Effects of radiofrequency fields on RAS and ERK kinases activity in live cells using the Bioluminescence Resonance Energy Transfer technique - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal of Radiation Biology Année : 2020

Effects of radiofrequency fields on RAS and ERK kinases activity in live cells using the Bioluminescence Resonance Energy Transfer technique

Résumé

Purpose: The present study was conducted to re-evaluate the effect of low-level 1800 MHz RF signals (up to public exposure level for local exposure) on RAS/MAPK activation in live cells. Material and methods: Using molecular probes based on the Bioluminescence Resonance Energy Transfer technique (BRET), we assessed the effect of Continuous wave (CW) and Global System for Mobile (GSM)-modulated 1800 MHz signals (up to 2 W/kg) on ERK and RAS kinases' activity in live HuH7 cells. Results: We found that radiofrequency field (RF) exposure for 24h altered neither basal level of RAS and ERK activation nor the potency of phorbol-12-myristate-13-acetate (PMA) to activate RAS and ERK kinases, whatever the Specific Absorption Rate (SAR) or signal used. However, we found that exposure to GSM-modulated 1800 MHz signals at 2 W/kg decreased the PMA maximal efficacy to activate both RAS and ERK kinases' activity. Exposure with CW 1800 MHz signal at 2 W/kg only decreased maximal efficacy of PMA to activate ERK but not RAS. No effects of RF exposure at 0.5 W/kg was observed on maximal efficacy of PMA to activate either RAS or ERK whatever the signal used. Conclusion: Our results indicate that RF exposure decreases the efficiency of the cascade of events, which, from the binding of PMA to its receptor(s), leads to the activation of RAS and ERK kinases. This effect of RF exposure is reminiscent of RF-induced adaptive response.
Fichier principal
Vignette du fichier
Poque IJRB 2019 - 191016 (EMBO J 1).pdf (2.57 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03065159 , version 1 (14-12-2020)

Identifiants

Citer

Emmanuelle Poque, Delia Arnaud-Cormos, Lorenza Patrignoni, Hermanus Johannes Ruigrok, F. Poulletier de Gannes, et al.. Effects of radiofrequency fields on RAS and ERK kinases activity in live cells using the Bioluminescence Resonance Energy Transfer technique. International Journal of Radiation Biology, 2020, ⟨10.1080/09553002.2020.1730016⟩. ⟨hal-03065159⟩
86 Consultations
113 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More