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ABSTRACT:

The use of high-resolution digital terrain model derived from airborne LiDAR system becomes more and more prevalent. Effective
multi-scale structure characterization is of crucial importance for various domains such as geosciences, archaeology and Earth
observation. This paper deals with structure detection in large datasets with little or no prior knowledge. In a recent work, we
have demonstrated the relevance of hierarchical representations to enhance the description of digital elevation models (Guiotte
et al., 2019). In this paper, we proceed further and use the pattern spectrum, a multi-scale tool originating from mathematical
morphology, further enhanced by hierarchical representations. The pattern spectra allow to globally and efficiently compute the
distribution of size and shapes of the objects contained in a digital elevation model. The tree-based pattern spectra used in this paper
allowed us to analyse and extract features of interest. We report experiments in a natural environment with two use cases, related to
gold panning and dikes respectively. The process is fast enough to allow interactive analysis.

1. INTRODUCTION

Data analysis is usually achieved through a representation of the
data in an appropriate feature space. In the context of digital im-
ages, the histogram of graylevels has been used for decades as
a simple and efficient probability density function to character-
ize image contents. While today feature learning achieved with
deep neural networks has shown great success including for re-
mote sensing data, it still requires the availability of massive
amounts of data, either with or without annotations (supervised
and unsupervised learning, respectively). In the context of inter-
active data analysis, efficient methods that do not impose such
requirements remain appealing.

Among existing methods for representing an image content in
a predefined feature space, the pattern spectra (Maragos, 1989)
have established as an advanced solution to describe the image
through a probability distribution function of some attributes
measured on the image parts. More precisely, and conversely to
the histogram of graylevels, the analysis is not conducted at the
pixel level but rather on all components or regions present in
the image. The underlying scale-space is efficiently built using
either level sets or multiscale segmentation, through inclusion
or partitioning trees respectively (Bosilj et al., 2018). As far
as the attributes are concerned, pattern spectra give access to a
wide range of properties beyond the distribution of graylevels,
e.g. related to the size or shape of images components. Let
us note that the attributes can be combined to provide a multi-
dimensional attribute space in which a further analysis can be
conducted. For instance, area, non-compactness and Shannon
entropy have been successfully used for aerial image retrieval
(Bosilj et al., 2016). Interactive filtering of satellite images has
been explored in (Ouzounis, Soille, 2011, Gueguen, Ouzounis,
2012).

However, to the best of our knowledge, pattern spectra have
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never been used in the context of digital terrain model (DTM)
data analysis yet.

2. FROM DTM TO ATTRIBUTE SPACE

In this paper, we will use an attribute space to characterize
structures present in a DTM.

Direct visual interpretation of DTM is feasible for medium and
large structures, but it can be difficult especially in mountain-
ous areas where a high range of vertical information is present
(cf. Figure 1a). While hillshades appear as an alternative way
for visual interpretation that is especially efficient for micro-
reliefs, it remains difficult to perceive the scale and the depth
of objects through hillshades (Figure 1b). We claim that pattern
spectra can be used as a relevant alternative, since they provide
an automatic tool to deal with the high range of vertical values
while preserving micro-reliefs.

2.1 Morphological Hierarchy

An interesting mean to represent the hierarchy in an image is
to use morphological operators. Among them, min-trees, max-
trees and pattern spectra (Salembier et al., 1998) provide re-
liable models and descriptors, and will be used in this paper.
Min- and max-trees form a hierarchical decomposition of an
image X from a domain E ⊂ R2 with E → Z or R based on
level sets of flat zones and are briefly described below.

Max-tree is composed of nodes, a set of flat zones Nk
h linked

together in relation to their level h. The flat zones are the
peak components P k

h (X) valued with the level h. Peak
components are determined according to thresholds Th(X)
over the points x of the image X such that:

Th(X) = {x ∈ E|X(x) ≥ h} (1)
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(a) DTM (altitude in m) (b) Hillshades of the DTM

Figure 1. Visualizations of a DTM below vegetation in a mountainous area generated from multi-echo LiDAR system.

Figure 2. Pattern spectrum (area and compactness) of the DTM with the max-tree.

k is an index over the set Th. The root node of the tree
includes the whole image X with the lowest level h of X ,
while the leaves contain local maxima. All flat zones are
nested for decreasing values of h and this results in the
so-called max-tree.

Min-tree is constructed conversely using lower level sets. Be-
cause of duality, the min-tree hierarchy can also be con-
structed as a max-tree of the inverted image (−X).

Tree of shapes introduced by (Monasse, Guichard, 2000), de-
scribe the image in a self-dual way, similar to the merging
of min- and max-tree. The tree characterizes both local
maxima and local minima.

A full image can be reconstructed directly from its min-, max-
trees and tree of shapes. Efficient techniques exist to construct
such trees at a low computational cost. In this paper, the elev-
ations of the DTM are viewed as graylevels to construct min-,
max-trees and tree of shapes (note that other trees can be used,
including fine-grained partition trees such as the α-tree).

These morphological hierarchies capture the structures inside

the DTM. To do so, we rely in this paper on the characterization
functions known as pattern spectra.

2.2 Pattern Spectra

For each node Nk
h of a tree, many criteria (a.k.a. attributes)

related to the properties of the peak components (e.g. shape or
size, see next section for a discussion of available attributes)
can be computed. A 1D pattern spectrum can be viewed as
the probability density function related to the probability that a
component with a given attribute is present in the image. In a
similar way, a 2D pattern spectrum can be viewed, for a whole
image, as the joint probability density function of peak compon-
ents with two attributes. A direct link between a pair of attribute
values and the corresponding areas in the image can be estab-
lished and depending of the chosen attributes, the different bins
of pattern spectra can highlight very meaningful areas.

The pattern spectra can be seen as a histogram describing the
distribution of properties (e.g. sizes or shapes) present in the
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tree. The size and shape attributes are first split into ranges of
size or shape classes. We used two rules to create such classes:

Linear partitioning that consists in a straightforward range
partitioning between the minimum and the maximum of
the attribute with a fixed step. We use this for attributes
with a normal distribution (e.g. compactness).

Geometric partitioning where a logarithmic range partition-
ing appears suitable to describe wide distributions while
keeping the ability to characterize small values (e.g. area,
height, volume).

In this paper, 2D pattern spectra will be used with specific at-
tributes to highlight key information in DTM.

The construction of the 2D pattern spectra S is as follow:

1. Choose the size i× j of the spectrum.
2. Choose two attributes (e.g. area A and compactness C).
3. Define the classes of the two attributes according to the

size i and j and the previous partitioning rules.

Then for each node Nk
h of the tree:

1. Compute the classes ci and cj of the two attributes.
2. Compute height difference δh = h− hp between the node
Nk

h and its parent Nkp

hp
.

3. Increment the cell S[ci, cj ] with the area times the height
difference A(Nk

h )× δh.

3. A DTM PERSPECTIVE ON ATTRIBUTES

From the chosen tree, we recursively compute attributes of the
nodes. We consider here different attributes:

area: A(Nk
h ) the surface area of the node (i.e. the pixel count

in the node).
perimeter: P (Nk

h ) the perimeter of the node (i.e. the pixel
count of the node contour).

compactness: C(Nk
h ) degree of compactness of the shape of

the node, defined as C(Nk
h ) = 16A(Nk

h )/P (Nk
h )

2. Com-
pactness ranges from 1 for compact shapes (e.g. circles) to
0 for non-compact shapes.

height: H(Nk
h ) difference between the elevation of the parent

of the node Nkp

hp
and the elevation of the deepest node in

the subtree rooted in the node.
volume: V (Nk

h ) of the node is the area times the elevation dif-
ference with its parent (so A(Nk

h ) × δh), plus the sum of
the volumes of all children of the node.

mean altitude: M(Nk
h ) of the pixels contained in the node.

altitude dynamics: D(Nk
h ) of the node, the difference between

the altitude of the deepest minima of his children and the
altitude of his closest ancestor that has one of his children
with deeper minima.

One major advantage of using hierarchical representations on
DTM is the direct link between the altitude of the node in the
tree and the altitude of the objects in the DTM. As a result, in
addition to the conventional area attribute that can be formu-
lated in square meters, the height and volume attributes can be
translated with physical meaning (i.e. respectively in meters
and cubic meters).

Depending on the application, we choose one or several attrib-
utes to characterize the structures in the DTM.

4. EXPERIMENTS

We carried out experiments on a large dataset to assess the effi-
ciency of our method.

4.1 Dataset

The study area covers 255 km2 of tropical forest. The data was
acquired by an aerial multi-echo LiDAR system at 100m above
ground level. The point cloud is first processed into a DTM of
1m2 pixel resolution. To remove trees and vegetation, only
ground points are kept. The raster is processed through triangu-
lated interpolation. The resulting dataset is a large DTM with
32 bits floating-accuracy elevations. For the sake of readability,
we used for this paper a sample of this dataset with a size of
5000× 5000 pixels (Fig. 1a).

(a) Gold panning areas (b) Closeup of an area of interest

Figure 3. Visualizations of the ground truth used for the
experiments. The ground truth is displayed over the hillshades

of Fig. 1b. Yellow surfaces are gold panning areas and the
purple square is the closeup (b).

The ground truth of the areas of interest has been provided by
geologists and geophysicists who are interested in automatic-
ally detecting natural lineaments or man-made structures. In
the first case, it will be a question of locating structures rich in
raw materials, in the second, the zones of gold panning which
are a threat to the environment.

Two classes are presented as examples: gold panning zones,
shown in Fig. 3a, and dikes.

4.2 Characterization of gold panning sites

In order to illustrate the potential of our method, we deal here
with the characterization of gold panning areas.

The first step is to compute the hierarchical representations of
the DTM. We used the Higra library (Perret et al., 2019) to pro-
cess several hierarchical representations and corresponding at-
tributes. We chose several component trees: max-tree, min-tree
and tree of shapes. For each node of a tree, we compute the
attributes listed in Sec. 3. We then obtain a distribution of at-
tribute values to be described. The range of the attributes were
divided into classes.

We processed a spectrum by choosing two attributes following
the procedure detailed in Sec. 2.2. Figure 2 shows the spectrum
of area and compactness with the max-tree.

The next step is to find the nodes corresponding to the area of
interest. We used the ground truth (Fig. 3a) as a pixel activation
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(a) Mean altitude and altitude dynamics

(b) Height and area

(c) Volume and compactness

Figure 4. Activation maps of pattern spectra over the gold
panning areas with the max-tree. The bin color represents the

percentage of nodes defined as gold panning in the global
spectrum. Values range from 0% (purple) to 100% (yellow). The

more consistent the spectrum, the better the characterization.

map. To select the nodes of the tree corresponding to the gold
panning areas, we traversed the tree in depth, from leaves to
root. A node is selected if all the pixels of the activation map
included in the node are active. If the node contains a disabled
pixel, the node and its ancestors are not selected.

(a) Height and perimeter

(b) Height and area

Figure 5. Activation maps of pattern spectra over the gold
panning areas with the min-tree. The bin color represents the

percentage of nodes defined as gold panning in the global
spectrum. Values range from 0% (purple) to 100% (yellow).

These selected nodes were used to process a new spectrum of
the areas of interest.

To assess the relevance of a pair of attributes, we then searched
for separability between areas of interest and background in the
spectrum. We defined a metric based on the intersection of the
spectrum of selected nodes and the spectrum of background
nodes. The intersection was normalized with the weights of
the selected nodes such as:

• intersection = 1 if the selected nodes are fully merged
in the background nodes spectrum.

• intersection = 0 if the selected nodes do not share a
single bin with the background spectrum.

This intersection metric is very severe for spectra since an ob-
ject well segmented is likely to have numerous child nodes
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tree count
Max-tree 10
Min-tree 23
Tree of shapes 6

Table 1. Count of significant intersections (below 0.95) for each
tree type.

mixed with small noise-like objects inherent to hierarchical rep-
resentations. However, this intersection metric is good enough
for ranking the spectra among themselves.

We ran series of spectrum intersections by combining the at-
tributes as well as the trees (i.e. max-tree, min-tree and tree of
shapes). We compared the number of meaningful spectra per
tree by counting the number of spectra with intersection below
0.95 (Table 1). The min-tree achieves good results in this con-
text (Fig. 5). The gold panning sites have pits in the ground well
characterized by the min-tree (i.e. structures that are lower than
their neighborhood). Usually max-tree performs well on DTM
and appeared more locally consistent in the spectra (Fig. 4).
Tree of shapes seemed ill-suited for this experiment (Fig. 6).
However, tree of shapes performances can be explained by our
lack of rule to create dual classes with a normal distribution
(e.g. height attributes ranges from −40 to +40 in the tree of
shapes). Their dual representation calls for further investiga-
tions.

To get the most meaningful spectra, we selected the attribute
combinations with the lowest intersection scores (Table 2). The
best combination was achieved by the mean altitude and altitude
dynamics spectrum (Figure 4a).

Figure 6. Activation maps of pattern spectra over the gold
panning areas with the tree of shapes. The bin color represents
the percentage of nodes defined as gold panning in the global
spectrum. Values range from 0% (purple) to 100% (yellow).

The best attribute combination had in common the mean alti-
tude and the altitude dynamics. Both are strongly correlated
with nodes altitude. In this sample zone, the gold panning areas
shared the same elevations. To limit biases, we selected a sub-
set of attributes unrelated to absolute altitude. These attributes
are mostly related to shape (e.g. area, perimeter, compactness,
height and volume). The best intersection scores of these at-
tributes are visible in Table 4. Among them, we found that the
best combination was the area and height spectrum (Figure 4b).

tree ax ay score
Max-tree mean altitude altitude dyn. 0.4926
Min-tree mean altitude altitude dyn. 0.6231
Min-tree mean altitude perimeter 0.8042
Min-tree altitude dyn. area 0.8352
Tree of shapes mean altitude altitude dyn. 0.8499
Min-tree altitude dyn. perimeter 0.8558
Max-tree mean altitude perimeter 0.8639
Min-tree mean altitude height 0.8929
Min-tree mean altitude area 0.8957
Tree of shapes mean altitude altitude dyn. 0.8999
Min-tree mean altitude compactness 0.9044

Table 2. 2D spectra intersection of gold panning and background
(lower is better).

tree ax ay score
Min-tree height perimeter 0.9729
Min-tree height area 0.9800
Max-tree height area 0.9838
Min-tree compactness area 0.9877
Max-tree height perimeter 0.9879
Min-tree volume area 0.9887
Min-tree volume compactness 0.9899
Max-tree volume perimeter 0.9909
Max-tree volume height 0.9911
Tree of shapes height compactness 0.9921
Max-tree volume compactness 0.9952

Table 3. 2D spectra intersection of gold panning and background
with selected attributes (lower is better).

An interesting spectrum combines the compactness and volume
attributes (Figure 4c). This last spectrum is an underlying com-
bination of area and height (via volume) together with compact-
ness attributes.

We evaluated 3D pattern spectra following the same methodo-
logy. To build the 3D spectrum, we chose 3 attributes and create
the subsequent classes. We ran the experiments with the previ-
ously selected attributes. The intersection metrics are available
in Table 4. We can notice an overall better separability. The best
attribute combination was area, height and compactness (Fig-
ure 8). In this figure, one can very well perceive a 3D cluster
that characterizes well the gold panning areas.

Let us note that the 2D and 3D pattern spectra presented here
can be easily extended to higher dimensions, but they will then
require more advanced visualisation techniques.

4.3 Dikes Extraction

In this section, we discuss the feasibility of structure extraction
from DTM without any prior knowledge. Our goal was to ex-
tract structures of interest such as dikes.

We used the max-tree according to the observations made in
the previous section. In addition, our aim was to characterize
above-ground structures.

We plot the spectrum in Fig. 7 (left). We can then interact-
ively select bins in the spectrum. For this example, we made a
rectangular selection in green at the bottom center of the spec-
trum to select structures with height between 35m and 60m
and compactness around 0.10 (i.e. rather non-compact shapes).
We pruned the tree to keep only the nodes from the selected
classes. The results can be displayed in different ways:
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tree ax ay az score
Min-tree compactness height area 0.5336
Max-tree compactness height area 0.5362
Max-tree perimeter compactness height 0.5643
Min-tree perimeter compactness height 0.5768
Min-tree compactness volume height 0.5983
Max-tree compactness volume height 0.5990
Min-tree perimeter height area 0.6611
Min-tree perimeter volume height 0.6726
Max-tree compactness volume area 0.6751
Min-tree compactness volume area 0.6845
Max-tree perimeter compactness volume 0.7107
Max-tree perimeter height area 0.7388
Tree of shapes compactness height area 0.7394

Table 4. 3D spectra intersection of gold panning and background with selected attributes (lower is better).

• Retrieve the footprint of the structures. It is useful for
visual inspection by displaying the results as an overlay
over the DTM or hillshade visualizations (on right side of
Figure 7).

• Reconstruct the altitudes of the pruned tree with direct fil-
tering (Salembier et al., 1998).

• Reconstruct the selected structures from the tree with the
subtractive filtering. Subtractive filtering introduced by
(Urbach, Wilkinson, 2002) allows to sum the altitude dif-
ferences of the nodes with their direct parents. The filter-
ing result, when used with DTM, is the height of structures
selected in the tree.

For dike detection, a false positive structure detection is visible
at the bottom left of the image (Fig. 7 right). Since compactness
is a ratio involving the perimeter, it is expected but undesired to
get such results with non-convex shapes. In future works, we
will investigate the use of elongation attributes such as the first
moment invariant of Hu (Hu, 1962) for this use case.

5. CONCLUSION

This study focuses on DTM structure characterization with the
pattern spectra. The pattern spectra offer many benefits when
used with digital elevation model (DEM). On the one hand, the
pattern spectra offer a global and multi-scale description of the
objects contained in the DEM. On the other hand, the direct link
between DEM values and level definition used in the pattern
spectra gives an intrinsic meaning of the attributes commonly
used on mathematical morphology. Furthermore, the use of
underlying hierarchical representations to compute the pattern
spectra and reconstruct characterized objects enables interact-
ive applications.

Future works will be carried out on the use of new attributes
suitable with DEM and user interface for 3D spectrum explora-
tion.
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Figure 7. Left: Interactive selection on pattern spectrum (height and compactness) of the DTM with the max-tree. Right: Structures of
the DTM corresponding to the selection are displayed with a green overlay on top of the hillshade visualization.

Figure 8. Activation map of 3D pattern spectrum (area, height and compactness). The bin color represents the percentage of nodes
defined as gold panning in the global spectrum. Values range from 0% (purple) to 100% (yellow).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1203-2020 | © Authors 2020. CC BY 4.0 License.

 
1209




