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Summary

The International Mouse Phenotyping Consortium reports the generation of new mouse mutant 

strains for over 5,000 genes, including 2,850 novel null, 2,987 novel conditional- ready, and 4,433 

novel reporter alleles.

Despite thirty years of mouse targeted mutagenesis, in vivo function of the majority of 

genes in the mouse genome are still unknown. This reflects the observation that a small 

number of genes have been the object of intensive study including the development of 

multiple mouse models, while a significant proportion of the coding genome remains 
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entirely unexplored 1 The completion of the sequencing of the mouse genome, coupled 

with the use of mouse embryonic stem (ES) cells for gene targeting to create complex 

mutant alleles, presented an opportunity to functionally analyze all the protein coding 

genes of a mammalian species 2,3 Taking advantage of comprehensive manual annotation 

of the genome 4, the International Knockout Mouse Consortium (IKMC) systematically 

generated single-gene, reporter-tagged null alleles for protein-coding genes by homologous 

recombination in mouse ES cells 5,6 Subsequently, large-scale mouse production and 

phenotyping programs deployed these unique resources, establishing the feasibility of 

genome-scale mouse production and phenotyping 7–9 Building upon these successes, the 

International Mouse Phenotyping Consortium (IMPC) was established to coordinate a 

network of programs around the globe, assuring uniformity and reproducibility of these 

efforts, including standardization of phenotyping protocols and the use of a single inbred 

mouse strain background, C57BL/6N, with the ultimate goal of generating and phenotyping 

a single-gene knockout (KO) mouse line for every protein-coding gene in the genome.

Production of KO mice began in concert with the expansion of the ES cell library, but 

rapidly accelerated after 2011 with the funding of multiple IMPC programs. To date, more 

than 17,500 individual production attempts (microinjection or aggregation) have resulted in 

the germline transmission of KO alleles for 5,061 unique genes (Figure 1a; Supplementary 

Table 1). These lines have been expanded for phenotyping, providing key insights into 

mammalian biology and disease 10–15; www.mousephenotype.org). To date, phenotype data 

for these lines shows that overall 72% of lines display at least one phenotype, revealing 

extensive pleiotropy (Supplementary Figure 1). This includes the 35.8% of lines that show 

partial or complete lethality, consistent with our earlier finding 11. The IMPC contribution 

extends the total number of genes with targeted KO alleles produced by the scientific 

community from the 8,391 reported and curated by Mouse Genome Informatics (MGI; 16)

(Figure 1b; Supplementary Table 1), to 11,241, or more than half of the genome. Much of 

the overlap (2,211 genes) reflects specific community requests for the production of novel 

complex alleles (see below), targeting on an inbred C57BL/6N background, or for mutant 

mouse lines unavailable through public repositories. The growing use of CRISPR/Cas9 

editing to produce null alleles for the IMPC led to the decrease in ES cell-based production 

beginning in 2015.

While the primary goal of the IKMC and IMPC was to generate and phenotype a null allele 

for every protein-coding gene, the mutant alleles included additional functional features. All 

alleles included a lacZ reporter cassette to facilitate analysis of gene transcription in situ 
(Supplementary Figure 2; 5,6). A large proportion of the alleles have conditional potential, 

providing future users with a useful tool for detailed, mechanistic analyses (Supplementary 

Figure 2a). The multifunctional utility of the alleles produced by the IMPC has greatly 

expanded the repertoire of genetic resources available to the scientific community. Of the 

3,674 unique gene, conditional-ready mouse models generated and validated, 2,987 were 

novel alleles for genes without an existing conditional allele (81.3%). These nearly double 

the total number of genes with conditional KO alleles produced by the scientific community 

as a whole (2,987 IMPC conditional alleles added to the 3,295 conditional alleles reported 

in MGI as mouse lines; Figure 1c). The impact is even more significant for reporter alleles. 

The IMPC has produced reporter alleles for 5,059 unique genes, of which 4,433 are novel 
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(87.6%), complementing the 2,733 produced by the scientific community (Figure 1d). This 

has nearly tripled the total number of genes with reporter alleles available to the community 

as mouse lines.

The generation of mouse lines was underpinned by comprehensive quality control strategies 

for both ES cell karyotype and targeted allele, which ensured efficient production and 

integrity of the targeting event (Supplementary Table 1; Supplementary Figures 3, 4). 

Further quality control (QC) analysis also showed that part of the ES cell collection 

contained an additional insertion of a wild-type nonagouti (A) gene on chromosome 8, 

likely introduced with the targeted reversion event in these cell lines (subclone JM8A317). 

However, as the insertion of the wild-type nonagouti gene results in an agouti coat color, 

this allele can be easily segregated from the mutant allele in most cases (Supplementary 

Figure 5). High- throughput allele validation of ES cells was performed using either a 

suite of quantitative and endpoint PCR-based tests or a combination of Southern blot18 and 

PCR-based analysis19, depending on production center (Supplementary Figures 3, 4 and 

6; Supplementary Tables 2, 3; Supplementary Note). Despite these efforts, we found that 

additional quality control (QC) on the mouse lines themselves was required to ensure all 

IMPC lines resulted from the transmission of the correctly targeted allele (Supplementary 

Figure 4; 19). This additional QC at the mouse level identified a small but significant 

proportion of incorrect alleles that transmitted through the germline of chimera mice derived 

from clones that had passed initial and secondary validation QC testing in the ES cell. Our 

experience highlights the importance of careful allele validation before and after mouse 

production.

As a result of this effort, mouse lines with targeted alleles for more than 5,000 genes on 

a C57BL/6N genetic background with extensive and documented genetic validation of the 

targeted locus are now available to the biomedical research community, supporting high 

standards of reproducibility for future investigations. This resource nearly triples the number 

of genes with reporter alleles and almost doubles the number of conditional alleles available 

to the scientific community. When combined with more than 30 years of community effort, 

the total mutant allele mouse resource covers more than half of the genome. The IMPC 

resource has shown its usefulness through the continued and robust uptake of mutant mouse 

lines by investigators around the world. This includes both KO and conditional alleles with 

mouse lines distributed as live mice and cryopreserved stocks. To date, over 5,000 orders 

for mutant mice for 3,301 unique genes have been processed and shipped to more than 

4,000 investigators around the world (Figure 1e). To date, more than 1,900 publications 

acknowledge the use of EUCOMM/KOMP alleles (for example 20–30). This demonstrates 

the utility of these resources, the cumulative use of which continues to grow over time, 

and complements the systematic phenotyping efforts of IMPC centers. In the new era 

of genome editing, this ES cell-derived collection remains of unique value as it offers 

particularly sophisticated and quality-controlled alleles representing a cornerstone of the 

collective development of a null allele resource for the complete mammalian genome 2.

All data are freely available from the IMPC database hosted at EMBL-EBI via a web 

portal (mousephenotype.org), ftp (ftp://ftp.ebi.ac.uk/pub/databases/impc) and automatic 

programmatic interfaces. An archived version of the database will be maintained after 
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cessation of funding (exp. 2021) for an additional 5 years. Information on alleles, together 

with phenotype summaries, are additionally archived with Mouse Genome Informatics at the 

Jackson Laboratory via direct data submissions (J: 136110, J:148605, J:157064, J:157065, 

J:188991, J:211773).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Generation and impact of targeted alleles for 5,061 unique mouse genes. (a) Cumulative 

production progress, including all attempts (microinjection or aggregation (black), unique 

ES cell clones injected (red), unique genes attempted (yellow), and unique genes that 

achieved germline transmission (GLT; blue). For GLT, the date reflects the date of 

microinjection, and only reports the first instance of transmission for the small number of 

duplicate mutations produced. (b) Venn representation of unique gene null alleles produced 

by the IMPC (orange) and by the rest of the scientific community as reported in MGI (“Non- 
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IMPC”; blue). (c) Unique gene conditional-ready alleles produced by the IMPC (orange) 

and by the rest of the scientific community (blue). (d) Unique gene reporter alleles produced 

by the IMPC (orange) and by the rest of the scientific community (blue). (e) Cumulative 

mouse orders of IMPC lines processed by production centres and mouse model Repositories 

from 2012–2018 (blue line). The cumulative number of ordering investigators, unique alleles 

ordered, and unique genes ordered are shown in yellow, grey, and orange, respectively.
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