Steroid-dependent switch of OvoL/Shavenbaby controls self-renewal versus differentiation of intestinal stem cells - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue EMBO Journal Année : 2021

Steroid-dependent switch of OvoL/Shavenbaby controls self-renewal versus differentiation of intestinal stem cells

Résumé

Adult stem cells must continuously fine-tune their behavior to regenerate damaged organs and avoid tumors. While several signaling pathways are well known to regulate somatic stem cells, the underlying mechanisms remain largely unexplored. Here, we demonstrate a cell-intrinsic role for the OvoL family transcription factor, Shavenbaby (Svb), in balancing self-renewal and differentiation of Drosophila intestinal stem cells. We find that svb is a downstream target of Wnt and EGFR pathways, mediating their activity for stem cell survival and proliferation. This requires post-translational processing of Svb into a transcriptional activator, whose upregulation induces tumor-like stem cell hyperproliferation. In contrast, the unprocessed form of Svb acts as a repressor that imposes differentiation into enterocytes, and suppresses tumors induced by altered signaling. We show that the switch between Svb repressor and activator is triggered in response to systemic steroid hormone, which is produced by ovaries. Therefore, the Svb axis allows intrinsic integration of local signaling cues and interorgan communication to adjust stem cell proliferation versus differentiation, suggesting a broad role of OvoL/Svb in adult and cancer stem cells.
Fichier principal
Vignette du fichier
embj.2019104347.pdf (13.69 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03065225 , version 1 (14-12-2020)
hal-03065225 , version 2 (12-11-2021)

Identifiants

Citer

Sandy Al Hayek, Ahmad Alsawadi, Zakaria Kambris, Jean-Philippe Boquete, Jérôme Bohère, et al.. Steroid-dependent switch of OvoL/Shavenbaby controls self-renewal versus differentiation of intestinal stem cells. EMBO Journal, 2021, 40 (4), pp.e104347. ⟨10.15252/embj.2019104347⟩. ⟨hal-03065225v2⟩
34 Consultations
17 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More