow). The maximum rotation will here be obtained for αxy close to 135◦ (see
inset in Fig. 10) and, due to the symmetry, all the characteristics of the flow can be deduced from
what was obtained previously for αxy between 0◦ and 90◦.

3. yz vibration

For buoyant flows submitted to yz vibration, the variation of the maximal velocities with αyz

is shown as green curves in Figs. 10–12 and plots of the flow are shown as insets in Fig. 12. We
have previously shown that the yz-vibrational force FV yz is perpendicular to the vibration plane and
small compared to FV xz and FV xy and that the flow induced by such yz vibration in weightlessness
conditions is rather weak. The yz vibration is thus expected to only slightly modify the buoyant
flow. The results in Figs. 10 and 11 show that the main velocity components of the buoyant flow,
characterized by umax and wmax, are indeed only slightly increased by the yz vibration, in a really less
efficient way than what can be obtained with xz vibration or xy vibration. However, the transverse
velocity component, which was weak for the buoyant flow, can be more clearly increased (Fig. 12).
The values of vmax are almost the same as for the weightlessness flow (compare solid and dashed
green lines in Fig. 12). Note that, depending on the flow velocity components, the maximum
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amplification is induced when the yz vibration is applied along the y axis (αyz = 0◦ or 180◦) or
along the z axis (αyz = 90◦).

We can have a closer look at what occurs for the different vibration angles. Remember first that
the vibrational force FV yz and the flow induced by such force in weightlessness conditions are the
same for angles below and above αyz = 90◦, αyz = 90◦−α, and 90◦ + α, respectively. It is then only
useful to discuss the results for 0◦ � αyz � 90◦. Moreover, the flow obtained when the yz vibration
is applied to the buoyant flow is expected to keep all the symmetries of the buoyant flow (see
Sec. V A 3). Finally, as the changes induced by the vibration are rather weak, the global structure of
the flow is expected to remain a single cell structure in the xz plane, but with increased 3D effects.

As seen in Sec. V A 3, for αyz = 0◦ (vibration in the y direction, corresponding also to αxy = 90◦),
a four cells flow with axis z is obtained in weightlessness conditions. Applied to the buoyant flow,
such vibration will then affect the u and v velocity components. The influence on u, which is a main
velocity of the buoyant flow, remains weak (Fig. 10). In contrast, there is a clear amplification of v,
which is usually the weak velocity component of the buoyant flow (Fig. 12). For small values of αyz,
the resulting flow structure will then be a perturbed xz roll with increased three-dimensional effects
compared to the pure buoyant flow (see Fig. 14). Around αyz = 90◦, the four cells flow obtained
in weightlessness conditions is now oriented along the y axis. Such vibration will then affect the
main components of the buoyant flow, the u and w velocity components. It will modify the circular
buoyant counterclockwise cell to a diagonal counterclockwise roll, with small additional clockwise
vortices near the upper left and lower right corners (Fig. 13).

As seen in Sec. V A 3, for intermediate values of αyz, the four cells of the pure vibrational case
have intermediate orientations, their axis rotating between the z-axis and y-axis directions. The
three velocity components of the buoyant flow will then be affected by such vibrations. When αyz

is increased from 0◦ to 90◦, the resulting flow will evolve with decreased three-dimensional effects
and progressive evolution of the buoyant cell to a more diagonal shape and emergence of the corner
vortices (see the insets in Fig. 12). Note that umax becomes minimum for values of αyz close to
45◦ (Fig. 10). In fact, for such angles, we can think that the slight amplification of the horizontal
velocity component induced by the vibrations does not occur in the zones of maximum velocity of
the buoyant flow and then does not affect umax.

VI. DISCUSSION AND CONCLUSION

In this paper, a three-dimensional study on the effect of high frequency vibration on a silicon
melt flow (Prandtl number Pr = 0.01) contained in a cubic cavity heated from the sides, under
weightlessness or gravity conditions, was performed using collocation spectral method. All possible
vibration directions in one of the three principal planes of the cavity were considered. The character-
istic parameters are the Grashof number Gr for the buoyant flow and the vibrational Grashof number
Grv for the vibrational flow. The values chosen in this study are Gr = 1000 and Grv = 10 000.

It was first shown that, due to the applied horizontal temperature gradient along x and the low
Prandtl number, the vibrational force is principally in the x direction and depends on the pulsation
velocity components in the vibration plane.

In weightlessness conditions, the vibrations in a plane perpendicular to the heated and cold side
walls generate a flow corresponding to a main cell in the vibration plane, this cell rotating in a certain
direction for vibration angles below 90◦ and symmetrically in the opposite direction for vibrations
angles above 90◦. Such behavior has been observed in our numerical simulations for vibrations in
the xz and xy planes, and the results obtained are exactly similar, deduced one from the other by a
π/2 rotation around the x axis. The change of the cell rotation direction at α = 90◦ goes through
a four counter-rotating rolls structure with moderate intensity and with axis perpendicular to the
vibration plane, i.e., y axis for xz vibration and z axis for xy vibration. These specific vibration
orientations also belong to the yz plane (plane parallel to the heated side walls), at αyz = 90◦ and
αyz = 0◦, respectively. As a consequence, for yz vibration between αyz = 0◦ and 90◦, the flow, which
is induced by a vibrational force perpendicular to the yz vibration plane, is rather weak and will
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evolve as four rolls structures with intermediate orientations of the rolls. Moreover, exactly similar
results are obtained for αyz below or above 90◦ (90◦−α or 90◦ + α).

In gravity conditions, the vibrations will now act on the buoyant flow. This buoyant flow corre-
sponds to a counterclockwise cell in the xz plane and has three different symmetries: a reflection
symmetry with respect to the xz plane, a π -rotation symmetry with respect to the central y axis, and
a central symmetry.

The xz-vibration force also generating a roll in the xz plane, the resulting flow will principally
be in this plane and will keep the symmetries of the buoyant flow. The resulting roll, however, will
be re-enforced, in the counterclockwise direction, for vibration angles αxz between 0◦ and 90◦ and
will be decelerated for αxz between 90◦ and 180◦. If the ratio Grv/Gr is sufficiently high (larger
than 2 in long 2D cavities), the roll can even change its orientation and become clockwise between
two angles α1 and α2 at equal distance of 90◦ and 180◦, respectively (90◦ + α0/2 and 180◦ − α0/2,
with α0 = asin[2/(Grv/Gr)] in the model corresponding to long 2D cavities). In our case with
Grv/Gr = 10, our simulations in the cubic cavity give α0/2 = 11.9◦, compared to 5.77◦ according
to the model. Such xz vibrations are then particularly interesting for crystal growth applications as
for vibration angles αxz close to 45◦, they can generate intense flows (up to a 255% intensification)
which can provide good mixing and for vibrations angles close to the flow inversion limits α1 and
α2, they can lead to weak flows (with a 93% decrease) and rather diffusive conditions.

The influence of the xy vibration is different as the vibration force now generates a roll in the xy
plane. The resulting flow is amplified compared to the buoyant flow, but its principal characteristic
is that the main cell is shifted from the xz plane towards the xy plane, in a given direction for αxy

between 0◦ and 90◦ and symmetrically in the opposite direction for αxy between 180◦ and 90◦ (the
maximum shifts are obtained close to 45◦ and 135◦, respectively). Such flows have lost the main
symmetries of the buoyant flow and only kept the central symmetry. Concerning crystal growth
applications, these flows are interesting for mixing, with their increased intensity and the possibility
of changing the orientation of the main roll.

Finally, the yz vibration (in a plane parallel to the heated side walls) has clearly the weakest
influence on the buoyant flow. Such vibrations, which keep the symmetries of the buoyant flow, will
only slightly amplify this buoyant flow. The resulting flow still corresponds to a main cell in the xz
plane, but this cell is modified with different three-dimensional effects which will affect the global
circulation of the fluid. In particular, the v transverse velocity, which is weak in the buoyant flow, is
clearly amplified for αyz close to 0◦. Note that the influence of the yz vibration is the same for αyz

below or above 90◦ (90◦−α or 90◦ + α). Concerning crystal growth applications, the yz vibrations
seem to be the less interesting as the amplification of the flow they provide remains weak and cannot
really improve mixing, despite increased three-dimensional effects.
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