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Abstract

We introduce the game influence, a scoring combinatorial game, played on a directed
graph where each vertex is either colored black or white. The two players, Black and White,
play alternately by taking a vertex of their color and all its successors (for Black) or all its
predecessors (for White). The score of each player is the number of vertices he has taken. We
prove that influence is a nonzugzwang game, meaning that no player has interest to pass
at any step of the game, and thus belongs to Milnor’s universe. We study this game in the
particular class of paths where black and white vertices are alternated. We give an almost tight
strategy for both players when there is one path. More precisely, we prove that the first player
always gets a strictly better score than the second one, but that the difference between the scores
is bounded by 5. Finally, we exhibit some graphs for which the initial proportion of vertices of
the color of a player is as small as possible but where this player can get almost all the vertices.

Keywords : two-player games, scoring combinatorial games, games on graphs

1 Introduction
We define the following 2-player game, namely influence, on a directed graph where each vertex
is either colored black or white. The two players, namely Black and White (or simply B and W for
short), play alternately by choosing a vertex v of their own color and:

• if it is Black’s turn, remove v and all the vertices reachable from v through a directed path;

• if it is White’s turn, remove v and all the vertices for which there exists a directed path to v.

The game ends when all the vertices have been removed. When a player has no more vertex of
his own color, he has to wait for his opponent to empty the directed graph. The score of each player
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is the number of vertices he has removed. Each player wants to maximize his score.

Figure 1 shows a starting position for this game. If Black starts, playing u allows to remove four
vertices, i.e. u,w, y, z. Then White ends the game by playing v (removing v and x). Hence Black
wins the game with 4 points (versus 2 points for White). On the contrary, if White starts, he can
remove all the vertices by playing either y or z as a first move (leaving a unique white vertex that
will be removed after his second turn).

u v

w x

y z

Figure 1: A game position where the first player wins

Note that this game always ends as removing a single vertex is allowed.

1.1 Motivation of the game

We consider two arguers, Black and White, whose objective is to win over a given audience on a
number of ideas. 1 Following the rules of Aristotelian rhetoric, we assume that the audience and
the arguers are endowed with a background of common opinions that can be used by the arguers as
premises of their argumentation schemes.

To model the fact that Black and White hold opposite opinions on all subjects, we suppose that
Black has a positive opinion on the set V of ideas, and that White has a positive opinion on the
negation of each idea in V . Moreover, we assume that the set V is divided into two disjoint sets B
and W , representing the ideas that Black and White (respectively) can win through an argument
that uses as premises elements of the common background of opinions.

Each idea is linked to other ideas that can be inferred from it. Correspondingly, once an arguer
has won her audience on one idea, she can use it as premise in a new argumentative scheme aimed
at winning the audience on some other idea that can be inferred from it.

This situation can be represented by a directed graph G = (B ∪W,A) where the set of vertices
represents the set of ideas in V , and an arc (x, y) ∈ A between two ideas x and y represents the
existence of an argument to convince the audience of the veracity of y once x is accepted as a
premise. 2

We further assume that whenever there exists an argument that associates to a premise x a
conclusion y, there exists a “contrapositive” argument that associates the negation of x to the negation
of y. 3

To illustrate, suppose that Black aims at convincing the audience on the following ideas:
1Grabisch et al. [5] recently proposed an extension of the Degroot’s model of influence based on a similar motiva-

tion [2].
2Our representation of an argumentation system should not be confused with the one proposed by Dung [3]. Here,

the oriented arcs represent the existence of an argumentative scheme allowing to pass from one idea to another, while
in Dung’s framework nodes represent ideas (or arguments) and arrows represent attacks between arguments.

3It is straightforward to observe that if the arc from x to y represents a logical implication, the “contrapositive”
argument is precisely the classical contrapositive proposition.

2



u: We must reduce inequality.
v: We must increase the number of officials.
w: We must increase the provision of public goods.
x: We must immediately offer a well-paying job to everyone.
y: We will have to increase tax.
z: Trade needs to be regulated by the government.

Next, suppose that, from the background of common opinion, Black can convince the audience
that ideas u and w are true, while White can convince it that the remaining ideas are false. It follows
that u, w ∈ B while v, x, y, z ∈ W .

This situation is depicted in Figure 1, where black vertices represent the ideas in B, white
vertices the ideas in W , and arrows represent the available argumentation schemes. In particular,
Black cannot use x as a premise in her argumentation, but if she convinces the audience that w is
true, then she can convince it that y is also true. Similarly, White can convince the audience of idea
¬w only after convinving it of ¬y or ¬z.

If Black is the first speaker, she has to pick an idea that she can win by using elements of the
background set of common opinions as premises, e.g. u. Then, she is able to push through the ideas
that can be deduced from u, i.e. w, z and y.

In the second stage of the game, White can argumentate in order to convince the audience that
v is false. By deduction, it will then follow that the audience will also consider x to be false.

It is clear that the audience’s final opinion concerning the ideas in V strongly depends on what
player speaks first.

Another important feature of the example is that, given the background of common opinions,
the audience may be convinced about w ∈ B but against y ∈ W even though (w, y) ∈ A. For
instance, a population of agents may well agree on an increase of public goods (w), and yet disagree
about paying more taxes (y) because, say, this population does not know the tax rate that is needed
for the provision of public goods. Such situation may occur because the audience does not know
the arguments that can be employed by the arguers beforehand. Alternatively, it can be compared
to phenomena such as the doctrinal paradoxes that are common in the literature on judgement
aggregation, see for instance [10].

1.2 Scoring-play combinatorial game theory

According to the definition of the ruleset, our game belongs to the universe of scoring-play combi-
natorial game theory. Roughly speaking, it consists of two-player games with perfect information,
no chance and where the moves are alternated. Points are accumulated during the game, and the
player having the highest score is the winner. This class of games has been briefly introduced in the
1950s by Milnor and Hanner in two papers [6, 12]. Their work has been considered as the source of
Combinatorial Game Theory - where there is no score and the winner is the player making the last
move - that emerges in the following decades (see [14] for a survey book). In parallel, scoring games
have been widely considered in the context of economic game theory but there were actually few
studies pursuing the work of Milnor and Hanner until the 2010s. Recent years have seen renewed
interest for scoring combinatorial games, with attempts to build a general theory as Conway did for
combinatorial games. In particular, the PhD theses of Ettinger [4] and Stewart [15], as well as the
recent results of Larsson, Nowakowski and Santos [7, 8], extend the results of Milnor and Hanner for
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more general classes of scoring games. In addition, new scoring games have been recently considered
on a graph structure (graph grabbing game [11], median graph game [1], graph occupation game
[13], among others, see a larger list in [9]). But such games played on graphs have been solved with
ad hoc techniques, and apart from the existing scoring game framework. One of our objectives is to
study the game influence in correlation with the general theory, and in particular according to the
framework defined by Milnor and Hanner.

1.3 Our results

In the current paper, we obtain some properties of influence. First, we prove that influence is a
nonzugzwang game, that means that no player has interest to pass at any step of the game (Section
3). This result seems very natural but is far from trivial and is very helpful in the following analyses,
since it follows that influence belongs to Milnor’s universe [12].

As the global study of the game in its whole generality seems to be very difficult, we decided to
restrict it to classes of directed graphs with some strong properties of symmetry and low degree. In
particular, we introduced the class of segments formed by paths of alternated black and white vertices,
with all edges directed from black to white vertices. Even in such a restricted framework, this study
remains very complex. Our main result (Theorem 20) claims that for any segment as defined above,
the first player always gets a strictly better score that the second one, and the difference between
two scores is at most 5. In other words, we can produce a nearly optimal strategy, in terms of score,
for each player for influence played on any segment.

We finish by highlighting and quantifying an interesting property of the game influence. In
terms of score, the arrangement of the vertices is more important than the number of vertices of each
color. To illustrate this, we exhibit instances of influence having an arbitrarily low proportion of
black vertices, and where the final proportion of vertices gained by Black is arbitrarily close to 1.

2 Formalizations

2.1 Definitions and notations

By definition, influence clearly belongs to the universe of scoring-play games. It is partizan, as
both players do not always have the same moves because of the two colors. To be consistent with
the recent literature about scoring games [9], we will consider in the rest of the paper the following
definition of the game, where the two players are called Left and Right, and the vertices are labeled
with L and R (instead of Black and White, respectively).

The game influence is played on a directed graph G = (L ∪ R,A) where the vertex set is
partitioned into two sets L and R. The vertex set L ∪ R of G will be often denoted by V (G), and
to avoid ambiguities about the considered directed graph, the sets L, R and A will sometimes be
respectively denoted by L(G), R(G) and A(G).

For any set S ⊆ V (G), GS denotes the directed graph (S,A(G) ∩ S2), and G \ S denotes the
directed graph GV (G)\S.

For any x ∈ V (G), Pred(G, x) denotes the set of vertices that can reach x through a directed
path in G (including x), and Succ(G, x) denotes the set of vertices that are reachable from x through

4



a directed path in G (including x).

The rules of influence are the following. Two players, Left and Right, play alternately by
choosing a vertex of their own label:

• if it is Left’s turn, and x ∈ L is chosen, then remove Succ(G, x);

• if it is Right’s turn, and y ∈ R is chosen, remove Pred(G, y).

The game ends when all the vertices have been removed. The score of each player is the number
of vertices he has removed.

In the resolution of any scoring game, we are interested in the maximum score gained by each
player when both of them play optimally. Such a score will be denoted sLi (G) and sRi (G) with
i ∈ {1, 2}, respectively for Left and Right. The value i indicates if the player starts the game or not.
For example, sL2 (G) corresponds to the maximum score gained by Left when Right starts the game.

By definition of the ruleset, influence belongs to the class of constant-sum games as we have:

sR2 (G) + sL1 (G) = |V (G)| and sL2 (G) + sR1 (G) = |V (G)|.

Remark 1 Note that the scores are defined as the best values reached by each player when consid-
ering all the possible sequences of moves. Therefore, the following recursive characterization can be
also considered to define the scores of the players:

sL1 (G) = sL2 (G) = 0 when |L(G)| = 0.

Otherwise,
sL1 (G) = max

x∈L

{
|Succ(G, x)|+ sL2 (G \ Succ(G, x))

}
.

and
sL2 (G) = min

y∈R

{
sL1 (G \ Pred(G, y))

}
.

�

As defined in the paper of Milnor [12] or more recently in the survey of Larsson et al. [9], a
more natural way to consider the outcome of a scoring game is through the relative score, i.e. the
difference between the scores of Left and Right. As several definitions have been considered in the
literature, we choose to use the most recent one defined in [9]. This difference may have two values,
called Left score and Right score, according to whether Left or Right starts the game.

Definition 2 The Left-score and the Right-score of a game G, respectively denoted by Ls(G) and
Rs(G), are defined as:

Ls(G) = sL1 (G)− sR2 (G),

and
Rs(G) = sL2 (G)− sR1 (G).
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In other words, games with Ls(G) > 0 (resp. Rs(G) > 0) are winning for Left when Left starts
(resp. when Right starts) the game. On the contrary, games having a negative relative score are
winning for Right.

Example 3 Consider the directed graph of Figure 1, where L is the set of black vertices, and R
corresponds to the white ones. One can show that the moves described in the introduction are optimal,
leading to the following equalities:

• sL1 (G) = 4 and sR2 (G) = 2

• sR1 (G) = 6 and sL2 (G) = 0

• Ls(G) = 2 and Rs(G) = −6

Since Ls(G) > 0 and Rs(G) < 0, each player wants to be the first to move in order to win the game.

Remark 4 As for the absolute scores, when L(G) and R(G) are not empty, we have the following
recurrence equations:

Ls(G) = max
x∈L

{
Succ(G, x) +Rs(G \ Succ(G, x))

}
,

and
Rs(G) = min

y∈R

{
−Pred(G, y) + Ls(G \ Pred(G, y))

}
,

with the initial condition

Ls(G) = −|V (G)| (respectively Rs(G) = |V (G)|)

when L(G) (respectively R(G)) is empty. �

In the game influence, a first useful property about Ls(G) and Rs(G) is the following:

Lemma 5 In influence, for every game G, the quantities Ls(G), Rs(G) and |V (G)| have the
same parity.

Proof By definition of the scores, we have

Ls(G) = sL1 (G)− sR2 (G) = 2sL1 (G)− |V (G)|

and
Rs(G) = sL2 (G)− sR1 (G) = 2sL2 (G)− |V (G)|.

�

Note that in combinatorial game theory, it is common to mix-up a game with a position. Hence
G will be used here to indifferently define a game position and its corresponding directed graph.
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2.2 Relevant directed graphs

It may happen that some vertices will be gained by a fixed player, whatever the strategies of both
players. These vertices are not relevant from a strategic point of view, hence we should not take
them into account. It is the main idea of this section.

More precisely, let x ∈ L such that Succ(G, x) ⊆ L. According to the rules of the game, one
can remark that x and the whole set Succ(G, x) will be removed by Left at some step of the game
regardless of Right’s future moves. We say that such a vertex x ∈ L is forced in G.

Thus, from a strategic point of view, it is natural to restrict ourselves to directed graphs with no
forced vertices4.

Definition 6 For each directed graph G = (L ∪R,A), let

ForcL(G) =
{
x ∈ L : Succ(G, x) ⊆ L

}
, ForcR(G) =

{
y ∈ R : Pred(G, y) ⊆ R

}
be the subsets of vertices that Left (respectively Right) will remove regardless of the other player’s
moves, and let

Forc(G) = ForcL(G) ∪ ForcR(G)

be the union of these two subsets. The class of relevant directed graphs for the game is the
subclass S of directed graphs G = (L ∪R,A) such that

Forc(G) = ∅.

For example, for the directed graph of Figure 1, the vertices v and x are forced, as player White
will always get them at the end. Remark that, for each directed graph G, we have G \ Forc(G) ∈ S.
Also note that G ∈ S does not imply that G \Succ(G, x) ∈ S, since G \Succ(G, x) can contain some
forced vertices, see Figure 2. Nevertheless, it can be decided to immediately attribute these forced
vertices (which are necessarily in L) to Left. This allows to have a new relevant directed graph:

(G \ Succ(G, x)) \ Forc(G \ Succ(G, x)),

and, therefore, to have recursive formulas for relevant directed graphs. This is done using the following
definitions.

x x′

Figure 2: The directed graph G is relevant but after playing x ∈ L, the new directed graph G \
Succ(G, x) is not anymore relevant since x′ is now forced.

4Actually, there could be a unique difference: if the forced vertices are not immediately removed from the directed
graph, they could be used by a player to pass his turn. But we will see later (Corollary 12) that passing is of no
interest in this game.
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Definition 7 Let G ∈ S and x ∈ L. The set Rmv(G, x) is the set defined as:

Rmv(G, x) = Succ(G, x) ∪ Forc(G \ Succ(G, x)).

The directed graph Gx defined as:
Gx = G \ Rmv(G, x)

is an element of S. This directed graph is called the resulting relevant directed subgraph
induced by x. In a similar way, for y ∈ R, we set

Rmv(G, y) = Pred(G, y) ∪ Forc(G \ Pred(G, y)).

and
Gy = G \ Rmv(G, y).

Remark 8 We can alternatively define Rmv(G, x) and Rmv(G, y) by

Rmv(G, x) =
{
z ∈ V (G) | Succ(G, z) ⊆ L ∪ Succ(G, x)

}
and

Rmv(G, y) =
{
z′ ∈ V ′(G) | Pred(G, z′) ⊆ R ∪ Pred(G, y)

}
.

�

Recursive formulas. In order not to leave the class S, we adapt the recursive formulas of
the relative scores. Precisely, for each nonempty G ∈ S, since after a move of a player, the forced
vertices are necessarily for this player, we have:

sL1 (G) = max
x∈L

{
|Rmv(G, x)|+ sL2 (Gx)

}
and sL2 (G) = min

y∈R

{
sL1 (Gy)

}
,

sR1 (G) = max
y∈R
{|Rmv(G, y)|+ sR2 (Gy)} and sR2 (G) = min

x∈L

{
sR1 (Gx)

}
,

Ls(G) = max
x∈L

{
|Rmv(G, x)| −Rs(Gx)

}
and Rs(G) = min

y∈R

{
−|Rmv(G, y)|+ Ls(Gy)

}
.

with, for initialization, the convention that for the empty graph all these values are null.

3 influence belongs to Milnor’s universe of scoring games
In the literature, different universes of scoring games have been defined in the last decades, according
to structural properties of the game. In particular, Milnor and Hanner restricted their study to
nonzugzwang dicot games:

• A game has no zugzwang if each player always prefers moving rather than missing his turn. In
other words, it satisfies Ls(G) ≥ Rs(G) for every subposition G of the game.

• A game is a dicot if, for every subposition of the game, a player can move if and only if his
opponent also can.
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In Milnor’s paper, the incentive of a game I(G) is defined as the value Ls(G) − Rs(G). It
corresponds to the interest that Left has to move rather than passing. Hence games in Milnor’s
universe are also called dicot games with nonnegative incentive.

It turns out that this family of scoring combinatorial games has a nice mathematical behavior
that induces a group structure, following the case of normal-play combinatorial games. For this
group, the binary operation (+) is called the sum of games. Given two games G and G′, the game
G+G′ is the game where each player moves either in G or in G′. The games ends when all the moves
are exhausted in both G and G′.

We now claim that the game influence played on each relevant directed graph G, using moves
induced by sets Rmv(G, x), can be embedded into Milnor’s universe. First, from the definition of
relevant directed graphs, influence is a dicot game. The key-point is the fact that influence is
a nonzugzwang game (Corollary 12).

3.1 Basic Lemmas

The proof is based on three lemmas. The first one describes the evolution of the succesors and
predecessors of a vertex after a move is played.

Lemma 9 Let G ∈ S and let u, v ∈ V (G) such that v ∈ V (Gu). Then,

Succ(Gu, v) = Succ(G, v) ∩ V (Gu)

and
Pred(Gu, v) = Pred(G, v) ∩ V (Gu).

Proof Since there is no assumption on u and v about being in L or R, the two results are symmetric.
Thus we just prove the first equality.

Let z ∈ V (Gu). If z is a successor of v in Gu, it is also a successor of v in G. Thus Succ(Gu, v) ⊆
Succ(G, v) ∩ V (Gu). Assume now that z is a successor of v in G. If it is not a successor of v in
Gu, it means that on any path from v to z in G, there is a vertex in Rmv(G, u). Let z′ be such
a vertex. If u ∈ L, then it means that Succ(G, z′) ⊆ L ∪ Succ(G, u). In particular, since z is a
successor of z′, Succ(G, z) ⊆ Succ(G, z′) ⊆ L ∪ Succ(G, u), so z ∈ Rmv(G, u), a contradiction since,
by assumption, z ∈ Gu. Otherwise, if u ∈ R, then Pred(G, z′) ⊆ R ∪ Pred(G, u). In particular,
since v is a predecessor of z′, Pred(G, v) ⊆ Pred(G, z′) ⊆ R ∪ Pred(G, u), so v ∈ Rmv(G, u), a
contradiction.

�

The next lemma describes what happens when two moves are commuted.

Lemma 10 For each G ∈ S, each x, x′ ∈ L and each y ∈ R, we have:

1. If x′ ∈ Rmv(G, x), then Rmv(G, x′) ⊆ Rmv(G, x), and (Gx′)x = Gx.

2. If x′ /∈ Rmv(G, x) and x /∈ Rmv(G, x′), then (Gx′)x = (Gx)x′.

3. If x /∈ Rmv(G, y), then Rmv(Gx, y) = Rmv(G, y) and (Gx)y = (Gy)x.
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Before turning to the proof of Lemma 10, it is worth mentioning that, because of the partition of
V (G) in L and R, the condition x /∈ Rmv(G, y) is actually symmetric in x and y. Precisely, we have:[

x ∈ Rmv(G, y)
]
⇐⇒

[
x ∈ Pred(G, y)

]
⇐⇒

[
y ∈ Succ(G, x)

]
⇐⇒

[
y ∈ Rmv(G, x)

]
.

Proof
1. Assume that x′ ∈ Rmv(G, x) and let z ∈ Rmv(G, x′). Then, from Remark 8, Succ(G, z) ⊆ L ∪
Succ(G, x′). But, since x′ ∈ Rmv(G, x), we have Succ(G, x′) ⊆ L ∪ Succ(G, x). Thus, Succ(G, z) ⊆
L ∪ Succ(G, x) which gives that z ∈ Rmv(G, x) and so Rmv(G, x′) ⊆ Rmv(G, x), as desired. To show
that (Gx′)x = Gx, we have to prove that Rmv(G, x) = Rmv(Gx′ , x) ∪ Rmv(G, x′), or equivalently,

Rmv(G, x) \ Rmv(G, x′) = Rmv(Gx′ , x),

where the equivalence follows from the fact that Rmv(Gx′ , x) ∩ Rmv(G, x′) = ∅ and Rmv(G, x′) ⊆
Rmv(G, x). First, let z ∈ Rmv(Gx′ , x). By Lemma 9, Succ(Gx′ , x) = Succ(G, x) ∩ V (Gx′), and so

Succ(Gx′ , z) ⊆ L ∪ Succ(Gx′ , x) ⊆ L ∪ Succ(G, x),

which proves that z ∈ Rmv(G, x). Obviously, z ∈ V (Gx′) and so z /∈ Rmv(G, x′). From this, we
finally get that z ∈ Rmv(G, x)\Rmv(G, x′). This proves that Rmv(Gx′ , x) ⊆ Rmv(G, x)\Rmv(G, x′).

Conversely, let z ∈ Rmv(G, x) \ Rmv(G, x′). We have:

Succ(Gx′ , z) = Succ(G, z) ∩ V (Gx′)

⊆
(
L ∪ Succ(G, x)

)
∩ V (Gx′)

⊆ L ∪
(
Succ(G, x) ∩ V (Gx′)

)
= L ∪ Succ(Gx′ , x),

which proves that z ∈ Rmv(Gx′ , x) and completes the proof of Point 1.

2. Assume that x′ /∈ Rmv(G, x) and x /∈ Rmv(G, x′), and let Rmv(G, x, x′) be the set of vertices
defined as:

Rmv(G, x, x′) =
{
z ∈ V (G) | Succ(G, z) ⊆ L ∪ Succ(G, x) ∪ Succ(G, x′)

}
.

We will prove that
(Gx′)x = G \ Rmv(G, x, x′)

which is equivalent to prove that:

Rmv(G, x, x′) = Rmv(G, x′) ∪ Rmv(Gx′ , x) (1)

If z ∈ Rmv(G, x′), then Succ(G, z) ⊆ L ∪ Succ(G, x′), which yields that z ∈ Rmv(G, x, x′). If
z ∈ Rmv(Gx′ , x), then Succ(Gx′ , z) ⊆ L ∪ Succ(Gx′ , x), or equivalently, using Lemma 9,

Succ(G, z) ∩ V (Gx′) ⊆ L ∪ (Succ(G, x) ∩ V (Gx′)).

This leads to
Succ(G, z) ∩ V (Gx′) ⊆ L ∪ Succ(G, x).
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On the other hand, Succ(G, z) \ V (Gx′) = Succ(G, z) ∩ Rmv(G, x′). Because Rmv(G, x′) ⊆ L ∪
Succ(G, x′), we have

Succ(G, z) \ V (Gx′) ⊆ L ∪ Succ(G, x′).

It follows that Succ(G, z) ⊆ L∪ Succ(G, x)∪ Succ(G, x′), that is, z ∈ Rmv(G, x, x′). We have proved
that Rmv(G, x, x′) ⊇ Rmv(G, x′) ∪ Rmv(Gx′ , x).

For the converse inclusion, take z ∈ Rmv(G, x, x′), that is, z is such that Succ(G, z) ⊆ L ∪
Succ(G, x)∪Succ(G, x′). If Succ(G, z) ⊆ L∪Succ(G, x′), then z ∈ Rmv(G, x′). Otherwise, z ∈ V (Gx′)
and

Succ(Gx′ , z) = Succ(G, z) ∩ V (Gx′)

⊆
(
L ∪ Succ(G, x) ∪ Succ(G, x′)

)
∩ V (Gx′)

⊆ L ∪
(
Succ(G, x) ∩ V (Gx′)

)
= L ∪ Succ(Gx′ , x).

Thus z ∈ Rmv(Gx′ , x). This proves claim (1). The result (Gx′)x = (Gx)x′ obviously follows.

3. Let x ∈ L and y ∈ R such that x /∈ Rmv(G, y). We claim that

Rmv(G, x) ∩ Rmv(G, y) = ∅.

Indeed, assume it is not the case and let z ∈ Rmv(G, x) ∩ Rmv(G, y). Without loss of generality,
assume that z ∈ L. Then since z ∈ Rmv(G, y), we must have z ∈ Pred(G, y). But then y is a
successor of z, and thus must be in Rmv(G, x) since z is, leading to a contradiction.

We now prove that
Rmv(Gy, x) = Rmv(G, x).

Let z ∈ V (Gy). Because z ∈ V (Gy) implies that all its successors are also in V (Gy), by Lemma 9
we have Succ(Gy, z) = Succ(G, z) ∩ V (Gy) = Succ(G, z). In particular, this is also true for x. Thus,
we have Succ(Gy, z) ⊆ L ∪ Succ(Gy, x) is equivalent to Succ(G, z) ⊆ L ∪ Succ(G, x), and thus
Rmv(Gy, x) = Rmv(G, x).

Symmetrically, we have Rmv(Gx, y) = Rmv(G, y). And finally, we get

(Gy)x = G \
(
Rmv(G, y) ∪ Rmv(G, y)

)
= (Gx)y.

�

The third lemma below uses the previous one to obtain a strong result about the consequences
of a move.

Lemma 11 Let G = (L ∪R,A) be a directed graph of S. Let y ∈ R. We have

∀i ∈ {1, 2}, sLi (G) ≥ sLi (Gy).

Similarly, let x ∈ L. We have
∀i ∈ {1, 2}, sRi (G) ≥ sRi (Gx).
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Proof We prove both results by induction on G. First, we consider the case y ∈ R. If Gy is the
empty graph, the result is clear since sL1 (Gy) = sL2 (Gy) = 0. Otherwise, we distinguish two cases.
Case 1. Suppose that i = 1. Recall that we have:

sL1 (G) = max
x∈L

{
|Rmv(G, x)|+ sL2 (Gx)

}
.

We denote by LGy = L ∩ V (Gy), the set of Left vertices of the directed subgraph Gy. We have

sL1 (Gy) = max
x∈LGy

{
|Rmv(Gy, x)|+ sL2 ((Gy)x)

}
.

From Lemma 10, we have (Gy)x = (Gx)y, thus we obtain

sL1 (Gy) = max
x∈LGy

{
|Rmv(Gy, x)|+ sL2 ((Gx)y)

}
.

By the induction hypothesis, we have sL2 ((Gx)y) ≤ sL2 (Gx). Moreover, Rmv(Gy, x) = Rmv(G, x)
since x ∈ Gy. We finally obtain:

sL1 (Gy) = max
x∈LGy

{|Rmv(Gy, x)|+ sL2 ((Gx)y)} ≤ max
x∈L
{|Rmv(G, x)|+ sL2 (Gx)} = sL1 (G).

Case 2. Suppose that i = 2. We have:

sL2 (G) = min
y′∈R

{
sL1 (Gy′)

}
Let y∗ ∈ R the vertex that realizes this minimum. We have sL2 (G) = sL1 (Gy∗).

We distinguish three subcases.
Case 2-1. y∗ /∈ Rmv(G, y) and y /∈ Rmv(G, y∗). From Lemma 10, we have (Gy)y∗ = (Gy∗)y. Thus,
we have:

sL1 ((Gy∗)y) = sL1 ((Gy)y∗) = sL1 (Gy \ Rmv(Gy, y
∗)) ≥ min

z∈RGy

{
sL1 (Gy \ Rmv(Gy, z))

}
= sL2 (Gy),

where RGy denotes the set of R vertices of Gy, and where the inequality follows from the fact that
y∗ is not necessarily optimal in Gy. On the other hand, by the induction hypothesis, we have

sL1 (Gy∗) ≥ sL1 ((Gy∗)y).

Thus, by combining both inequalities, we finally get

sL2 (G) = sL1 (Gy∗) ≥ sL1 ((Gy∗)y) ≥ sL2 (Gy),

as desired.
Case 2-2. y∗ /∈ Rmv(G, y) but y ∈ Rmv(G, y∗). Then, from Lemma 10, Gy∗ = (Gy)y∗ . It follows
that

sL2 (G) = sL1 (Gy∗) = sL1 ((Gy)y∗) ≥ sL2 (Gy).

Case 2-3. y∗ ∈ Rmv(G, y). Then, from Lemma 10, Gy = (Gy∗)y. Thus, using the definition of sL2 (G)
and the induction hypothesis on Gy∗ , we obtain that

sL2 (G) = sL1 (Gy∗) ≥ sL1 ((Gy∗)y) = sL1 (Gy).

Once again, by induction, for each z ∈ RGy , sL1 (Gy) ≥ sL1 ((Gy)z). Hence,

sL1 (Gy) ≥ min
z∈RGy

{
sL1 ((Gy)z)

}
≥ sL2 (Gy).

Combining the inequalities above allows to conclude that sL2 (G) ≥ sL2 (Gy).
This completes the proof for L. Using similar arguments, the proof follows for R. �
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3.2 Consequences

Lemma 11 has some useful corollaries. The first corollary indicates that influence is a nonzugzwang
game.

Corollary 12 (nonzugzwang) Let G = (L∪R,A) be a directed graph of S. For each K ∈ {R,L},
s1K(G) ≥ s2K(G).

Proof By formulas of Section 2.2,

sL2 (G) = min
y∈R

{
sL1 (Gy))

}
.

By Lemma 11,
∀y ∈ R, sL1 (Gy) ≤ sL1 (G),

from which we conclude that sL1 (G) ≥ sL2 (G). The proof that sR1 (G) ≥ sR2 (G) is similar. �

The next corollary indicates that for y′, y ∈ R and y′ ∈ Rmv(G, y), playing y′ cannot be better
for Right than playing y.

Corollary 13 (included moves) Consider any directed graph G = (R ∪ L,A) of S.
Let y, y′ ∈ R be such that y′ ∈ Rmv(G, y). Then,

sL1 (Gy′) ≥ sL1 (Gy).

Let x, x′ ∈ L be such that x′ ∈ Rmv(G, x). Then,

sR1 (Gx′) ≥ sR1 (Gx).

Proof By Lemma 11, we have
sL1 (Gy′) ≥ sL1 ((Gy′)y).

Since y′ ∈ Rmv(G, y), we have
(Gy′)y = Gy,

from which we conclude that sL1 (Gy′) ≥ sL1 (Gy). The proof of the second claim is similar. �

Therefore, as the game influence played on relevant directed graphs is a nonzugzwang dicot,
it satisfies the properties of Milnor’s universe. In particular, Milnor provides interesting properties
about the sum of two games of this universe.

Corollary 14 (Milnor [12]) For two nonzugzwang dicot games G and G′, we have

Ls(G) +Rs(G′)
Rs(G) + Ls(G′)

}
≤ Ls(G+G′) ≤ Ls(G) + Ls(G′)

Note that a symmetric result is also available for Rs(G+G′).
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Proof (sketch) The first player Left can use the strategy consisting in first playing optimally in
G, and then playing optimally for the same game where Right has just played. The nonzugzwang
hypothesis is necessary for the case when Left cannot reply in the same game, say G, since this game
is over. In this case, the second player Left plays (optimally) in the remaining game G′, and by
this way, plays two consecutive moves in G′. This does not decrease its score in G′, since G′ is a
nonzugzwang game. This proves the lower bounds.

On the other hand, the second player Right can reply to each move of Left by the best strategy
in the game where Left just played, G or G′. As for the previous inequality, the nonzugzwang
hypothesis is necessary for the case when Right cannot reply in the same game. This proves that
Ls(G+G′) ≤ Ls(G) + Ls(G′). �

The interest of Corollary 14 is natural in the case of influence, since each time a move dis-
connects the directed graph, the resulting game corresponds to a sum of smaller games. It will be
applied on particular instances of the game.

On the other hand, the classical result [12] about the the addition of two opposite games can be
interpreted as follows for influence.

Corollary 15 (Milnor [12]) Let H be a relevant directed graph, and −H be the directed graph such
that L-vertices (respectively R-vertices) of −H are R-vertices (respectively L-vertices) of H and (x, y)
is a directed arc of −H when (y, x) is an directed arcs of H. We have

Ls(H + (−H)) = Rs(H + (−H)) = 0.

Proof (sketch) The fact that Ls(H+(−H)) ≤ 0 can be shown by using a copy strategy: when Left
chooses a position in H (respectively in −H), then Right replies by choosing the same position in −H
(respectively in H). Regarding the other inequality, by symmetry we have sL1 (H + (−H)) = sR1 (H +
(−H)) and sL2 (H+(−H)) = sR2 (H+(−H)). Furthermore, by Corollary 12, we have sL1 (H+(−H)) ≥
sL2 (H+(−H)) = sR2 (H+(−H)). It follows that Ls(H+(−H)) = sL1 (H+(−H))−sR2 (H+(−H)) ≥ 0.
The proof is similar for Rs(H + (−H)). �

Note that in combinatorial game theory, the game −H is generally called the negative of H and
is defined as the game H where the roles of Left and Right are interchanged. In particular, we have
the following interesting result derived from this definition:

Ls(−H) = −Rs(H)

4 influence played on unions of alternated directed paths or
cycles

As for many games, it seems very complex to study the game influence in general. Focusing on
particular instances is thus natural. First, one can remark that the structure of the game is correlated
to strongly connected components of the directed graph: when a vertex x is chosen by Left, then all
vertices of the strongly connected component of x are taken by Left, the other strongly connected
components containing a successor of x are taken by Left, while all vertices of the other strongly
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components are not taken and remain in the current position. Thus, we choose to focus on acyclic
graphs.

In a relevant acyclic directed graph, all sources are elements of L and all sinks are elements of
R. Moreover, from Corollary 13, all strategic optimal moves are played on source or sink vertices.
After a move at a source x, all successors of x, and possibly some other vertices in L, are removed.
The resulting directed graph may be highly complex. To reduce this complexity, we decide to only
consider instances where there are only sources and sinks, i.e. bipartite directed graphs. Finally, we
added some regularity hypotheses to introduce the classes of directed graphs below that correspond
to alternated directed paths and cycles.

Definition 16 A finite directed graph G = (L∪R,A) is called a segment if the following conditions
hold.

• the set V (G) is a set of consecutive integers (i.e. (i, j ∈ V (G) ∧ i ≤ k ≤ j) =⇒ (k ∈ V (G))),
such that |V (G)| ≥ 2;

• L is the set of even integers of V (G), and R is the set of odd integers of V (G);

• if 2i and 2i+ 1 are both vertices of G, then (2i, 2i+ 1) ∈ A;

• if 2i and 2i− 1 are both vertices of G, then (2i, 2i− 1) ∈ A;

The lowest and largest integers of a segment are called the endpoints of the segment. The class
of segments is denoted by Csegment.

A finite directed graph is an element of the class C if it is a finite sum of segments. The endpoints
of a directed graph of C are the endpoints of the segments which compose it.

A finite directed graph G = (L ∪ R,A) is an element of the class Ccycle if it is obtained from a
segment with an even number of vertices by adding the arc (x, y), where x is the endpoint of the
segment which belongs to L and y is the endpoint of the segment which belongs to R

Notice that C ⊆ S and Ccycle ⊆ S. Figure 3 illustrates the class C.

1

2

3

4

5 7

8

Figure 3: The sum of the two segments [1, 5] and [7, 8]

4.1 Values reached for sums of segments

Classification of moves in C For each integer k, a k-move is a position such that a player can
remove k vertices from the directed graph, with the convention that forced vertices created by the
move are immediately removed. In a directed graph G ∈ C, there are four possibilities:

• a 2-move. Such a move is initiated on a endpoint of a segment whose size is different from
3. Indeed, if the size of the segment were 3, a forced vertex would be created. On Figure 3,
playing the vertex 1, 5, 7 or 8 is a 2-move.
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• a 3-move. It appears when one the following situations holds:

– (a) the move is initiated on a segment of size 3;

– (b) the move is initiated on a segment of size at least 5 from a vertex i such that either
i−1 or i+1 is an endpoint of the segment, but not both (e.g. playing 2 or 4 on Figure 3).

– (c) the move is initiated from a vertex i such that i− 3, i− 2, i− 1, i + 1, i + 2, i + 3 are
vertices of G;

• a 4-move. Such a move is initiated on a segment of size at least 4, from a vertex i such that
i− 1, i+ 1 are vertices of G, and either i− 2 or i+ 2 is an endpoint of G, but not both.

• a 5-move. The move is initiated from a vertex i such that i− 2, i− 1, i+1, i+2 are vertices of
G and i− 2 or i+2 both are endpoints of G. It is the case of playing the vertex 3 on Figure 3.
Such moves can only appear on segments of size 5.

There is no other kind of moves when G ∈ C. Except in case (c) in a 3-move, an endpoint is
always removed by the active player and thus the number of segments does not increase. A 3-move
of type (c) is called a cutting move while all other moves are called border moves.

Remark 17 Note that in an optimal strategy, 2-moves are only played on segments of size 2. Indeed,
if a 2-move is played on a larger segment, then there is always in this segment a k-move, with k ≥ 3
that contained the 2-move and thus, by Corollary 13, will lead to a better score. �

The next proposition limits the value of Left and Right score when there is at most one segment
with an odd number of vertices. Before stating this result we need a definition.

Definition 18 We distinguish three subsets of segments.

1. C= stands for the subset of C formed by directed graphs G whose all segments have an even
number of vertices.

2. C+ represents the subset of C formed by directed graphs G whose all segments have an even
number of vertices except one, and |L| − |R| = 1.

3. C− stands for the subset of C formed by directed graphs G whose all segments have an even
number of vertices except one, and |L| − |R| = −1.

Proposition 19 We have the following results:

1. For each G ∈ C=, we have Ls(G) ∈ {0, 2, 4} and Rs(G) ∈ {0,−2,−4}.

2. For each G ∈ C+, we have Ls(G) ∈ {1, 3, 5} and Rs(G) ∈ {1,−1,−3}.

3. For each G ∈ C−, we have Ls(G) ∈ {−1, 1, 3} and Rs(G) ∈ {−1,−3,−5}.

Proof By induction on the number n = |L|+|R| of vertices of G. The main principle of the induction
is to preserve instances of C containing at most one segment with an odd number of vertices.

For initialization, an easy exhaustive analysis shows that Proposition 19 is true for n ≤ 5. Next,
take a directed graph G of C with at least six vertices.
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1. G ∈ C=. If all segments of G have two vertices, then the result is trivial since Ls(G) = 0 if G
contains an even number of segments, and Ls(G) = 2 if G contains an odd number of segments.

Otherwise, to prove that Ls(G) ≥ 0, note that Left is able to play a 4-move. Indeed, let 2j be
the even endpoint of a segment with at least four vertices. Then, playing 2j + 2 (if the even
endpoint is the smallest point of the segment) or playing 2j − 2 (otherwise) is a 4-move. Let
2i be this 4-move.

The resulting relevant directed graph G2i = G\Rmv(G2i) induced by the vertex 2i is an element
of C=. By the induction hypothesis, we have Rs(G2i) ∈ {0,−2,−4}. Thus, we obtain

Ls(G) ≥ 4 +Rs(G2i) ≥ 0.

In other words, Left can obtain a relative score of at least 4− 4 = 0 by playing a 4-move in G.

To show that Ls(G) ≤ 4, we explore all possibilities for the first move of Left. Let 2i be the
vertex played by Left.

• If the move at 2i is a 4-move, we know that Rs(G2i) ∈ {0,−2,−4} from which it follows
that the final relative score of Left in G is at most 4 +Rs(G2i) ≤ 4.
The same argument holds if Left plays a 2-move: the final relative score of Left in G is at
most 2 +Rs(G2i) ≤ 2.

• If the move at 2i is a 3-move then the resulting relevant directed graph G2i is such that
G2i ∈ C+ since Left has necessarily removed one vertex in L and two vertices in R. Thus,
by the induction hypothesis, we have Rs(G2i) ∈ {1,−1,−3}. Thus, if 2i is chosen by Left,
then the final relative score of Left in G is 3 +Rs(G2i) ≤ 4.

Because there is no other possible move, it follows that Ls(G) ≤ 4.

We have shown that 0 ≤ Ls(G) ≤ 4. From Remark 5, we obtain Ls(G) ∈ {0, 2, 4}, as desired.
Moreover, since any element G of C= is its own negative, we have Rs(G) = −Ls(−G) =
−Ls(G).

2. G ∈ C+. If all segments ofG have at most three vertices, then the result is trivial. If all segments
of G have two vertices except one with five vertices, the result is also trivial. Otherwise, there
is a vertex 2i associated with Left which induces a 4-move since there is an endpoint of even
label in a component with at least four vertices (but not five). The resulting directed graph G2i

is an element of C+. By the induction hypothesis, we have Rs(G2i) ∈ {1,−1,−3}. Therefore,
we obtain

Ls(G) ≥ 4 +Rs(G2i) ≥ 1.

To show that Ls(G) ≤ 5, we explore all possibilities. Let 2i be the vertex played by Left.

• If the move at 2i is a 4-move, then by induction, we know that Rs(G2i) ∈ {1,−1,−3}.
The final relative score in G is at most 4 +Rs(G2i) ≤ 5.
The same argument holds if Left plays a 2-move. The final relative score of Left in G is
at most 2 +Rs(G2i) ≤ 3 ≤ 5.

• If the move at 2i is a 3-move, we have several subcases:
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– The odd segment is of size 3 and 2i lies in this segment. It results that G2i ∈ C=.
By the induction hypothesis, Rs(G2i) ∈ {0,−2,−4} so that the final relative score of
Left is at most 3 +Rs(G2i) ≤ 3.

– The odd segment is of size at least 5. In this case, G2i contains two segments of C+
and Right can reply by a border 3-move, say on the vertex 2j+1, on such a segment.
The resulting relevant directed graph (G2i)2j+1 belongs to C+. By the induction
hypothesis, Ls((G2i)2j+1) ∈ {1, 3, 5}. It follows that final relative score of Left in G
is 3− 3 + Ls((G2i)2j+1) ≤ 5.

• If a vertex 2i associated with L induces a 5-move, the resulting relevant directed graph
G2i belongs to C=. By the induction hypothesis Rs(G2i) ∈ {0,−2,−4}. Consequently, the
final relative score of Left given that 2i is chosen in G is at most 5 +R(G2i) ≥ 5.

From the above case-by-case analysis, we conclude that Ls(G) ≤ 5. By Remark 5, we get that
Ls(G) ∈ {1, 3, 5}. For Rs(G), we have the same property as before, as −G belongs to C−,
which explains why the values of Ls and Rs are opposite for C− and C+.

3. G ∈ C−. If all segments of G have at most three vertices, then the result is straightforward.

Otherwise, there exists a vertex 2i that induces a border 3-move on the odd segment belonging
to C−. The resulting relevant directed graph G2i is an element of C=. By the induction
hypothesis, we have Rs(G2i) ∈ {0,−2,−4}. Thus, we get

Ls(G) ≥ 3 +Rs(G2i) ≥ 3− 4 = −1.

To show that Ls(G) ≤ 3, we explore all possibilities. Let 2i be the vertex played by Left in an
optimal strategy.

• If the move at 2i is a 3-move on the odd segment, then the resulting relevant directed
graph G2i is element of C=. By the induction hypothesis, we have Rs(G2i) ∈ {0,−2,−4}.
Thus, the final relative score of Left is at most 3 +Rs(G2i) ≤ 3.

• If the move at 2i is a 4-move, then the resulting relevant directed graph G2i is an element
of C−. By the induction hypothesis, we have Rs(G2i) ∈ {−1,−3,−5}. Thus, the final
relative score of Left is at most 4 +Rs(G2i) ≤ 4− 1 = 3.
The same argument holds if Left plays a 2-move. The final relative score of Left in G is
at most 2 +Rs(G2i) ≤ 3.

• If the move at 2i is a 3-move in an even segment, the resulting directed graph G2i contains
a segment in C+. Then, Right can play a border 3-move, say 2j+1, on this segment. The
resulting relevant directed graph (G2i)2j+1 is an element of C−. Thus, by the induction
hypothesis, Ls((G2i)2j+1) ∈ {−1, 1, 3}. It follows that the final relative score of Left in G
is at most 3− 3 + Ls(G2i)2j+1 ≤ 3− 3 + 3 = 3.

The above case-by case analysis ensures that Ls(G) ≤ 3. By Remark 5, we get that Ls(G) ∈
{−1, 1, 3}.

�
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The given sets are the tightest ones. By an exhaustive analysis, we have found that the directed
graph G, element of C− formed by the sum of two segments, one with 10 vertices, the other one
with 17 vertices, satisfies Ls(G) = −1. The other values are reached on small examples having
a unique segment, and will be illustrated in the following section. Finally, note that the results of
Proposition 19 do not hold when there are more odd segments. For example, the sum of two segments
of C+ of sizes 5 and 17 has a left score of 6.

4.2 Values reached for simple segments

We have found some minimal sets of values for some families of sums of segments. We now improve
this result by restricting our study to segments, which allows to remove some lowest values of the
previous proposition. In particular, we will show that for a segment G, we always have Ls(G) ≥ 1
and Rs(G) ≤ −1.

Theorem 20 Let G ∈ Csegment:

1. If G ∈ C=, then Ls(G) ∈ {2, 4} and Rs(G) ∈ {−2,−4}.

2. If G ∈ C−, then Ls(G) ∈ {1, 3} and Rs(G) ∈ {−1,−3,−5}.
Moreover, if |L| is odd, then Ls(G) = 3.

3. If If G ∈ C+, then Ls(G) ∈ {1, 3, 5} and Rs(G) ∈ {−1,−3}.
Moreover, If |L| is even, then Rs(G) = −3.

As for Proposition 19, one can easily prove that the given sets are tight, as each value is reached.

Corollary 21 For each G ∈ Csegment, we have Ls(G) > 0.

If we assume that the winner of the game is the player which has the the largest score, the
corollary above claims that, for any segment, the first player is always the winner (and there is no
tie).

The proof of Theorem 20 is not a direct corollary of Proposition 19. We need two preliminary
successive lemmas.

Lemma 22 Let G be an element of C and let i be an integer such that 2i − 1, 2i, 2i + 1, 2i + 2 are
elements of V (G). Let G′ be the directed subgraph of G such that V (G′) = {j ∈ V (G) : j ≤ 2i + 1}
and G′′ be the directed subgraph of G such that V (G′′) = {j ∈ V (G) : j ≥ 2i+ 2}. We have:

Rs(G) ≥ Rs(G′)− |V (G′′)|.

Proof First note the following fact. Because Rs(G) = 2sL2 (G)− (|V (G′)|+ |V (G′′)|) and Rs(G′) =
2sL2 (G

′) − |V (G′)|, the inequality Rs(G) ≥ Rs(G′) − |V (G′′)| can be rewritten as sL2 (G) ≥ sL2 (G
′).

Thus, it remains to show that sL2 (G) ≥ sL2 (G
′).

Next, assume that Left is the second player and uses the strategy consisting in focusing in G′

and playing in an optimal way in G′ (while the game G′ is not over) without taking into account
G′′. More precisely, when it is Left turn, Left considers the moves previously played as if they were
either moves of the game in G′ or “passing moves”, that is for moves in G which are not feasible in
the game starting from G′.
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For k ≥ 0, letHk be the directed graph obtained after k moves where Left plays the above strategy
starting from G; and let H ′k be the directed graph obtained after the same k moves, starting from G′

with the above convention. We will compare the sequences of directed subgraphs (H ′k)k of G′ with
the sequences of directed subgraphs (Hk)k of G. Notice that, at the origin, V (H ′0) = V (H0)∩V (G′).

1. If V (H ′k) = V (Hk)∩V (G′) and 2i+1 ∈ V (H ′k), then 2i ∈ V (H ′k) since H ′k is a relevant directed
graph. Thus, if 2i+3 ∈ Hk, then 2i+1 /∈ Rmv(Hk, 2i+3). It follows that V (H ′k+1) = V (Hk+1)∩
V (G′) and 2i + 1 ∈ V (H ′k+1) except if the following condition holds: 2i + 2 ∈ V (Hk) and the
(k+1)st move is done by Right at vertex 2i−1 in the game G′, which makes {2i−1, 2i, 2i+1} ⊆
Rmv(H ′k, 2i− 1). In this case, 2i+ 1 /∈ V (H ′k+1) and V (H ′k+1) ∪ {2i+ 1} = V (Hk+1) ∩ V (G′).
This case is considered in the following point.

2. If vertices 2i− 1, 2i, 2i+ 1 are not elements of V (H ′k) and V (H ′k)∪ {2i+ 1} = V (Hk)∩ V (G′),
then, since Hk is a relevant directed graph, it holds that 2i+2 ∈ V (Hk). Thus, 2i−1, 2i, 2i+1
do not belong to V (H ′k+1) and V (H ′k+1) ∪ {2i + 1} = V (Hk+1) ∩ V (G′), except if one of the
following conditions holds:

• the (k + 1)st move is done by Right at 2i+ 1;

• the vertex 2i+ 3 ∈ V (Hk) and the (k + 1)st move is done by Right at 2i+ 3.

If one of these alternatives holds, V (H ′k+1) = V (Hk+1)∩V (G′) and, of course, 2i+1 /∈ V (H ′k+1).
This case is considered in the following point.

3. If V (H ′k) = V (Hk) ∩ V (G′) and 2i + 1 /∈ V (H ′k), then obviously V (H ′k+1) = V (Hk+1) ∩ V (G′)
and 2i+ 1 /∈ V (H ′k+1).

It follows that, for each k such that V (H ′k) 6= ∅, one of the cases described in (1), (2) or (3) holds.
Thus V (H ′k)∩L = V (Hk)∩V (G′)∩L, which ensures that the strategy described for the Left payer is
well defined. Furthermore, for each x ∈ H ′k ∩L, Rmv(Hk, x)∩ V (G′) = Rmv(H ′k, x). Let (x1, x2, . . .)
be the sequence of moves generated by the Left player in G′, meaning that the move x` is initiated
in H ′2`−1. We get:

sL2 (G
′) =

∑
`

|Rmv(H ′2`−1, `)| =
∑
`

|Rmv(H2`−1, x`) ∩ V (G′)| ≤
∑
`

|Rmv(H2`−1, x`)| = sL2 (G),

which is the expected result. �

Lemma 23 Let G ∈ C such that G = Ss1 + Ss2, where for i ∈ {1, 2}, Ssi is a segment with si
vertices.

1. If s1 = s2 and G ∈ C=, then Rs(G) = 0.

2. If s1 = s2, Ss1 ∈ C− and Ss2 ∈ C+, then Rs(G) = 0.

3. If s1 = 2k and s2 = 2k + 2, then Rs(G) = −2.

4. If s1 = 2k, s2 = 2k + 1, and G ∈ C+, then Rs(G) = −1.

5. If s1 = 2k, s2 = 2k − 1, and G ∈ C+, then Rs(G) ≥ −1.
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Proof Pick any G = G = Ss1 + Ss2 as hypothesized.

1. If H is a segment of C=, then H = −H. This allows to apply Corollary 15 where H = Ss1 in
such a way that G = H + (−H).

2. If H is a segment of C+, then −H is the segment of C− with the same number of vertices. This
allows to apply Corollary 15, where H = Ss1 in such a way that G = H + (−H).

3. Here, we proceed by induction on k. For k = 1, the result is obvious. Now assume that the
result is true for a k ≥ 1 and take G = Ss1 + Ss2 , such that Ss1 is a segment with 2(k + 1)
vertices and Ss2 is a segment with 2(k + 1) + 2 vertices. Let y denote the R-endpoint of Ss2 , x
be the unique vertex such that (x, y) is a directed arc of Ss2 and S2 be the instance containing
only the vertices x and y and the arc (x, y). Let G′ = G \ {x, y}. Hence, G′ is the sum of two
segments with 2k + 2 vertices for each segment. Thus, by point (1), Rs(G′) = Ls(G′) = 0.

Furthermore, S2 and G′ allow to apply Lemma 22 with G′′ = S2, so that we get

Rs(G) ≥ Rs(G′)− |V (S2)| = 0− 2 = −2.

To prove the converse inequality, assume that the first move of Right is a 4-move at a vertex
y′ of Ss2 and, then, players both play optimally. The relative score of Left with this strategy
is −4 + Ls(Gy′). The lengths of the segments constituting Gy′ are 2k and 2(k + 1). Thus,
since these lengths are even, by symmetry, we have Ls(Gy′) = −Rs(Gy′). Furthermore, the
induction hypothesis applies to Gy′ so that Rs(Gy′) = −2. We obtain Rs(G) ≤ −2.

4. We use the same procedure as in point (3). Let x denote an endpoint of Ss2 . Notice that x is
necessarily a L-vertex. We denote by S1 the directed graph reduced to the singleton {x}, and
G′ = G \ {x}. We can apply point (1) to G′, thus Rs(G′) = Ls(G′) = 0. Moreover, Lemma 22
applies with G′′ = S1 (except when k = 1, which is a trivial case), in order to obtain

Rs(G) ≥ Rs(G′)− |V (S1)| = 0− 1 = −1.

To prove the converse inequality, note that Right can obtain a relative score equal to −1 by
playing a border 3-move y′ on Ss2 . Indeed, by point (3) applied to the directed graph Gy′ , we
get Ls(Gy′) = 2 and thus a relative score of −1 for Right.

5. The proof is similar to point (4). Let x denote the endpoint of Ss1 which is a L-vertex. We
denote by S1 the directed graph reduced to the singleton {x} and G′ = G \ {x}. We can apply
point (2) to G′, and so Rs(G′) = Ls(G′) = 0. Furthermore, Lemma 22 applies with G′′ = S1,
thus we get

Rs(G) ≥ Rs(G′)− |V (Ss1)| = 0− 1 = −1.

�

We now have the material to prove Theorem 20.

Proof of Theorem 20 . The proof is done by “cutting the segment in quasi-equal parts” as follows.
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1. Except in the trivial cases of size at most 6, Left can play a cutting move x = 2i in such a
way that the resulting directed graph Gx is formed by two segments satisfying the hypothesis
of point 4 of Lemma 23. Thus, after playing the cutting move, the final relative score of Left
is 3 + Rs(Gx) ≥ 3 − 1 = 2. This ensures that Ls(G) ≥ 2. From Proposition 19, we have
Ls(G) ∈ {0, 2, 4}, which gives that Ls(G) ∈ {2, 4}. By symmetry, we get the result for Rs(G).

2. Except in the trivial cases of size at most 5, Left can play a cutting move x in such a way
that the resulting directed graph Gx is formed by two segments, each of them containing an
even number of vertices, satisfying the hypothesis of either point 1 or point 3. of Lemma 23
according to the value |L|+ |R| modulo 4. Precisely,

• when |L| + |R| ≡ 3 mod [4], then point 1 of Lemma 23 applies. Thus, after playing the
cutting move, the final relative score of Left is 3 + Rs(Gx) = 3 + 0 = 3. This ensures
that Ls(G) ≥ 3. From Proposition 19, we have Ls(G) ∈ {−1, 1, 3}, which gives that
Ls(G) = 3;
• when |L| + |R| ≡ 1 mod [4], then point 3 of Lemma 23 applies. Thus, after playing the

cutting move, the final relative score of Left is 3+Rs(Gx) ≥ 3− 2 = 1. This ensures that
Ls(G) ≥ 1. From Proposition 19, we have Ls(G) ∈ {−1, 1, 3} from which il follows that
Ls(G) = {1, 3}.

3. This case is symmetric to the previous case.

�

Concerning the case of cycles, the result follows from the case of segments since all the first moves
are equivalent moves and lead to a segment.

Corollary 24 Let G ∈ Ccycle. We have Ls(G) ∈ {0, 2}. Moreover, if |L| is odd, then Ls(G) = 0.

Proof Let i be the vertex where the first move is initiated by Left. Note that Ls(G) = 3−Rs(Gi),
and Gi satisfies point 3 of Theorem 20 from which the result follows. �

4.3 The score sequence of segments

For a segment of size n, the next question that arises is about the complexity of the computation of
the exact scores Ls and Rs. More precisely, since from Theorem 20 there is a limited set of values
for them, one can wonder whether there is a kind of regularity for the sequences (Ls(Sn))n≥1 and
(Rs(Sn))n≥1, where Sn is the segment of size n with the convention that, when n is odd, we consider
the segment Sn to be in C−. As it is the case for some combinatorial games played on strings (such
as subtraction games or octal games, see [14]), a regular behavior of the sequence is a key to get a
polynomial time algorithm that computes the value (or score) of the game.

Table 1 summarizes the first values of these two sequences (computed by our program).
Some regularities can be found in the sequences. In particular, Theorem 20 proves that Ls(Sn) = 3

for n ≡ 1 mod [4] and n 6= 5. But the sequences have been computed up to n = 80 and no periodicity
appears yet. In particular, between the sizes 38 and 76, both sequences are periodic with period of
size 4. Unfortunately, we have Rs(S77) = −5, that breaks the previous regular behavior. However,
as for octal games, a periodicity conjecture can be established in view of the very restricted number
of possible scores.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ls(Sn) −1 2 3 4 1 2 3 2 1 2 3 2 1 4 3 2 1 2 3
Rs(Sn) −1 −2 −3 −4 −5 −2 −1 −2 −3 −2 −1 −2 −3 −4 −3 −2 −3 −2 −3

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Ls(Sn) 2 1 4 3 2 1 2 3 2 1 4 3 2 1 2 3 2 1 2
Rs(Sn) −2 −5 −4 −3 −2 −3 −2 −3 −2 −5 −4 −3 −2 −3 −2 −3 −2 −5 −2

Table 1: First values of the sequences (Ls(Sn))n≥1 and (Rs(Sn))n≥1.

Conjecture 25 The sequences Ls(Sn) and Rs(Sn) are ultimately periodic.

If a proof of this conjecture is currently out of reach because of the global chaotic behavior of the
sequences, the sub-regularities that can be found lead to the following more affordable conjectures.

Conjecture 26 For a segment Sn of C− with n ≡ 1 mod 4, we have Ls(Sn) = 1.

Conjecture 27 For a segment Sn with n ≡ 0 mod 4 and n > 4, we have Ls(Sn) = 2.

Actually, the lack of periodicity is due to the “rare” scores (Ls(Sn), Rs(Sn)) ∈ {(4,−4), (1,−5)}
for some values of n that we did not manage to characterize. In particular, the last score (4,−4) has
been found for n = 30, and one can wonder whether it is the last one. In that case, Conjecture 27
could be extended to all the even values of n greater than 30.

5 Position versus Number
A natural question arises about the game influence: Is it better for a player to have initially a
larger number of vertices, or to have few vertices, but in a strategical position? The intuition is that
some strategical sites are very important. We quantify this intuition (see Theorem 28) by giving
instances G where the proportion of L-vertices is as small as desired and the proportion of vertices
won by Left at the end of the game is as closed to 1 as desired. We then prove that this is not true
for oriented paths (see Theorem 33).

5.1 An instance with a large number of R-vertices but good for Left

We define our instances as follows. For each pair n, c of integers, with n ≥ 0 and c ≥ 1, let T c
n be the

oriented tree of depth n+1, such that all vertices of level k, 0 ≤ k ≤ n− 1 have exactly 3 successors
and vertices of level n have exactly c successors. We denote by Si the vertices of level i. The set of
R-vertices is the set of leaves at level Sn+1, whereas the other vertices are in L, L = ∪nk=0Sk. See
Figure 5.1 for a representation of T 4

2 .
For 0 ≤ k ≤ n, we have |Sk| = 3k and |Sn+1| = c 3n. Thus

|V (T c
n)| = 1 + 3 + · · ·+ 3n + c 3n =

3n+1 − 1

2
+ c 3n.
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S0

S1

S2

S3

Figure 4: The oriented tree T 4
2 .

Theorem 28 Let J c
n be the instance T c

n + T c
n, formed by two distinct copies of T c

n. For each ε > 0,
for n and c sufficiently large, we have:

|L(J c
n)|

|V (J c
n)|
≤ ε and

sL2 (J
c
n)

|V (J c
n)|
≥ 1− ε.

Note that, from Corollary 12, if
|sL2 (J c

n)|
|V (J c

n)|
≥ 1− ε,

then we also have
|sL1 (J c

n)|
|V (J c

n)|
≥ 1− ε.

For the proof of the theorem above, we first need a lower bound on sR1 (J c
n).

Lemma 29 Let y be an R-vertex of an instance T c
n. Then (T c

n)y = J c
0 + J c

1 + . . .+ J c
n−1.

Proof For 0 ≤ k ≤ n, Rmv(T c
n, y)∩Sk is a singleton, say xk, and Rmv(T c

n, y)∩Sn+1 = {z : (p(y), z) ∈
Ac

n} where p(y) is the predecessor of y. Let S be the set of vertices of (T c
n)y with no predecessor. For

1 ≤ k ≤ n, the set S ∩ Sk is a pair, say {zk, z′k}. The directed graph induced by the successors of zk
(respectively z′k) is identical to the directed graph T c

n−k, from which we get the result. �

Using the above lemma, we obtain a recurrence relation for sR1 (J c
n):

Lemma 30 Let n ≥ 0, we have:

sR1 (J
c
n) ≤ n+ 1 + c+

n−1∑
i=0

sR1 (J
c
i ).

Proof The first move of Right in J c
n is necessarily a leaf y of T c

n, leading, by Lemma 29 to the
directed graph G = J c

0 + JC
1 + ...+ J c

n−1 + T c
n. Thus,

sR1 (J
c
n) = n+ 1 + c+ sR2 (G).

By definition of the score, sR2 (G) = minx∈L
{
sR1 (Gx)

}
. Let x ∈ L(G) be the root of T c

n. If Left
plays x, then she takes all the component T c

n. We thus obtain:

sR2 (G) ≤ sR1 (Gx) = sR1 (J
c
0 + JC

1 + ...+ J c
n−1).

By Corollary 14, sR1 (J c
0 + JC

1 + ...+ J c
n−1) ≤

∑n−1
i=0 s

R
1 (J

c
i ), which concludes the proof. �
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Applying inductively Lemma 30, we can upperbound sR1 (J c
n):

Corollary 31 Let n ≥ 0, we have: sR1 (J c
n) ≤ 2n(n+ c) + 1.

Proof We prove by induction on k that the following inequality holds for any 0 ≤ k ≤ n:

sR1 (J
c
n) ≤ n+ 1 + c+

k−1∑
i=0

(n+ c− i)2i + 2k
n−1−k∑
i=0

sR1 (J
c
i ). (2)

The initialization k = 0 is exactly Lemma 30. Assume the result is true for k such that 0 ≤ k < n.
We apply Lemma 30 to sR1 (J c

n−1−k) and obtain:

sR1 (J
c
n) ≤ n+ 1 + c+

k−1∑
i=0

(n+ c− i)2i + 2k

(
n+ c− k +

n−k−2∑
i=0

sR1 (J
c
i )

)
+ 2k

n−2−k∑
i=0

sR1 (J
c
i )

≤ n+ 1 + c+
k∑

i=0

(n+ c− i)2i + 2k+1

n−2−k∑
i=0

sR1 (J
c
i )

which corresponds to the relation (2) for k + 1.
Equation (2) with k = n gives us:

sR1 (J
c
n) ≤ n+ 1 + c+

n−1∑
i=0

(n+ c− i)2i

≤ n+ 1 + c+ (n+ c)
n−1∑
i=0

2i

≤ 2n(n+ c) + 1.

�

We are now able to prove Theorem 28.

Proof (of Theorem 28) First, we have |L(J c
n)| = 2(1 + 3 + . . .+ 3n) = 3n+1 − 1 and

|V (J c
n)| = 3n+1 − 1 + 2c3n ≥ (3n+1 − 1)

(
1 +

2c

3

)
Thus, for

1

1 +
2c

3

≤ ε, or equivalently c ≥ 3

2

(
1

ε
− 1

)
,

we have
|L(J c

n)|
|V (J c

n)|
≤ ε.
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On the other hand, we have, by definition of the score, sL2 (J c
n) = |V (J c

n)| − sR1 (J c
n). Using the

upper bound of Corollary 31, we get:

sL2 (J
c
n)

|V (J c
n)|

= 1− sR1 (J
c
n)

|V (J c
n)|

≥ 1− 2n(n+ c) + 1

3n+1 − 1 + 2c3n

Finally,

lim
n→+∞

2n(n+ c) + 1

3n+1 − 1 + 2c3n
= 0 and thus lim

n→+∞

sL2 (J
c
n)

|V (J c
n)|

= 1.

Hence, whenever the integer c has been chosen in order to have |L(J
c
n)|

|V (Jc
n)|
≤ ε, then the integer n

can be chosen in order to have sL2 (J
c
n)

|Jc
n|
≥ 1− ε. �

5.2 Guarantee of the score in quasi-paths

In the previous example, some L-vertices have a large number of successors whereas the R-vertices
have at most n + 1 predecessors, making possible for Left to win a lot of vertices in a single move.
We now introduce a class of directed graphs where is not true anymore. It follows that Left cannot
win too many vertices compared to the initial situation.

Definition 32 Let G = (L ∪ R,A) be relevant graph of S. The directed graph G is a quasi-path if
it is an alternative sequence of vertices of L ∪ R and arcs of A that forms a path in the underlying
undirected graph of G. Let D ⊆ S be the subclass of relevant directed graphs such that each G ∈ D
is a collection of quasi-paths.

Let G = (L∪R,A) be a collection of quasi-paths of D. Denote by n the cardinality of L∪R, by
nL the cardinality of the set of L-vertices and by nR the cardinality of the set of R-vertices of G. In
particular, u stands for the ratio u = nL/n.

Theorem 33 Let G = (L ∪R,A) be a collection of quasi-paths of D. Then, it holds that

sL2 (G)

|V (G)|
≤ 2 + u

3
,

where, as usual, V (G) = L ∪R.

Before proceeding to the proof of the statement of Theorem 33, consider the following example.
Assume that graph G ∈ D contains a majority of R-vertices. Then, Theorem 33 indicates that the
ratio of vertices won by Left is at most

2 +
1

2
3

=
5

6

meaning that this ratio cannot be very close to 1.
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Proof Let G = (L∪R,A) be an element of D, and assume that Right starts the game. It is enough
to prove that there is a strategy for Right where the number of R-vertices won by R is at least equal
to half the number of R-vertices won by Left. Indeed, assume that such a strategy exists. Then,
Left can win at most all the L-vertices and 2/3 of the R-vertices. Therefore, if such a strategy for R
exists,then we obtain the desired result:

sL2 (G)

n
≤ nL

n
+

2

3

nR

n

≤ u+
2

3
(1− u)

=
2 + u

3
.

It remains to prove that this strategy for R exists. Let x ∈ L be a move induced by Left that
maximises the quantity |Rmv(G, x) ∩ R)|, i.e. the number of R-vertices that Left can obtain in one
move. Denote by k this maximal quantity.

Because G ∈ D, we have Rmv(G, x) = {v1, v2, . . . , vp}, where, for 1 ≤ i < p, (vi, vi+1) ∈ A. Let j
(respectively j′) be the lowest (respectively the largest) integer such that vj (respectively vj′) is an
element of Rmv(G, x) ∩ R. Because each vertex v` of Rmv(G, x) ∩ R is a successor of x in G, v` is
necessary localized in a directed path of G from x to either vj of vj′ . It follows that

Rmv(G, x) ∩R(G) ⊆ Pred(G, vj) ∪ Pred(G, vj′) ⊆ Rmv(G, vj) ∪ Rmv(G, vj′).

Without loss of generality, assume that |Rmv(G, vj) ∩R(G)| ≥ |Rmv(G, v′j) ∩R(G)|. It follows that

|Rmv(G, vj) ∩R(G)| ≥ k/2.

Assume now that the first move of Right is to play vj. Then Right wins at least k/2 R-vertices.
Let x1 be the response by Left. Because x1 /∈ Rmv(G, y1), by Lemma 10, we have Rmv(Gy1 , x1) =
Rmv(G, x1), and so, by maximality of x,

|Rmv(Gy1 , x1) ∩R| = |Rmv(G, x1) ∩R| ≤ k.

Thus, in the first two moves, Right wins at least half of the number of R-vertices that Left took.
The remaining graph (Gy1)x1 is still an element of D, and Right can continue to play his strategy to
obtain at the end of the game at least half of the number of R-vertices won by Left, concluding the
proof. �
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