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Abstract

A d-relaxed k-edge colouring is an edge colouring using colours from the
set {1, . . . , k} such that each monochromatic set of edges induces a subgraph
with maximum degree at most d. A neighbour sum distinguishing d-relaxed
k-edge colouring of G is a d-relaxed k-edge colouring such that for each edge
uv ∈ E(G), the sum of colours taken on the edges incident to u is different
from the sum of colours taken on the edges incident to v. By χ′d∑(G) we denote
the smallest value k in such a colouring of G.

In this paper, we prove that χ′2∑(G) ≤ 4 for every connected subcubic
graph with at least three vertices. For complete graphs with at least three
vertices, we show that χ′d∑(Kn) ≤ 4 if d ∈ {d(n− 1)/2e , . . . , n − 1} and we

also determine the exact value of χ′2∑(Kn). Finally, we determine the value of

χ′d∑(T ) for any tree T with at least three vertices.

Keywords: neighbour sum distinguish edge colouring, relaxed edge colouring, sub-
cubic graphs
Mathematics Subject Classification: 05C15
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1 Introduction

We consider undirected simple graphs and denote by V (G) and E(G) the sets of
vertices and edges of a graph G, respectively. For a vertex v of a graph G, NG(v)
denotes the set of vertices which are adjacent to v, dG(v) denotes the degree of the
vertex v in G, or simply N(v), d(v) whenever the graph G is clear from the context.
For undefined notations and terminology, we refer the reader to [2].

A k-edge colouring of G is a mapping ω : E(G) −→ {1, . . . , k}. The edge colour-
ing naturally induces a vertex colouring σω : V (G) −→ N given by

σω(v) =
∑

u∈NG(v)

ω(vu)

for every v ∈ V (G). We say that the edge colouring ω distinguishes vertices v, w ∈
V (G) if σω(v) 6= σω(w). The edge colouring (vertex colouring) is proper if adjacent
edges (vertices) receive different colours.

The edge colouring which induces a proper colouring of vertices gained a lot
of attention, especially 1-2-3 Conjecture, addressed in 2004 by Karoński,  Luczak
and Thomason [8]. More precisely, by χe∑(G), we denote the smallest value k for

which there exists a k-edge colouring ω of G (not necessarily proper) such that
σω(v) 6= σω(u) for every edge uv ∈ E(G).

Conjecture 1. [8](1-2-3 Conjecture) If G is a connected graph on at least 3 vertices,
then χe∑(G) ≤ 3.

The best known upper bound on χe∑ is 5 and has been proved by Kalkowski,

Karoński and Pfender [7]. Recently Przyby lo [11] proved that χe∑(G) ≤ 4 for every
d-regular graph with d ≥ 2 and 1-2-3 Conjecture is true for d-regular graphs with
d ≥ 108. 1-2-3 Conjecture inspires a lot of studies on the original conjecture and
variants of it. For more information on that topic, we refer to the survey [14].

The version of the edge colouring which distinguishes vertices and in which the
edge colouring is proper has been introduced by Flandrin et al. [5]. If the k-edge
colouring ω is proper and satisfies that σω(v) 6= σω(u) for every edge uv ∈ E(G), then
we call such colouring the neighbour sum distinguishing k-edge colouring. By χ′∑(G),
we denote the smallest value k for which G has a neighbour sum distinguishing k-edge
proper colouring and we call it the neighbour sum distinguishing index.

Flandrin et al. [5] completely determined the neighbour sum distinguishing index
for paths, trees, complete graphs and complete bipartite graphs. Based on these
examples, they proposed the following conjecture.
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Conjecture 2. [5] If G is a connected graph on at least 3 vertices and G 6= C5, then
χ′∑(G) ≤ ∆(G) + 2.

The objective of our work is to generalize both problems, by introducing a sum
distinguishing edge colouring which lies between them. More precisely, we will allow
a vertex to be incident to edges having the same colour, in a limited way. Such
a colouring will be called a d-relaxed k-edge colouring. Namely, a d-relaxed k-edge
colouring is a k-edge colouring such that each monochromatic set of edges induces
a subgraph with maximum degree at most d. If the d-relaxed k-edge colouring ω
satisfies that σω(v) 6= σω(u) for every edge uv ∈ E(G), then we call such colouring
the neighbour sum distinguishing d-relaxed k-edge colouring. By χ′d∑(G), we denote
the smallest value k for which there is a neighbour sum distinguishing d-relaxed k-
edge colouring of G. Hence when d = 1, we have that χ′d∑(G) = χ′∑(G) and when

d = ∆(G), we have χ′d∑(G) = χe∑(G). In addition, for 1 ≤ d ≤ ∆(G), the following
inequality holds for the three parameters:

χe∑(G) ≤ χ′d∑(G) ≤ χ′∑(G)

Also, a natural lower bound for χ′d∑(G) is given by the definition of a d-relaxed edge
colouring:

χ′d∑(G) ≥
⌈

∆(G)

d

⌉
We will see further that this bound may be tight in some cases.

This paper is organized as follows. In Section 2 we determine the value of χ′d∑(T )

for any tree T of order at least three and 1 ≤ d ≤ ∆(T ). In Section 3 we consider
complete graphs with at least three vertices, we prove that χ′d∑(Kn) ≤ 4 if d ∈
{d(n− 1)/2e, . . . , n− 1} and compute the exact value of the parameter when d = 2.
In Section 4 we prove that χ′2∑(G) ≤ 4 for every connected subcubic graph of order
at least three. It is worth noting that the best known upper bound on the neighbour
sum distinguishing index of connected subcubic graphs of order at least three is 6 [6]
(i.e. χ′∑(G) ≤ 6). In every figure throughout the paper, we will use the following
notations: the colours of edges are the numbers next to the edges, the colours of the
vertices induced by the edge colouring are boxed next to the vertices.
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2 Trees

It is known that χe∑(T ) ≤ 2 for any tree T , according to the following result of

Chang et al. [3]:

Theorem 3. [3] If G is a connected bipartite graph with at least three edges and
δ(G) = 1, then χe∑(G) ≤ 2.

Furthermore, Flandrin et al. [5] obtain the following result for the neighbour sum
distinguishing index of trees:

Theorem 4. [5] Let T be a tree of order n ≥ 3 and maximum degree ∆. Then
χ′∑(T ) = ∆ + 1 if there are two adjacent vertices of degree ∆, and χ′∑(T ) = ∆
otherwise.

In the next result we give the exact value of χ′d∑(T ) for a tree T and for any d.

Theorem 5. Let T be a tree of order n ≥ 3 with the maximum degree ∆ and
1 ≤ d ≤ ∆. We have

χ′d∑(T ) =

 ∆
d

+ 1,
if ∆ = 0 mod d and there are two adjacent vertices of
degree ∆⌈

∆
d

⌉
, otherwise

.

Proof. First recall that χ′d∑(T ) ≥ d∆/de. Furthermore, if ∆ = 0 mod d, then the
edges incident to two adjacent vertices of maximum degree cannot be coloured with
∆/d colours, so if ∆ = 0 mod d and there are two adjacent vertices of degree ∆,
then χ′d∑(T ) ≥ ∆/d + 1. We prove by induction on n that (χ′d∑(T ) ≤ ∆/d + 1 if

∆ = 0 mod d and there are two adjacent vertices of degree ∆) and χ′d∑(T ) ≤ d∆/de,
otherwise.

Observe that the theorem trivially holds if T is a star K1,n−1, hence, in particular,
for n = 3. Suppose the theorem is true for all trees of order at most n − 1 and let
T be a tree of order n. We may assume that T 6= K1,n−1. Let P be a longest
path in T and x be an endvertex of P . Since T is not a star |V (P )| ≥ 4. Let
x be chosen such that the only neighbour y of x in P is degree at most ∆ − 1,
whenever T has only one vertex of degree ∆. Let T ′ = T − x. By our choice of x,
∆(T ′) = ∆(T ) = ∆ and y has only one neighbour, say z, of degree ≥ 2. Moreover,
for every v ∈ V (T ′) \ {y} we have dT ′(v) = dT (v) and dT ′(y) = dT (y) − 1. Let
k = ∆/d + 1 if ∆ = 0 mod d and in T there are two adjacent vertices of degree ∆
or k = d∆/de, otherwise. Thus, by induction hypothesis, there is a neighbour sum
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distinguishing d-relaxed k-edge colouring of T ′. Let ω be such an edge colouring.
Let F = {c ∈ {1, . . . , k} : there are d edges incident to y that are coloured with c}.

If in T ′ there is a neighbour v of y different from z, then σω(v) < σω(y), so in
order to extend the colouring ω to a neighbour sum distinguishing d-relaxed k-edge
colouring ω′ of T it is sufficient to choose a colour c for yx such that c ∈ {1, . . . , k}\F
and σω′(z) 6= σω′(y). To prove that such a colour exists we consider two cases.
Case 1. ∆ = 0 mod d

If in T there are two adjacent vertices of degree ∆, then in {1, . . . , k}\F there are
two colours, hence, one of them is proper for the edge yx, i.e. if we put this colour on
yx, then we obtain the colouring ω′ such that σω′(z) 6= σω′(y). Suppose, now, that in
T there are no two adjacent vertices of degree ∆, in this case k = ∆/d. Suppose that
dT (y) = ∆. Then in {1, . . . , k} \ F there is only one colour. We colour yx with this
colour, let ω′ be the resultant colouring. By our assumption dT (z) < ∆ what implies
that σω′(z) < σω′(y) = (1 + . . . + k)d. Suppose that dT (y) < ∆. If in {1, . . . , k} \ F
there are at least two colours, then we can choose one for yz to obtain a neighbour
sum distinguishing d-relaxed k-edge colouring of T . Suppose that in {1, . . . , k} \ F
there is only one colour, say c. Thus for each colour c′ ∈ {1, . . . , k} \ {c′} there are
d edges incident to y coloured with c′ and there are at most d− 2 edges incident to
y coloured with c. In such a case it must be d ≥ 2. Arguments d ≥ 2, k ≥ 2 and
|{1, . . . , k} \ F | = 1 imply that y has at least one pendant vertex w in T ′ such that
ω(yw) 6= c. First we colour yx with c. If σω′(z) 6= σω′(y), then ω′ is a neighbour sum
distinguishing d-relaxed k-edge colouring. If σω′(z) = σω′(y), then we also recolour
the edge yw, we put ω′(yw) := c. The resultant edge colouring is neighbour sum
distinguishing.
Case 2. ∆ 6= 0 mod d

Thus k = d∆/de and d ≥ 2. If in {1, . . . , k} \ F there are two colours, then one
of them is proper for the edge yx and we can extend the colouring ω to a neighbour
sum distinguishing d-relaxed k-edge colouring of T . Suppose that |{1, . . . , k}\F | = 1
and c ∈ {1, . . . , k} \ F . Similarly as in the case 1 we can observe that there are at
most d − 2 edges incident to y and coloured with c and y has at least one pendant
vertex w in T ′ such that ω(yw) 6= c. We colour yx with c. If σω′(z) 6= σω′(y), then
we are done. Otherwise, we also recolour the edge yw, we put ω′(yw) := c. Finally,
we obtain a neighbour sum distinguishing d-relaxed k-edge colouring ω′.
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3 Complete graphs

In [3], it was proved that complete graphs verify the 1-2-3 Conjecture. More precisely,
we have χe∑(Kn) = 3 for n ≥ 3. Flandrin et al. [5] determined the neighbour sum
distinguishing index of complete graphs:

Proposition 6. [5] For every n ≥ 3

χ′∑(Kn) =

{
n; if n is odd

n+ 1; if n is even
.

We now consider the neighbour sum distinguishing d-relaxed edge colouring of
complete graphs for several cases when 1 < d < ∆(G).

Theorem 7. Let n ≥ 4 and d ∈ {d(n− 1)/2e, . . . , n− 1} be two integers. We have
χ′d∑(Kn) ≤ 4.

Proof. We prove the result of the theorem for d = d(n− 1)/2e, since having a higher
value of d only gives more leeway. We will prove that there is a neighbour sum
distinguishing d-relaxed 4-edge colouring of Kn.We use an inductive construction to
get this colouring. The first case is K4, and is depicted in Figure 1.

1

1

31

2

4

5

4

6

9

Figure 1: A neighbour sum distinguishing 2-relaxed 4-edge colouring for K4.

Assume now that Kn has a neighbour sum distinguishing d-relaxed 4-edge colour-
ing.We construct such a colouring of Kn+1. Let us call x the vertex we add to Kn.

First, assume that n is even. We order all the vertices of Kn by increasing colours.
The first n/2 vertices of Kn (those with the smaller colours) are linked to x with
an edge coloured with 3. The other vertices are linked to x with an edge coloured
with 4.

Now, assume that n is odd. We order all the vertices of Kn by increasing colours.
The first dn/2e vertices of Kn (those with the smaller colours) are linked to x with
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an edge coloured with 1. The other vertices are linked to x with an edge coloured
with 2.

Those two constructions are depicted for K5 and K6 in Figure 2.

3
3

4

4

8

7

10

13

14

1

1

1

2

2

9

8

11

15

167

Figure 2: Neighbour sum distinguishing d-relaxed 4-edge colourings for K5 and K6

obtained by using our construction (for K5, we have d = 2; for K6, we have d = 3).

First, note that by alternating between those two constructions, the edge colour-
ing will always be d-relaxed, since a vertex will gain an edge coloured with a certain
colour once every two steps, and the construction starts from an even n.

Now, we need to verify that the colouring is neighbour sum distinguishing. The
two following properties hold:

1. If n is even, then the highest colour is 2 + 3n−2
2

+ 4n−2
2

and the smallest colour
is n

2
+ 2n−2

2
.

2. If n is odd, then the highest colour is 3n−1
2

+ 4n−1
2

and the smallest colour is
3 + n−1

2
+ 2n−3

2
.

Indeed, when constructing the new colouring, if n is even then we add the vertex x
with colour 3n/2 + 4n/2 which is the new highest colour in the graph, and we add 3
to the value of the smallest colour; and if n is odd then we add the vertex x with
colour (n+ 1)/2 + 2(n− 1)/2 which is the new smallest colour in the graph, and we
add 2 to the value of the highest colour.

Those two properties remaining true during our construction, the vertex x that we
add is always distinguished from all the vertices that were already in the graph. Fur-
thermore, the vertices that were in the graph are still neighbour sum distinguished,
since we added the smallest value to the smallest colours. Thus, two vertices that had
different colours cannot have the same colour in the new colouring, which concludes
the proof.

However, we also prove that this bound of 4 is not necessarily tight:
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Observation 8. For n ∈ {3, . . . , 7} and d = d(n− 1)/2e, we have χ′d∑(Kn) = 3.

Proof. First, note that a d-relaxed 2-edge colouring would not give us enough possible
labels to be neighbour sum distinguishing, so we have χ′d∑(Kn) ≥ 3. Now, to prove the
statement, we construct a neighbour sum distinguishing d-relaxed 3-edge colouring
of K3, . . . , K7. This is shown in Figure 3 (the caption indicates how to read the
constructions).

4

3

5

n = 3, d = 1

4

5

7

6

n = 4, d = 2

6

7

8

9

10

n = 5, d = 2

7

89

11

12 13

n = 6, d = 3

9

10
11

12

13

14
15

n = 7, d = 3

Figure 3: A neighbour sum distinguishing d-relaxed 3-edge colouring of K3, . . . , K7.
Dashed lines indicate that the edges are coloured with 1, normal lines indicate that
the edges are coloured with 2, and thick lines indicate that the edges are coloured
with 3.

However, note that the constructions shown in Figure 3 were obtained by hand,
and there does not seem to be a simple way to construct a neighbour sum distin-
guishing d-relaxed 3-edge colouring of Kn+1 from the colouring of Kn. Thus, the
exact value of χ′d∑(Kn) remains open for n ≥ 8 and d ∈ {d(n− 1)/2e, . . . , n− 1}.
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We now compute the exact value of the parameter for complete graphs when
d = 2.

Theorem 9. Let n ≥ 4. We have χ′2∑(Kn) = dn−1
2
e + 1 if n 6= 3 mod 4 and

χ′2∑(Kn) = dn−1
2
e+ 2 otherwise.

Proof. We first show that for all n ≥ 4, there exist 2-relaxed distinguishing colourings
having this number of colours. There are four cases according to n mod 4, that all
share a common basis that we present now. We denote and order the vertices of
Kn by {x−1, . . . , x−dn/2e, x1, . . . , xbn/2c}. Given a vertex xi of Kn, the vertex xi + 1
denotes its successor in the above ordering. In addition, we will consider this ordering
in a cyclic way, i.e. x−dn/2e + 1 = x1 and xbn/2c + 1 = x−1.

The following algorithm labels all the edges of Kn to provide a 2-relaxed colouring
(but not distinguishing yet):

1. Label the edge x−dn/2e − k, x1 + k with colour 1 for all k ∈ {0, . . . , bn/2c − 1}.

2. Label the edge x−dn/2e − k, x2 + k with colour 1 for all k ∈ {0, . . . , dn/2e − 2}.

3. For each edge xixj coloured 1, label the edge xi + c− 1, xj + c− 1 with colour
c for all c ∈ {2, . . . , bn/2c}.

4. If n is odd, label the edge xbn/2c − k, x−1 + k with colour dn/2e for all k ∈
{0, . . . , bn/2c − 1}.

Figure 4 depicts the edges coloured 1 after steps 1 and 2 are done. Two cases are
given, K8 and K9. Figure 5 illustrates the edges coloured 2 after execution of step
3. They correspond to a rotation of the edges coloured 1. For the colour dn/2e, it
is concerned by step 3 when n is even and step 4 when n is odd. In the latter case,
only the edges of step 1 are rotated, as depicted by Figure 6.

First note that the algorithm above labels exactly n(n − 1)/2 edges, i.e. the
number of edges of Kn. Indeed, the first three steps label (bn/2c + dn/2e − 1) ×
(bn/2c − 1) edges, which equals n(n − 1)/2 if n is even and (n − 1)2/2 if n is odd.
In the latter case, the missing edges are given by step 4 that labels (n− 1)/2 edges.

We now prove that no edge is labeled twice. For that purpose, imagine the
vertices of Kn as the vertices of a regular n-gon and edges are straight segments, as
depicted by the figures above. Thus, all the edges coloured 1 by step 1 are parallel to
x−dn/2e, x1. There is no edge coloured twice according to the restriction given on k.
For the same reason, all the edges coloured 1 by step 2 are parallel to x−dn/2e, x2 and
pairwise distinct. Since the two directions x−dn/2e, x1 and x−dn/2e, x2 are not parallel,
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x1
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x−2

x−3

x−4
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Figure 4: Edges of K8 and K9 labeled 1 after steps 1 and 2.
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Figure 5: Edges of K8 and K9 labeled 2 after step 3.
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x−2
x−3

x−4

x−5

Figure 6: Edges of K8 and K9 labeled dn/2e after step 3 or step 4.

all the edges coloured by steps 1 and 2 are distinct. Figure 4 illustrates this property.
For steps 3 and 4, each edge coloured with c > 1 is obtained by rotating the edges
of colour 1 (see Figure 5 and 6). Consequently, all the edges of a given colour c
and chosen by the algorithm are pairwise distinct. In addition, edges of colour c are
parallel to xc− 1, xc and xc− 1, xc + 1. Since c ≤ bn/2c, one can remark that on the
n-gon, all the directions xc− 1, xc and xc− 1, xc + 1 are pairwise distinct. Thus, two
edges of different colours necessarily have different directions. This ensures that the
above algorithm labels all the edges exactly once.

Finally, each vertex is incident to at most twice the same colour. This is true for
colour 1 as each vertex is concerned at most once by step 1 and at most once by step
2. Consequently, this is also true for the other colours, as step 3 (and step 4 when n
is odd) consist in a rotation of the edges labeled 1.

If the above algorithm provides a 2-relaxed edge colouring, it is not distinguishing
as the same sum may appear on two vertices. More precisely, we can compute the
sum on each vertex. We define Σ2 as the quantity

Σ2 = 2×
dn/2e∑
k=1

k

One can remark that after steps 1 and 2, each vertex xi with |i| 6= 1 is incident to two
edges with label 1, and vertices x1 and x−1 are incident to exactly one edge with label
1 (see Figure 4). Since step 3 consists in ”rotating” the edges labeled with colour
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1, we have that each vertex xi is incident twice to every colour c ∈ {1, . . . , bn/2c}
for c 6= |i| and once to colour |i|. When n is odd, step 4 ensures that each vertex is
incident to exactly one edge with colour dn/2e, except x−dn/2e that is not incident to
this colour (see Figure 6). Consequently, the above algorithm yields for each vertex
xi of Kn:

σ(xi) =

{
Σ2 − |i| for each vertex xi of Kn when n is even

Σ2 − |i| − dn/2e for each vertex xi of Kn when n is odd

In other words, the edge colouring is not distinguishing because vertices xi and
x−i have the same sum. We will now break the ties by replacing some edges of colour
1 with an additional colour. Four cases are considered:

Case n = 0 mod 4 : recolour the edges x−n/2 − k, x1 + k with colour n/2 + 1 for
all k ∈ {0, . . . , n/4 − 1}. Hence, these edges form a perfect matching of Kn/2. Let
Vchange be the set of vertices of Kn incident to this new colour. We have Vchange =
{x−n/4−1, . . . , x−n/2, x1, . . . , xn/4}. Since each vertex of Vchange is incident to exactly
one recoloured edge and the colour n/2 + 1 has not been used yet, it remains a
2-relaxed colouring. In addition, the new values of σ are the following:

σ(xi) =

{
Σ2 − |i|+ n/2 if xi is in Vchange

Σ2 − |i| otherwise

Since for all i in {1, . . . , n/2}, exactly one vertex among {xi, x−i} is in Vchange, all the
sums are now different and cover all the values of the interval [Σ2−n/2,Σ2−1+n/2].

Case n = 2 mod 4 : recolour the edges x−n/2 − k, x2 + k with colour n/2 + 1 for
all k ∈ {0, . . . , bn/4c − 1}. Recolour also the edge x−n/2, x1 with the same colour.
Hence the two edges of colour 1 incident to x−n/2 have been recoloured, so that
σ(x−n/2) = Σ2−n/2−2 + 2(n/2 + 1) = Σ2 +n/2. For the rest, the set Vchange can be
defined as in the previous case, and it has the same properties, i.e. half the vertices
have their sum changed. Consequently:

σ(xi) =


Σ2 − |i|+ n/2 if xi is in Vchange and xi 6= x−n/2

Σ2 + n/2 if xi = x−n/2

Σ2 − |i| otherwise

and the values σ(xi) cover [Σ2 − n/2,Σ2 − 1] ∪ [Σ2 + 1,Σ2 + n/2], i.e. the labeling
is distinguishing.

Case n = 1 mod 4 : recolour the edges x−1 − k, x−2 + k (initially coloured 1) with
colour bn/2c+ 1 for all k ∈ {0, . . . , bn/4c − 1}. Since n is odd, the colour bn/2c+ 1
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used to replace the colour 1 is already used in step 4 of the algorithm. However,
this colouring remains 2-relaxed as in step 4, each vertex is incident to at most one
vertex of this colour. After this recolouring, by defining Vchange as previously:

σ(xi) =

{
Σ2 − |i| − 1 if xi is in Vchange

Σ2 − |i| − dn/2e otherwise

One can easily check that it covers all the n values in [Σ2 − n− 1,Σ2 − 2].

Case n = 3 mod 4 : recolour the edges xbn/2c−k, x−2 +k (initially coloured 1) with
colour bn/2c+ 2 for all k ∈ {0, . . . , bn/4c− 1}. Recolour also the edge x−2, x−1 with
the same colour. Unlike the previous case, we here add a new colour instead of using
the colour of step 4. Consequently, the colouring remains 2-relaxed. One can also
easily check that it is distinguishing since half the vertices have their sum changed
(and exactly one in each pair (xi, x−i)).

To sum up, the above algorithm uses bn/2c + 1 colours when n is even, dn/2e
colours when n = 1 mod 4, and dn/2e + 1 colours when n = 3 mod 4. This corre-
sponds to the values given in the statement of the theorem.

We now prove that these values are lower bounds. When n is even, imagine there
exists a 2-relaxed distinguishing colouring with bn/2c colours. In that case, since the
degree of each vertex is (n− 1), there is only one colour in {1, . . . , bn/2c} missing in
the incident edges of any vertex. Thus, there will be two vertices not distinguished.
When n = 1 mod 4, this argument remains true as there is no 2-relaxed colouring
having at most bn/2c colours. When n = 3 mod 4, it is less obvious to show that
dn/2e colours are not sufficient. By way of contradiction, imagine that there exists a
2-relaxed distinguishing colouring with dn/2e colours. Since the degree of each vertex
is (n−1), there are exactly two colours in {1, . . . , dn/2e}missing in the incident edges
of any vertex (possibly twice the same colour). Then the value σ(xi) of any vertex
xi ranges in [Σ2 − 2dn/2e,Σ2 − 2] = [Σ2 − (n+ 1),Σ2 − 2]. As this interval is of size
n, for each value s in [Σ2− (n+ 1),Σ2− 2], there exists xi such that σ(xi) = s. Now
consider the quantity

Q =
∑
xi∈V

σ(xi)

The above remark says it satisfies:

Q =
n+1∑
i=2

(Σ2 − i) = nΣ2 −
(n+ 1)(n+ 2)

2
− 1
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Since Σ2 is even and n = 3 mod 4, it ensures that Q is odd.
Now consider the values σ(xi) and for all i, let ci and c′i be the two values in

{1, . . . , dn/2e} such that σ(xi) = Σ2− ci− c′i. For each value s in {1, . . . , dn/2e}, let
Gs be the subgraph of Kn induced by the edges of colour s. Since the colouring is
2-relaxed, Gs has maximum degree 2. Hence there is an even number of vertices with
degree 1. By translating this property in our original context, a vertex xi of degree
2 in Gs satisfies ci 6= s and c′i 6= s, a vertex of degree 0 in Gs satisfies ci = c′i = s,
and a vertex of degree 1 has either ci or c′i equal to s (but not both). Consequently,
there is an even total number of ci and c′i (added together) of value s. We denote
this number val(s). We now rewrite Q as follows:

Q =
∑
xi∈V

σ(xi) =
∑
xi∈V

(Σ2 − ci − c′i) = nΣ2 −
∑
xi∈V

(ci + c′i) = nΣ2 −
dn/2e∑
s=1

val(s)

Since Σ2 is even, the above remark ensures that Q is even, a contradiction.

Table 1 summarizes all the known results about the value of χ′d∑(Kn).

Value of d Value of χ′d∑(Kn)

1
n if n is odd

n+ 1 if n is even

2
d(n− 1)/2e+ 1 if n 6= 3 mod 4
d(n− 1)/2e+ 2 if n = 3 mod 4

2 < d < d(n− 1)/2e open

d(n− 1)/2e < d ≤ n− 1
3 if n ∈ {3, ..., 7}
≤ 4 if n > 7

Table 1: Values of χ′d∑(Kn)

4 Subcubic graphs

Karoński et al. in [8] proved that every subcubic graph with at least three vertices
admits a neighbour sum distinguishing 3-relaxed 3-edge colouring. On the other
hand the best known upper bound for the neighbour sum distinguishing index of

14



subcubic graphs was proved by Huo et al. [6] and is equal to 6 (i.e. every subcubic
graph of order at least three has a neighbour sum distinguishing 1-relaxed 6-edge
colouring). In this section we prove that every connected subcubic graph with at
least three vertices has a neighbour sum distinguishing 2-relaxed 4-edge colouring.

In the proof of this result, we need the following proposition observed by Flandrin
et al. in [5].

Proposition 10. [5] χ′∑(C5) = 5, χ′∑(Cm) = 3 if m = 0 mod 3 and χ′∑(Cm) = 4,
otherwise.

Some proofs in this section are based on the following theorem of Alon [1].

Theorem 11 (Combinatorial Nullstellensatz [1]). Let F be an arbitrary field, and let
P = P (x1, . . . , xn) be a polynomial in F[x1, . . . , xn]. Suppose the degree deg(P ) of P
equals

∑n
i=1 ki, where each ki is a nonnegative integer, and suppose the coefficient of

xk11 · · ·xknn in P is nonzero. Then if S1, . . . , Sn are subsets of F with |Si| > ki, there
are s1 ∈ S1, . . . , sn ∈ Sn so that P (s1, . . . , sn) 6= 0.

The main result of this section is that all connected subcubic graphs have a
neighbour sum distinguishing 2-relaxed 4-edge colouring (Corollary ). To prove this
result, we prove by induction a stronger statement that is true for any subcubic
graph that is neither K2 nor C5.

Theorem 12. Let G be a connected subcubic graph such that G /∈ {K2, C5}. There
is a neighbour sum distinguishing 2-relaxed 4-edge colouring of G such that all the
vertices of degree 2 have their two adjacent edges of different colours.

In order to prove this result, we need a first result that allows to simplify graphs
having a pending C5 (i.e. an induced C5 connected to the rest of the graph by only
one vertex).

Lemma 13. Let G be a subcubic graph. Assume there exists in G an induced C5,
C = {u0, u1, u2, u3, u4}, such that only one vertex, u0, is connected to the rest of
G. Let G′ = G \ {u1, u2, u3, u4}. If G′ satisfies Theorem 12 then G also satisfies
Theorem 12.

Proof. Let ω be a neighbour sum distinguishing 2-relaxed 4-edge colouring of G′ such
that all the vertices of degree 2 have their two adjacent edges of different colours.

Since G is subcubic, u0 has degree 1 in G′. Let v be its neighbour in G′ and c0 the
colour of the edge u0v. Let c1 ∈ {1, 2, 3, 4} such that c1 6= c0 and c1 + 2c0 6= σω(v).
Let c3 ∈ {1, 2, 3, 4} such that c3 6= c0, c1.
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Then we can extend the colouring ω by giving colour c0 to edges u4u0 and u1u2,
colour c1 to edges u0u1 and u3u4 and colour c2 to edge u2u3. Then all the adjacent
vertices of C are distinguished as well as u0 and v. Moreover, vertices u1 to u4 are
adjacent to edges of different colours, hence this colouring satisfies the conditions of
Theorem 12.
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Figure 7: A neighbour sum distinguishing 2-relaxed 4-edge colouring for small graphs
satisfying Theorem 12.

We are now ready to present the proof of Theorem 12.

Proof of Theorem 12. We prove Theorem 12 by induction on the number of edges
of G. Figure 7a and Figure 7b show that the result is true for all connected graphs
having three vertices. Now consider a connected subcubic graph G with at least four
vertices and that is not C5. If G is the graph of Figure 7c, then the result is true.
Otherwise, from Lemma 13, one can assume that G has no pending C5. The proof
is now organized with four cases, according to the girth and the minimum degree ofG.

Case 1. δ(G) = 1
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Let u be a vertex of degree 1. Since G is connected, has at least four vertices and
no pending C5, G−u satisfies the assumptions of the theorem. Hence the graph G−u
has a colouring ω that satisfies the theorem. We can extend ω to G as follows. Let v
be the neighbour of u. If v has degree 2 in G, then we put to the edge uv a colour dif-
ferent from the colour already adjacent to v and such that v is distinguished from its
other neighbour. If v has degree 3 in G, let v1 and v2 be the neighbours of v in G−u.
Then there are at most two forbidden colours for ω(uv) to distinguish v from v1 and
v2. Thus there are two remaining possible colours for uv (since v has already two
different colours in its neighbourhood). In both cases, we can extend the colouring ω.

Case 2. G has a triangle.

Subcase 2.1. G has a vertex of degree 2 in a triangle
Let u be such a vertex and v, w be its (adjacent) neighbours. Let G′ = G − u.

Figure 7d shows that the result is true if G′ is a C5. Since G has at least four
vertices, G′ is not K2. By induction G′ satisfies the theorem so has a 2-relaxed
4-edge colouring ω that satisfies the theorem.

Since G has at least four vertices, we can assume that w has degree 3 and let w1

be its other neighbour. If v has degree 2 in G, then the colour of uv must be different
from the colour of vw and u must be distinguished from w, so there are at most two
forbidden colours for uv. If v has degree 3 in G, then v must be distinguished from
its neighbour in G′ and u must be distinguished from w, so again there are at most
two forbidden colours for uv. Let S1 be the set of colours that are not forbidden
for uv. Similarly, there are at most two forbidden colours for uw. Let S2 be the
set of colours that are not forbidden for uw. Thus, if we colour uv and uw with
colours from S1 and S2 then we obtain a colouring that distinguishes vertices of G′,
distinguishes u from w, u from v, and guarantees that v is adjacent to edges coloured
differently. Let x1, x2 be colours attributed to edges uv, uw, respectively. To satisfy
all conditions of the theorem for colours x1, x2 it must verify:

• x1 6= x2, since the vertex u must be adjacent to edges coloured differently;

• x1 + α 6= x2 + ω(ww1) (where α is a colour of the edge vv1, v1 ∈ N(v) \ {u,w}
if v1 exists and α = 0 otherwise), since v and w must be distinguished.

We construct a polynomial

P (x1, x2) = (x1 − x2)(x1 + α− x2 − ω(ww1)).

The coefficient of the monomial x1x2 is equal to −2, so is non-zero. Hence, by The-
orem 11, there are x1 ∈ S1, x2 ∈ S2 such that P (x1, x2) 6= 0, since |S1| > 1, |S2| > 1.
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We put ω(uv) = x1, ω(uw) = x2, and the resulting colouring satisfies all the assump-
tions of the theorem.

Subcase 2.2. All the vertices that are in a triangle have degree 3
In this case, we can assume that there exists a vertex u such that there is exactly

one edge in the graph induced by its neighbourhood. Indeed, take a vertex u in a
triangle. Figure 1 shows that the result is true if G is K4. Thus we can assume that
G is not K4, which means that there are at most two edges in G[N(u)]. Suppose
there are exactly two edges, say vw and wy. Vertices v and y are in triangles so they
must have degree 3. Consider now v instead of u. The third neighbour of v, says v1

is not y and thus is not adjacent to u and also not to w whose neighbours are v, u
and y.

Let u be such a vertex, v1, v2 and v3 its neighbours with v2 and v3 adjacent. Let
w2 and w3 be the other neighbours of v2 and v3 (we potentially have w2 = w3).

Consider G′ = G − u. If G′ is connected, it cannot be K2. If it is C5 then G
is isomorphic to the graph of Figure 7e and the theorem is satisfied. If G′ is not
connected, it must have two components, say G1, containing v1 and G2, containing
v2 and v3. We can assume that the component G1 is not isomorophic to K2 (there
would be a vertex of degree 1) nor C5 (it would be a pendant C5). Vertices v2 and
v3 have degree 3 in G so G2 is not isomorphic to K2. If G2 is isomorphic to C5 then
one can replace u by u2 and then G− u is connected.

Thus, we can assume that all the connected components of G′ are distinct from
K2 and C5 and, by induction, there exists a colouring ω of G′ that satisfies the
theorem (we coulour independently the components if G′ is not connected). We now
extend the colouring ω by colouring the three edges adjacent to u.

There are (at least) two possible colours for uv1 to distinguish v1 from its two
other neighbours, if v1 has degree 3, or, if v1 has degree 2, to distinguish v1 from its
neighbour and ensure that v1 is adjacent to two distinct colours.

Furthermore, v2 must be distinguished from w2 and v3 must be distinguished
from w3, so there at least three possible colours for uv2 and three possible colours
for uv3 to ensure that. Let S1, S2, S3 be sets of possible colours for uv1, uv2, uv3,
respectively, so |S2| = |S3| = 3 and |S1| = 2. If we colour uv1, uv2, uv3 with colours
from S1, S2, S3, then all the vertices of N(u) have at least two distinct colours and
are distinguished with their neighbours outside N [u].

Let denote x1, x2, x3 be colours attributed to edges uv1, uv3, uv3, respectively. To
distinguish u from its neighbours and make sure that u is adjacent to edges coloured
differently for colours x1, x2, x3, it must hold:

• x2 6= x3 or x1 6= x2 or x1 6= x3, since the colouring must be 2-relaxed;
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• x2 + ω(v2w2) 6= x3 + ω(v3w3), since v2 and v3 must be distinguished;

• x1 + x3 6= ω(v2w2) + ω(v2v3), x1 + x2 6= ω(v3w3) + ω(v2v3), x2 + x3 6= σω(v1),
since u must be distinguished from its neighbours.

We construct a polynomial

P (x1, x2, x3) = (x2 − x3)(x2 − x3 + ω(v2w2)− ω(v3w3))(x1 + x3 − ω(v2w2)− ω(v2v3))

(x1 + x2 − ω(v3w3)− ω(v2v3))(x2 + x3 − σω(v1)).

Consider the coefficient of the monomial x1x
2
2x

2
3, observe that this coefficient in P is

the same as in the following polynomial:

P (x1, x2, x3) = (x2 − x3)(x2 − x3)(x1 + x3)(x1 + x2)(x2 + x3).

The coefficient of the monomial x1x
2
2x

2
3 is non-zero (is equal to −2). Since |S1| >

1, |S2| > 2, |S3| > 2, Theorem 11 implies that there are x1 ∈ S1, x2 ∈ S2, x3 ∈ S3

such that P (x1, x2, x3, x4) 6= 0. Thus we can extend ω to G by assigning ω(uvi) = xi
for i = 1, 2, 3, which proves the theorem.

Case 3. G has a C4

Let u1, u2, u3, u4 be the vertices of a 4-cycle C and let G′ be obtained from G by
removing the four edges of C (but not the vertices).

We can assume that G′ has no component isomorphic to K2 (otherwise there
would be a vertex of degree 1 or a triangle in G). Furthermore, the only vertices
that have changed their neighbourhood from G to G′ are the vertices ui, that have
either degree 1 or degree 0 in G′. Since G has no component isomorphic to C5, it
is also the case for G′ and we can apply induction. Thus, there is a colouring ω of
G′ that satisfies the two conditions of the theorem. We now extend ω by colouring
the four edges of the cycle to obtain a neighbour sum distinguishing 2-relaxed edge
colouring of G with the vertices of degree 2 adjacent to different colours.

For i ∈ {1, 2, 3, 4}, let xi be the colour that will be assigned to uiui+1 (indices are
taken modulo 4). If ui has a neighbour, let vi be this neighbour, ci = ω(uivi) and
αi = σω(vi)− ci. Otherwise, let ci = 0 = αi = 0.

If for each i ∈ {1, 2, 3, 4} the following conditions are satisfied, then putting the
colour xi to uiui+1 will extend ω to a colouring satifying the theorem (indices are
again taken modulo 4):

• xi−1 + ci 6= xi+1 + ci+1, to distinguish ui and ui+1;
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• xi + xi−1 6= αi, to distinguish ui and vi (if vi exists, otherwise we keep the
condition for simplicity reasons);

• xi 6= xi−1, to have at least two colours adjacent to ui.

We construct a polynomial

P (x1, x2, x3, x4) = Π4
i=1 ((xi−1 − xi+1 + ci − ci+1)(xi + xi−1 − αi)(xi − xi−1)) .

Consider the coefficient of the monomial x3
1x

3
2x

3
3x

3
4, observe that this coeeficient

in P is the same as in the following polynomial:

P ′(x1, x2, x3, x4) = Π4
i=1

(
(xi−1 − xi+1)(x2

i − x2
i−1)
)
.

The coefficient of the monomial x3
1x

3
2x

3
3x

3
4 is non-zero (is equal to 8). Since there

are initially four possible values for each xi, Theorem 11 implies that there are
xi ∈ {1, 2, 3, 4} for i = 1, 2, 3, 4 such that P (x1, x2, x3, x4) 6= 0. Thus we can extend
ω to G by assigning ω(uiui+1) = xi for i ∈ {1, ..., 4}, which proves the theorem.

Case 4. G has girth at least 5. We consider two subcases according to whether
the graph is cubic or not.

Subcase 4.1. δ(G) = 2
By Proposition 10, the theorem is true for all cycles except C5. Thus we may

assume that G has a vertex of degree 3. Therefore, since G is connected, one can
find a vertex of degree 2, say u, which has a neighbour of degree 3. Let v, w be
the neighbours of u such that deg(w) = 3. Let w1 and w2 be the neighbours of w
different from u.

Since G has girth at least 5, the vertices v and w are not adjacent. This is also
the case for the vertices {v, w1, w2} that form an independent set. Now observe that
each component of G′ = G \ {u,w} admits, by induction hypothesis, a colouring
that satisfy the theorem. Indeed, since δ(G) > 1 and there is no pending C5, there
is no component isomorphic to K2 or C5 in G′, except if the graph is of the form of
Figure 8. In that case, it suffices to consider y as the new vertex u of degree 2, and
v its neighbour of degree 3.

Let ω be such a colouring of G′.
The vertex v must be distinguished from its neighbours in G′. If v has two

neighbours, then there are potentially two forbidden colours for vu. Thus there are
two remaining possible colours for uv, since v has already two different colours in its
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Figure 8: Subcase 4.1: if G is of this form, then consider G′ as G \ {y, v}.

neighbourhood. If v has exactly one neighbour in G′, then v must be distinguished
from its neighbour and additionally the colour of uv must be different from the
colour of the other edge incident to v. Thus again we have at most two forbidden
colours. Let S1 be a set colours that are not forbidden for uv. Vertices w1 and
w2 must be distinguished from their neighbours in G′ and if they have degree two
in G, then they must be adjacent to edges coloured differently. Thus again there
are potentially two forbidden colours for ww1 and ww2. Let S2 and S3 be the sets
of colours that are not forbidden for w1w and w2w, respectively. The vertex u
must be distinguished from v, so there is at most one forbidden colour for wu. Let
S4 be a set colours that are not forbidden for uw. Thus |S1| = |S2| = |S3| = 2
and |S4| = 3. Summarize our reasoning, if for each edge uv, w1w,w2w, uw we choose
colours from S1, S2, S3, S4, respectively, then we obtain a colouring that distinguishes
all vertices of G′, distinguishes u from v and furthermore guarantees that w1 and
w2 are adjacent to edges coloured differently. To obtain a colouring that satisfies all
the conditions of the theorem we need to add some additional restrictions on colours
that we choose for uv, w1w,w2w and uw. Let x1, x2, x3, x4 be the colours attributed
to edges uv, w1w,w2w, uw, respectively. Thus for colours x1, x2, x3, x4 it must hold:

• x2 + x3 6= x1, since u and w must be distinguished;

• x3 + x4 6= σ1 (where σ1 is the colour of w1 in G′), since w and w1 must be
distinguished;

• x2 + x4 6= σ2 (where σ2 is the colour of w2 in G′), since w and w2 must be
distinguished;

• x1 6= x4, since u must be adjacent to edges coloured differently;

• x3 6= x4 or x3 6= x2 or x2 6= x4, since w must be adjacent to edges coloured
differently.

We construct a polynomial

P (x1, x2, x3, x4) = (x2 + x3 − x1)(x3 + x4 − σ1)(x2 + x4 − σ2)(x1 − x4)(x3 − x4).
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Observe that if there are xi ∈ Si (i ∈ {1, 2, 3, 4}) such that P (x1, x2, x3, x4) 6= 0,
then we put ω(uv) = x1, ω(w1w) = x2, ω(w2w) = x3, ω(uw) = x4, and the result-
ing colouring satisfies all the conditions of the theorem. To prove that there are
xi ∈ Si (i ∈ {1, 2, 3, 4}) such that P (x1, x2, x3, x4) 6= 0, we use the Combinatorial
Nullstellensatz. The coefficient of the monomial x1x2x3x

2
4 is equal to −1, so is non-

zero. Since |S1| > 1, |S2| > 1, |S3| > 1, |S4| > 2, Theorem 11 implies that there are
xi ∈ Si (i ∈ {1, 2, 3, 4}) such that P (x1, x2, x3, x4) 6= 0. Thus there is a colouring
that satisfy all conditions of the theorem.

Subcase 4.2. δ(G) = 3
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Figure 9: A neighbour sum distinguishing 2-relaxed 4-edge colouring for Petersen
graph, appearing in Case 3 of Theorem 12.

Let C be a cycle of smallest size and u0, . . . , u`−1 its vertices. For each vertex ui
of the cycle, ui has a neighbour vi outside C (since C is minimal).

We remove all the vertices ui from G to obtain a graph G′.
If G′ = C5, then G is isomorphic to the Petersen graph and satisfies the theorem

according to Figure 9. Thus we may assume that G is not isomorphic to the graph
in Figure 9 and then G′ has no component isomorphic to C5. Since C is of smallest
size and G is cubic, there is also no isolated K2 in G′. Thus by induction, there is a
colouring ω of G′ that is distinguishing, 2-relaxed, and assigns two distinct colours
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to the edges incident with vertices of degree 2.
Since C has size at least 5 and by minimality of C, all the vertices vi are distinct

(but might be adjacent). For each vertex vi, we denote by σi the sum of the colours
on the two edges adjacent to vi that are already coloured (there are exactly two such
edges). Note that to distinguish ui and vi, the colours of ui−1ui and uiui+1 must not
sum to σi.

In order to keep vi distinguished from its neighbours outside of C, at most two
colours are forbidden for the edge uivi, and thus at least two colours remain possible
for the edge uivi. We denote by Li the list of possible colours for the edge uivi.

Note that if vi is adjacent to another vertex vj, then, since there is no C4, we
have |j − i| > 1 (subscripts are taken modulo `). Furthermore, until either the edge
vjuj or viui is coloured, the lists Li and Lj have size at least three and at least two
if one of the edges is coloured.

Subcase 4.2.1 C has length 5 and there is a pair of adjacent vertices in
{v0, . . . , v4}.
Subcase 4.2.1.1. There is σi 6= 5 for i ∈ {0, . . . , 4}

First we colour edges of the cycle C in such a way that every vertex ui is adjacent
to two differently coloured edges and the pairs (ui, vj) are distinguished for i ∈
{0, . . . , 4}. We claim using Theorem 11 that such a colouring exists. Without loss
of generality we assume that σ1 6= 5. Observe that assumption on σ1 implies that
there is a colour c0 ∈ {1, 2, 3, 4} such that σ1− c0 /∈ {1, 2, 3, 4}. We colour u0u1 with
c0. Thus if we colour u1u2 with any colour from {1, 2, 3, 4}, then the pair (u1, v1) is
distinguished. Since u1 must be adjacent to edges coloured differently, we assume
that S1 = {1, 2, 3, 4} \ {c0} is the set of possible colours for u1u2. Let x1, x2, x3, x4

be the colours attributed to edges u1u2, u2u3, u3u4, u4u0, respectively. Let Si be the
set of colours that are possible for xi, so |S1| = 3 and |Si| = 4 for i ∈ {2, 3, 4}. To
obtain the above described colouring we need that the colours additionally satisfy:

• xi + xi+1 6= σi+1 for i ∈ {1, 2, 3}, since (ui+1, vi+1) must be distinguished;

• xi 6= xi+1 for i ∈ {1, 2, 3}, since ui+1 must be adjacent to edges with different
colours;

• x4 + c0 6= σ0, since (u0, v0) must be distinguished;

• x4 6= c0, since u0 must be adjacent to edges with different colours.

We construct a polynomial

P (x1, x2, x3, x4) = (x1 + x2 − σ2)(x1 − x2)(x2 + x3 − σ3)(x2 − x3)

(x3 + x4 − σ4)(x3 − x4)(x4 + c0 − σ0)(x4 − c0).
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Consider the coefficient of the monomial x2
1x

2
2x

2
3x

2
4, observe that this coefficient in P

is the same as in the following polynomial

P1(x1, x2, x3, x4) = (x2
1 − x2

2)(x2
2 − x3

3)(x2
3 − x2

4)x2
4.

The coefficient of the monomial x2
1x

2
2x

2
3x

2
4 is 1, so since |S1| > 2, |Si| > 3 for

i ∈ {2, 3, 4}, Theorem 11 implies that there are xi ∈ Si (i ∈ {1, 2, 3, 4}) such that
P (x1, x2, x3, x4) 6= 0 and equivalently there is a desired colouring of the edges of
C. Let ci ∈ Si (i ∈ {1, 2, 3, 4}) be colours such that P (c1, c2, c3, c4) 6= 0, we put
ω(u1u2) = c1, ω(u2u3) = c2, ω(u3u4) = c3, ω(u4u0) = c4.

Now we colour the edges uivi for i ∈ {0, . . . , 4}. The colours that we choose
for these edges must distinguish adjacent vertices of C and adjacent vertices of
{v0, . . . , v4}. Let ti = |N(vi) ∩ {v0, v1, v2, v3, v4}| for i ∈ {0, . . . , 4}.

Claim 14. There are two consecutive vertices vi, vi+1 such that ti > ti+1.

Proof. Suppose that there is i such that ti = 2. Since G is not isomorphic to the
graph of Figure 9, there is tj < 2. Thus we find two consecutive vertices vi, vi+1 such
that ti > ti+1. If ti < 2 for i ∈ {0, . . . , 4}, then there are at most two pairs of adjacent
vertices in {v0, . . . , v4} and consequently there is ti = 0. Since in {v0, . . . , v4} there
are two adjacent vertices, there is tj = 1 and this implies that there are two vertices
vi, vi+1 such that ti > ti+1.

Renaming vertices, if it is necessary, assume that t0 > t1. Note that this operation
is possible, even though it has been assumed previously that σ1 6= 5. Indeed, we will
not use anymore this property in the rest of the proof.

Observe that |Li| ≥ 2 + ti for i ∈ {0, . . . , 4}. We choose the colour b0 ∈ L0 for
u0v0 such that |L1 \ {b0 + c4 − c1}| ≥ 2 + t1. Because t0 > t1, we can find such a
colour. We colour u0v0 with b0. Then we modify the list L1, i.e. we delete the colour
b0 + c4 − c1 from the list whenever such a colour is in L1. Now each colour from L1

will distinguish u0 and u1 and still |L1| ≥ 2 + t1. Moreover for every neighbour vi of
v0 in {v1, v2, v3, v4} we delete the colour σ0 + b0 − σi from the list Li. After such a
list modification, every colour in Li will distinguish v0 and vi.

Next we colour u4v4, we choose the colour from L4 that distinguishes u0 and u4.
Because |L4| ≥ 2 we can find the proper colour. Let b4 be such a colour, which
we put on u4v4. We modify the lists of neighbours of v4 in {v0, v1, v2, v3}: if vi
is the neighbour of v4, then we delete the colour σ4 + b4 − σi from Li. Then we
repeat procedures of colouring and list modifications for the edges u3v3, u2v2 and
u1v1. Observe that when we colour u1v1 we do not need to care about the vertex
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u0, because the colour b0 on u0v0 guarantees that every colour in L1 distinguishes
u0 and u1. Each time when we choose colour for the edge uivi the list Li contains
at least two colours, because initially every list Li had at least 2 + ti colours. Thus
eventually we obtain the neighbour sum distinguishing 2-relaxed edge colouring of
G.

Subcase 4.2.1.2 σi = 5 for i ∈ {0, . . . , 4}
By our assumption there is a pair of adjacent vertices in {v0, . . . , v4}. Without loss

of generality, we assume that v0v2 ∈ E(G). Thus |L0| ≥ 3. Recall that |Li| ≥ 2 + ti,
where ti = |N(vi) ∩ {v0, v1, v2, v3, v4}|.

First we colour the edges of C in the following way ω(u0u1) = 1, ω(u1u2) =
3, ω(u2u3) = 4, ω(u3u4) = 3, ω(u4u0) = 1. Such a colouring distinguishes the pairs
(ui, vi) for i ∈ {0, . . . , 4}, furthermore, all vertices of C, except u0, are adjacent to
edges with different colours.

Now we colour edges uivi (i ∈ {1, . . . , 4}) in such a way that we distinguish all
adjacent pairs of C and {v0, . . . , v4}. The vertex u0 must be adjacent to edges with
different colours, so from L0 we delete the colour 1, whenever it is on the list L0.
Thus the edge u0v0 has at least two possible colours.

Consider the pair (u1, u2). If we give u1v1 a colour b1 ≤ 3, then whatever the
colour will be on u2v2, the pair (u1, u2) will be distinguished. Since u1v1 has at least
two possible colours, there is a colour b1 ≤ 3, which we can put on u1v1. After
colouring u1v1 with b1, for every neighbour vi of v1 in {v0, . . . , v4} we delete the
colour σ1 + b1 − σi from Li. After such a modification of Li every colour in Li will
distinguish v1 and vi.

Next, as in the case 3.1.1, we colour the edges u0v0, u4v4, u3v3, u2v2, one by one.
We start with the edge u0v0, we choose the colour from L0 that distinguishes u0 and
u1, because |L0| ≥ 2 we can choose the proper colour. After colouring u0v0 we modify
the lists of neighbours of v0 in {v0, . . . , v4} in such a way that every colour on the list
of the neighbour will distinguishes v0 from its neighbour, i.e. for every neighbour vi
of v0 we delete the colour σ0 + b0− σi (where b0 is the colour of u0v0) from Li. Then
we colour u4v4 in such a way that the vertices u0 and u4 are distinguished, so if b4 is
a colour of u4v4, then b4 ∈ L4 and b4 + 3 6= b0 + 1. We delete the colour σ4 + b4 − σi
from Li for every neighbour vi of v4. We do the same procedure for u3v3 and u2v2.
The colour b1, which w chose for u1v1 provide that every colour on L2 distinguishes
vertices u1 and u2, so if we colour u2v2 we do not take care about the vertex v1.
Since initially every list Li had at least 2 + ti colours, when we colour the edge uivi
the actual list has at least two colour and so we can find a proper colour. Eventually
we obtain the neighbour sum distinguishing 2-relaxed edge colouring of G.
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Subcase 4.2.2 C has length 5 and the set {v0, . . . , v4} is independent or C
has length at least 6.

We first consider that we are not in the case where all the lists Li have size 2,
are the same and all the σi sums to 5. In this case, we first colour some edges with
particular conditions (given in Claim 15) and then extend this partial colouring to a
complete colouring.

We say that a partial edge colouring is good if a vertex that has all its edges
coloured has at least two colours in its neighbourhood and if two adjacent vertices x
and y of degree 3 have their four edges distinct from xy coloured, then those vertices
are distinguished (i.e. the sum in x and y are distinct). Observe that the partial
edge colouring ω of G is good.

Claim 15. There is a partial good colouring that satisfies the following conditions :

• the edges of C that are coloured are u1u2 and u2u3;

• the edges uivi are coloured for 0 ≤ i ≤ 2;

• the pair (u2, v2) is distinguished;

• the pairs (u0, u1) and (u1, u2) are necessarily distinguished whatever will be the
colours on u`−1u0 and u0u1;

• the vertices u1 and u2 are adjacent to edges of different colours.

Proof of Claim 15. Observe that our assumptions that either {v0, . . . , v4} is inde-
pendent when C has length 5 or C has length at least 6 imply that if vi is adjacent
to another vertex vj, then we have |j − i| > 2. Thus if we colour uivi, then Lj does
not change for |i− j| ≤ 2. We first prove the claim is true in the following cases:

(i) There are three consecutive lists Li with 1 or 2 in the first one, 3 in the second
and 1 in the last list.

(ii) There are three consecutive lists Li with 1 or 2 in the first one, 4 in the second
and 1 in the last list.

(iii) There are two consecutive lists Li with 2 in the first one and 4 in the second.

(iv) There are two consecutive lists Li with 1 in the first one and 3 in the second.

(i-ii) There are three consecutive lists Li with 1 or 2 in the first one, 3 (resp. 4) in
the second and 1 in the last list.

Without loss of generality, we assume that 1 ∈ L0 (or 2 ∈ L0), 3 ∈ L1 and 1 ∈ L2.
We assign colour 1 (or 2) to the edge u0v0, colour 3 to the edge u1v1 and 1 to the edge
u2v2. Observe that by our assumption that C has length 5 and the set {v0, . . . , v4}
is independent or C has length at least 6, the vertices v0, v1, v2 are independent, so
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after colouring u0v0, u1v1 and u2v2 we still have a good colouring. Now we choose
for the edges u1u2, u2u3 colours 4, 1 if σ2 6= 5 and 4, 2, otherwise (see Figure 10a and
10b). In this way we make sure that pairs of vertices (u0, u1), (u1, u2) and (u2, v2)
will be distinguished. Indeed, for the last pair, we have ω(u1u2) +ω(u2u3) 6= σ2. For
the pair (u1, u2), the sum in u1 will be at least 8 whereas the sum in u2 is 6 or 7. For
the pair (u0, u1) the sum in u1 is ω(u0u1) + 7 whereas the sum in u0 will be at most
ω(u0u1) + 2 +ω(u`−1u0) which is smaller, since 7 > 2 +ω(u`−1u0). We also have that
the vertices u1 and u2 are adjacent to edges of different colours.

Similarly we can show that if there exist three consecutive lists Li with 1 or 2 in
the first one, 4 in the second and 1 in the last list, then the claim holds (see Figure
10c and 10d).
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Figure 10: Pre-colouring of Claim 15 (i-ii)

(iii) There are two consecutive lists Li with 2 in the first one and 4 in the second.
Without loss of generality, we assume that 2 ∈ L1 and 4 ∈ L2 and we assign

colours 2 to the edge u1v1 and 4 to the edge u2v2.
We now consider the list L0 and choose c0 ∈ L0 such that c0 6= 2 and assign this

colour to u0v0. If possible, we choose c0 > 2.
We first assume that we are not in the case where c0 = 1 and σ2 = 7. Depending

on c0 and the value of σ2, we attribute colours to u1u2 and u2u3 in the following way:

27



σ2 ω(u1u2) ω(u2u3)
c0 > 2 6= 5 1 4
c0 > 2 5 1 3
c0 = 1 6= 7 4 3

We can see that we satisfy all the conditions of Claim 15.
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Figure 11: Pre-colouring of Claim 15 (iii)

Assume now that we are in the case c0 = 1 and σ2 = 7. Then necessarily
L0 = {1, 2}. If 3 ∈ L2, we choose for the edges u0v0, u1v1, u2v2 the colours 1, 2, 3 and
for u1u2 and u2u3 the colour 4 (see Figure 11a). Then as before we satisfy all the
conditions of Claim 15. If 1 ∈ L2, we choose for the edges u0v0, u1v1, u2v2 the colours
1, 2, 1 and for u1u2 and u2u3 the colour 4 and 1 (see Figure 11b). Then as before
we satisfy all the conditions of Claim 15. Hence we can assume that L2 = {2, 4}. If
3 ∈ L1 or 4 ∈ L1 then we have three consecutive lists with 1 in the first one, 3 (or 4)
in the second and 2 in the last list. Then as we show before Claim 15 holds. Hence
we can assume that L1 = {1, 2} and L2 = {2, 4}.

Now, we reverse the role of u1 and u2, assuming that L1 = {2, 4} and L2 = {1, 2},
and also the roles of u0 and u3. We choose for u1v1 colour 4 and for u2v2 colour 1
and we put to u1u2 colour 3 and to u2u3 colour 1 or 2 to have a sum different to
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the new σ2. Then if 1 or 2 belongs to L0 we will satisfy Claim 15 (see Figure 11c).
Thus we can assume that L0 = {3, 4}. But then we are back to the first case by
exchanging the role of 0 and 2. We have now L1 = {2, 4} and L2 = {3, 4} and thus
can find colours to satisfy Claim 15.

Therefore, we have proved that we can satisfy Claim 15 whenever there are two
consecutive lists with a 2 and a 4.

(iv) There are two consecutive lists Li with 1 in the first one and 3 in the second.
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Figure 12: Pre-colouring of Claim 15 (iv)

Assume that 1 ∈ L1 and 3 ∈ L2 and we affect colour 1 to the edge u1v1 and 3 to
the edge u2v2.

Consider the list L0 and choose c0 ∈ L0. If c0 > 2, then we assign colour 2 to
the edge u1u2 and we assign colour 4 to the edge u2u3 whenever σ2 6= 6 and colour
3 otherwise (see Figure 12a). Hence, we satisfy all the conditions of Claim 15.

Thus we may assume that L0 = {1, 2}.
Since Claim 15 is true when there are two consecutive lists the first with 2 and

the second with 4, we may assume that 4 /∈ L1. If 3 ∈ L1, then 1 /∈ L2 and 2 /∈ L2,
since by our previous observation are no three consecutive lists with colours 1, 3, 1 or
1, 3, 2, respectively. Thus the argument 3 ∈ L1 implies that L2 = {3, 4}. In this case,
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we reverse the role of u0 and u2 assuming that L0 = {3, 4} and L2 = {1, 2}. Then
we may assign colours 4, 1, 2 to edges u0v0, u1v1, u2v2 and assign to colours 2, 4 (if
σ0 6= 6) or 3, 4 (otherwise) u1u2, u2u3 (see Figure 12b). Thus again Claim 15 holds.

Now assume that L1 = {1, 2}. Observe that 4 /∈ L2 because, otherwise, there
would be two consecutive lists the first with 2 and the second with 4 (which is
case (iii)). Assume that 1 ∈ L2. If σ2 6= 8, then we assign colours 1, 2, 3 to edges
u0v0, u1v1, u2v2 and colours 4, 4 to edges u1u2, u2u3 (see Figure 12c). If σ2 = 8, then
we assign colours 1, 2, 1 to edges u0v0, u1v1, u2v2 and colours 4, 1 to edges u1u2, u2u3

(see Figure 12d). Hence, we satisfy all the conditions of Claim 15.
We may assume that 1 /∈ L2 and 4 /∈ L2, so L2 = {2, 3}. Then we consider

L3. If 4 ∈ L3 then we have two two consecutive lists the first one with 2 and the
second with 4, so Claim 15 is true. Since |L3| ≥ 2 we have that 1 ∈ L3 or 2 ∈ L3.
Thus we have three consecutive lists with colours 1, 3, 1 or 1, 3, 2 so by our previous
observation Claim 15 is true.

Thus we may assume that there are no two consecutive lists Li with 2 in the first
one and 4 in the second and there are no two consecutive lists Li with 1 in the first
one and 3 in the second. If none of these two cases appear, but there are at least two
different lists, it means that the lists are necessarily alternating {1, 3} with {2, 4}.
But then three consecutive lists Li with 1 in the first one, 3 in the second and 1 in
the last list appear, so we are done.

Thus we can now assume that all the lists have size 2 and are the same, say
Li = {a, b} with a < b. By hypothesis, there exists i with σi 6= 5 and without loss of
generality, we can assume that i = 2. Assume first that a 6= 1. Then we assign the
following colours: u0v0 and u2v2 get b whereas u1v1 gets a, u1u2 gets 1 and u2u3 gets
4 (see Figure 13a). If b 6= 4, we do the reverse: u0v0 and u2v2 get a whereas u1v1

gets b, u1u2 gets 4 and u2u3 gets 1. Finally, if {a, b} = {1, 4}, then u0v0 and u2v2

get 1 whereas u1v1 gets 4, u1u2 gets 3 and u2u3 gets 2. In all these cases, Claim 15
is satisfied.

We now extend the partial colouring of Claim 15 to a neighbour sum distinguish-
ing 2-relaxed colouring in the following way.

We first colour the edge u3v3 with a colour in L3 that is not the colour of ω(u2u3)
and we colour all the other edges uivi with any colour in Li.

Now we colour edge by edge the edges of C from u3u4 to u0u1. To colour uiui+1

we ask for:

• ui and vi to be distinguished, thus ω(uiui+1) + ω(uiui−1) 6= σi
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Figure 13: Pre-colouring of Claim 15

• ui+1 to have their two adjacent edges of different colours: ω(uiui+1) must be
different from ω(ui+1vi+1)

• ui and ui−1 to be distinguished.

To colour the last edge u0u1, we replace the second condition (since u1 already has
two colours) by a condition to distinguish u1 from v1. There are three conditions
giving three forbidden colours, thus at least one colour is always available.

This way, we colour all the edges of the cycle. At the end, all the adjacent
vertices (ui, vi) are distinguished and all the adjacent vertices of the cycle are also
distinguished (since the pairs u0, u1 and u1, u2 are sure to be distinguished by Claim
15). Moreover, there are at most twice the same colour on a vertex. Thus we obtain
a neighbour sum distinguishing 2-relaxed colouring.

We now consider the final case where all the lists Li are the same list {a, b} and
all the σi are equal to 5. Then we colour all the edges uivi with the colour a.

Let r = ` mod 4. We colour the edges of the cycle following the pattern 1342,
except for the last 4 + r edges. For these ones, we use the same pattern but we
double r colours that are not equal to a. For example, if r = 2 and a = 3, we finish
by 113442. This way, all the vertices of the cycle have at least two distinct colours.
All the couples ui, vi are distinguished since there are no consecutive edges of the
cycle that sum to 5. And finally all the pairs ui, ui+1 are also distinguished since all
the edges at distance 2 on the cycle are different, which is enough to distinguish the
edge between them.

Since χ′2∑(C5) = 3, Theorem 12 implies the following corollary.

Corollary 16. If G is a connected subcubic graph with at least three vertices, then
χ′2∑(G) ≤ 4.
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5 Concluding remarks

In the paper we propose a new version of the distinguishing edge colouring of a graph,
in which the monochromatic set of edges induces a subgraph with bounded maximum
degree. If the maximum degree of the monochromatic subgraph is bounded either
by maximum degree of the graph or by 1, then we obtain two well-know versions of
distinguishing edge colourings related with Conjecture 1 or 2, respectively. According
to these equivalences, the following conjecture can be considered as a generalization
of both Conjectures 1 and 2.

Conjecture 17. If G is a connected graph on at least 3 vertices and G 6= C5, then

χ′d∑(G) ≤
⌈

∆(G)
d

⌉
+ 2.

As a support for Conjecture 17 we proved the validity of it for three families
of graphs. In Section 3 we proved that for every value of d, it holds for trees. In
Section 4 we proved that Conjecture 17 is true for complete graphs when d = 2 or
d ≥ d(V (G) − 1)/2e. In Section 4 we proved that Conjecture 17 is also true for
subcubic graphs.
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