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Abstract

Data augmentation, by the introduction of auxiliary variables, has become an
ubiquitous technique to improve convergence properties, simplify the implementation
or reduce the computational time of inference methods such as Markov chain Monte
Carlo ones. Nonetheless, introducing appropriate auxiliary variables while preserv-
ing the initial target probability distribution and offering a computationally efficient
inference cannot be conducted in a systematic way. To deal with such issues, this
paper studies a unified framework, coined asymptotically exact data augmentation
(AXDA), which encompasses both well-established and more recent approximate aug-
mented models. In a broader perspective, this paper shows that AXDA models can
benefit from interesting statistical properties and yield efficient inference algorithms.
In non-asymptotic settings, the quality of the proposed approximation is assessed with
several theoretical results. The latter are illustrated on standard statistical problems.
Supplementary materials including computer code for this paper are available online.

Keywords: Approximation, auxiliary variables, divide-and-conquer, Bayesian inference, ro-
bustness.
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1 Introduction

Starting at least from the 1960s with the seminal paper of Hartley (1958) on the expectation-

maximization (EM) algorithm, introducing auxiliary variables has been a widely adopted

strategy to derive iterative algorithms able to deal with possibly complicated inference

problems. Indeed, either by coming from statistical physics (Swendsen and Wang 1987) or

by the broad statistical community (Dempster et al. 1977), auxiliary (also called latent)

variables have been used to improve (Duane et al. 1987; Edwards and Sokal 1988; Marnissi

et al. 2018) and/or simplify (Tanner and Wong 1987; Doucet et al. 2002) inference methods,

such as maximum likelihood (ML) estimation or simulation-based ones. Insightful reviews

of these methods were conducted by Besag and Green (1993); van Dyk and Meng (2001);

Tanner and Wong (2010). Among many others, slice sampling and half-quadratic (HQ)

methods are archetypal instances of such auxiliary variable-based methods. These methods,

by introducing auxiliary variables, appear to be an interesting alternative when sampling

cannot be performed directly from a target distribution π. Nonetheless, the superiority

of simulation-based algorithms based on data augmentation (DA) over classical Markov

chain Monte Carlo (MCMC) methods without DA is not obvious as pointed out by Polson

(1996); Damien et al. (1999). DA methods have been found to be slower than single-site

update approaches in some cases (Hurn 1997) and some improvements have been derived

to cope with these problems such as partial decoupling (Higdon 1998) or the introduction

of a working parameter (Meng and van Dyk 1997). Moreover, DA techniques are often

used on a case-by-case basis (Geman and Reynolds 1992; Albert and Chib 1993; Geman

and Yang 1995; Polson et al. 2013) and could not be applied in general scenarios due to

the absence of exact DA schemes yielding an efficient inference and low computation costs.

Similarly to approximate Bayesian computation (ABC) methods to circumvent in-

tractable likelihoods (Beaumont et al. 2002; Sisson et al. 2018b), these limitations can

be tackled by considering approximate DA schemes that become exact asymptotically. For

instance, inspired from the variable splitting technique used in the alternating direction

method of multipliers (ADMM) (Boyd et al. 2011), Vono et al. (2019) and Rendell et al.

(2020) recently and independently proposed a novel and broad Bayesian inference frame-

work that can circumvent limitations of exact DA approaches. By introducing a collection
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of instrumental (also called splitting) variables, the aforementioned authors considered the

inference from an approximate probability distribution which can be simpler, more efficient

and distributed over multiple computational workers (e.g., machines or kernels).

This paper aims at deeply investigating a broad framework coined asymptotically exact

data augmentation (AXDA) which encompasses previously proposed special instances such

as approximate models used in Vono et al. (2019); Rendell et al. (2020), among others. More

precisely, Section 2 details how such models can be built in a quasi-systematic and simple

way which is highly appreciable compared to the case-by-case search of computationally

efficient DA schemes. In Section 3, we revisit some already-proposed special instances of

AXDA models in order to show the potential benefits of AXDA on specific examples and

to exhibit interesting properties which can be generally inherited by AXDA approaches.

In Section 4, we assess quantitatively the bias of AXDA models with non-asymptotic the-

oretical results by considering Wasserstein and total variation distances. Then, Section 5

illustrates the previous theoretical results and the benefits of the proposed methodology on

several statistical problems. In order to facilitate the use of AXDA, we eventually point out

that the supplementary material involves a dedicated section (Section 5) presenting how

such models can be instantiated to perform efficient inference through classical simulation-

based, variational Bayes (VB), optimization or expectation-maximization (EM) methods.

The proofs are also given in the supplementary material, see Section 1.

2 Asymptotically exact data augmentation

This section introduces AXDA schemes that aim to circumvent exact DA main issue: the

art (van Dyk and Meng 2001) of finding the exact DA associated to a statistical model

and its inference limitations. For sake of simplicity, with little abuse, we shall use the same

notations for a probability distribution and its associated probability density function (pdf).

2.1 Motivations

In this paper, we are interested in performing the inference of a variable of interest θ ∈ Θ ⊆

Rd, where Θ is a closed convex set and dim(Θ) = d, by relying on a probability distribution
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with density π writing

π(θ) ∝ exp
(
−f(θ)

)
, or π(y|θ) ∝ exp

(
−f(y;θ)

)
, (1)

where the potential f taking values in R is such that π defines a proper, bounded and

continuous probability distribution. For sake of generality, note that π in (1) shall describe

various quantities. First, with a little abuse of notations, π(θ) may simply refer to a pdf

associated to the random variable θ, e.g., its prior distribution π(θ) or its posterior distri-

bution π(θ) , π(θ|y) when referring to a set of observations denoted by y. Depending on

the problem, we also allow π to stand for a likelihood function π(y|θ). We will work under

this convention and write explicitly the form of π when required. For sake of simplicity

and clarity, only the case corresponding to π(θ) will be detailed in this section. The ap-

plication of the proposed methodology to π(y|θ) is very similar and can be retrieved by a

straightforward derivation.

We consider situations where direct inference from (1) is difficult because intractable

or computationally prohibitive. To overcome these issues, an option is to rely on exact DA

which introduces some auxiliary variables stacked into a vector z ∈ Z ⊆ Rk and defines a

new density, simpler to handle, such that∫
Z
π(θ, z)dz = π(θ). (2)

Much research has been devoted to these models in order to simplify an inference task or

to improve the convergence properties of direct inference approaches (e.g., slice sampling

and HQ methods introduced in Section 1). Nonetheless, these approaches have several

limitations. Indeed, finding a convenient form for the augmented density in order to satisfy

(2) while leading to efficient algorithms generally requires some knowledge and can even be

impossible in some cases (Geman and Yang 1995). For instance, the mixture representation

of a binomial likelihood function based on the Polya-Gamma distribution has been used

to derive a promising Gibbs sampler for logistic regression problems (Polson et al. 2013).

Nonetheless, even if this algorithm has been proved to be uniformly ergodic by Choi and

Hobert (2013), the corresponding ergodicity constant depends exponentially on the number

of observations n and on the dimension of the regression coefficients vector d.

To tackle these limitations, we propose to relax the constraint (2) and consider an

approximate DA model. This will permit the choice of an augmented density with more
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flexibility, fix the issues associated to the initial model and make inference more efficient

in some cases. To this purpose, Section 2.2 presents the so-called AXDA framework which

embeds approximate DA models controlled by a positive scalar parameter ρ. These models

become asymptotically exact when ρ tends towards 0. Of course, some assumptions will be

required on the approximate augmented density to guarantee a good approximation. The

quality of this approximation will be assessed in Section 4 with non-asymptotic theoretical

results.

2.2 Model

Instead of searching for an exact data augmentation scheme (2), some auxiliary variables z

can be introduced in order to define an approximate but asymptotically exact probability

distribution. One possibility is to introduce an augmented distribution depending on a

parameter ρ > 0 and such that the associated marginal density defined by

πρ(θ) =
∫
Z
πρ(θ, z)dz, (3)

satisfies the following property.

Property 1. For all θ ∈ Θ, limρ→0 πρ(θ) = π(θ) .

By applying Scheffé’s lemma (Scheffé 1947), this property yields the convergence in total

variation, that is
∥∥∥πρ − π∥∥∥TV

→ 0 as ρ → 0. A natural question is: how to choose the

augmented density in (3) such that Property 1 is met? In this paper, we assume that

Z = Θ and investigate AXDA schemes associated to an initial density (1) and defined by

the approximate augmented density

πρ(θ, z) = π(z)κρ(z,θ), (4)

where κρ is such that (4) defines a proper density.

Remark 1. When π stands for a product of J densities, that is π ∝ ∏J
j=1 πj, the proposed

approximate model can naturally be generalized to πρ(θ, z1:J) ∝ ∏J
j=1 πj(zj)κρ(zj,θ). Such

a generalization will for instance be considered in Sections 3.1 and 3.2.
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The introduction of the proposed model (4) is aimed at avoiding a case-by-case search of

an appropriate augmented approach. Although there might exist other marginal densities

πρ satisfying Property 1, we restrict our analysis to models where κρ(·,θ) weakly converges

towards the Dirac measure at θ as ρ → 0 (Aguirregabiria et al. 2002). This is a sufficient

condition to satisfy Property 1. In the sequel, we will call AXDA any approach based on

(4) and satisfying these properties.

A natural choice for κρ is to consider a standard kernel K (Wand and Jones 1995).

Based on the latter, we define for all z,θ ∈ Θ, κρ(z,θ) ∝z ρ
−dK(ρ−1(θ − z)) (Dang and

Ehrhardt 2012). Beyond standard kernels but motivated by the same idea of measuring

the discrepancy between z and θ, one can also build on divergence functions widely used

in the optimization literature to define a potentially asymmetric density κρ such that for

all z,θ ∈ Θ, κρ(z,θ) ∝z exp(−ρ−1φ(z,θ)) where φ is a strictly convex function w.r.t. z

admitting a unique minimizer z∗ = θ (Ben-Tal et al. 2001; Krichene et al. 2015; Fellows

et al. 2019). Specific instances of such potentials are Bregman divergences such as the

logistic loss and the Kullback-Leibler divergence, see Definition 1.

Definition 1 (Bregman divergence). Let ψ a continuously-differentiable and strictly convex

function defined on a closed convex set. The Bregman divergence associated to ψ is defined

by

dψ(z,θ) = ψ(z)− ψ(θ)−∇ψ(θ)T (z− θ). (5)

Additional details associated to standard kernels and Bregman divergences are given in

Section 2 in the supplementary material.

3 Benefits of AXDA by revisiting existing models

Before providing theoretical guarantees for AXDA models, this section proposes to review

some important state-of-the-art works from the AXDA perspective described in Section 2.

We do not pretend to give new insights about these approaches. We rather use them to

illustrate potential benefits that can be gained by resorting to the proposed framework. For

sake of clarity, these benefits are directly highlighted in the title of the following sections

before being discussed in the latter.
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3.1 Tractable posterior inference

This first section illustrates how an AXDA approach can alleviate the intractability of an

initial posterior distribution π and significantly aid in the computations.

To this purpose, we consider the case where the posterior distribution π is intractable.

Such a model for instance appears when π involves a constraint on some set (Liechty et al.

2009), admits a non-standard potential function such as the total variation norm (Cham-

bolle et al. 2010; Pereyra 2016; Vono et al. 2019) or yields complicated conditional posterior

distributions (Holmes and Mallick 2003). To simplify the inference, the aforementioned au-

thors have considered special instances of AXDA by relying on an additional level involving

latent variables z, leading a hierarchical Bayesian model. In these cases, AXDA has been

invoked in order to move a difficulty to the conditional posterior of z where it can be dealt

with more easily by using standard inference algorithms, see Section 5 in the supplementary

material for more details. The following example, derived from Holmes and Mallick (2003),

illustrates this idea.

Example 1. Let y ∈ Rn be a set of observations and X = (x1, . . . ,xn)T ∈ Rn×d a design

matrix filled with covariates. We consider a generalized non-linear model which writes

yi|θ ∼ p(yi | g−1(h(xi,θ)), σ2), ∀i ∈ [n], (6)

θ ∼ N (θ | 0d, ν2Id), (7)

where p belongs to the exponential family and has mean g−1(h(xi,θ)) and variance σ2 where

g is a link function. As in classical regression problems, we are interested in infering the

regression coefficients θ ∈ Rd. In the sequel, we set the non-parametric model h to be

h(xi,θ) =
k∑
j=1

θjB(xi,kj), (8)

where B(xi,kj) is a non-linear function of xi (e.g., regression splines) and kj is the knot

location of the j-th basis. The difficulty here is the non-linearity of h which, combined with

the non-Gaussian likelihood, rules out the use of efficient simulation schemes to sample

from the posterior π(θ|y). In order to mitigate this issue, Holmes and Mallick (2003)

proposed to rely on an additional level which boils down to consider the approximate model
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(4). More specifically, the aforementioned authors treated the non-linear predictor h as a

Gaussian random latent variable which leads to the approximate model

yi|zi ∼ p(yi | g−1(zi), σ2), ∀i ∈ [n], (9)

zi|θ ∼ N (zi | h(xi,θ), ρ2), ∀i ∈ [n], (10)

θ ∼ N (θ | 0d, ν2Id). (11)

Here, AXDA has been applied only to the likelihood function with κρ chosen as the univariate

normal distribution (10) leading to a smoothed likelihood function. The main advantage of

relying on such a model is that the posterior conditional distribution πρ(θ|z,X), with z =

[z1, . . . , zn]T , is now a multivariate normal distribution. In addition, by moving the difficulty

induced by h to the conditional posterior of zi, we are now dealing with a generalized linear

model where standard techniques can be applied (Albert and Chib 1993; Polson et al. 2013).

Beyond the widely-used Gaussian choice for κρ (Holmes and Mallick 2003; Liechty et al.

2009; Barbos et al. 2017; Vono et al. 2019), more general AXDA approaches can be built

by taking inspiration from these works. To this purpose, we recommand to choose κρ w.r.t.

the prior and likelihood at stake. For instance, when a Poisson likelihood function and a

complex prior distribution on its intensity θ are considered, one option for φ (see Section

2.2) would be an Itakura-Saito divergence since it preserves the positivity constraint on θ

and yields the well-known Gamma-Poisson model (Canny 2004).

3.2 Distributed inference

When data are stored on multiple machines and/or one is interested in respecting their

privacy, this section illustrates how AXDA can be resorted to perform distributed compu-

tations.

Let consider observed data {yi,xi}ni=1, where xi stands for the covariates associated

to observation yi, which are distributed among B nodes within a cluster. By adopting a

prior ν(θ) and by assuming that the likelihood can be factorized w.r.t. the B nodes, the

posterior distribution of the variable of interest θ writes

π(θ|y,X) ∝ ν(θ)
B∏
b=1

∏
i∈node b

exp
(
−fi(yi;h(xi,θ))

)
. (12)
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Such models classically appear in statistical machine learning when generalized linear

models (GLMs) (Dobson and Barnett 2008) are considered. In these cases, h(xi,θ) = xTi θ.

Due to the distributed environment, sampling efficiently from (12) is challenging and a lot

of “divide-and-conquer” approaches have been proposed in the past few years to cope with

this issue (Wang and Dunson 2013; Scott et al. 2016). These methods launch independent

Markov chains on each node b and then combine the outputs of these local chains to obtain

an approximation of the posterior of interest (12). Nonetheless, the averaging schemes used

to combine the local chains might lead to poor approximations when π is high-dimensional

and non-Gaussian. Instead, considering a special instance of AXDA circumvents the pre-

viously mentioned drawbacks by introducing local auxiliary variables on each node such

that

πρ(θ, z|y,X) ∝ ν(θ)
B∏
b=1

∏
i∈node b

exp
(
−fi(yi; zi)

)
κρ(zi, h(xi,θ)). (13)

The posterior distribution of the auxiliary variables conditionally to θ only depends on

the data available at a given node. Based on this nice property, the joint posterior can

be sampled efficiently with a Gibbs sampler, see Rendell et al. (2020) for a comprehensive

review. We emphasize that the benefits described in this section for Monte Carlo sampling

also hold when one wants to use other types of algorithms (e.g., expectation-maximization

or variational Bayes), see Section 5 in the supplementary material.

3.3 Robust inference

By noting that classical robust hierarchical models fall into the proposed framework, this

section shows that AXDA is also a relevant strategy to perform robust inference by coping

with model misspecification by modeling additional sources of uncertainty.

Considering a well-chosen demarginalization procedure is known to yield robustness

properties in some cases (Robert and Casella 2004). Some approaches took advantage

of this idea in order to build robust hierarchical Bayesian models w.r.t. possible outliers

in the data. For instance, such models can be built by allowing each observation to be

randomly drawn from a local statistical model, as described in the recent review of Wang

and Blei (2018). This “localization” idea is illustrated in Figure 1. Many of these models
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θ yi
n

(a) Initial model

θ zi yi
n

(b) Localized hierarchical model

Figure 1: Concept of localization. Comparison between the initial (left) and the localized

hierarchical Bayesian (right) models with n the number of observations yi.

can be viewed as particular instances of AXDA. Indeed, assume that n data points yi are

independently and identically distributed (i.i.d.) defining the likelihood function

π(y|θ) ∝
n∏
i=1

π(yi|θ), (14)

where θ ∈ Θ is a common parameter. Applying AXDA as described in Section 2 by

introducing n d-dimensional auxiliary variables stacked into the vector z1:n leads to the

augmented likelihood

πρ(y, z1:n|θ) ∝
n∏
i=1

π(yi|zi)κρ(zi,θ). (15)

The statistical model defined by (15) implies a hierarchical Bayesian model similar to the

localized one depicted on Figure 1(b) and corresponds in general to an approximation of

the initial one, see Example 2.

Example 2. Robust logistic regression – Assume that for all i ∈ [n], π(yi|θ) =

B
(
σ
(
xTi θ

))
, where B stands for the Bernoulli distribution, σ for the sigmoid function,

x = [x1, . . . ,xn] for the transpose of the design matrix and θ for the regression coeffi-

cients vector to infer. Then as proposed by Wang and Blei (2018), one can robustify

the inference by assuming that each observation yi is drawn from a local and independent

model B
(
σ
(
xTi zi

))
associated to an auxiliary parameter zi ∼ N (θ, ρ2Id). In this case,

κρ(z,θ) ∝ ∏n
i=1N (zi | θ, ρ2Id).

Beyond the convenient Gaussian prior κρ, its choice can be motivated by robust loss

functions. In the statistical machine learning literature, the absolute or Huber losses are of

common use (She and Owen 2011). In Bayesian linear inverse problems considered in the

signal processing community, it is classical to approximate a complicated forward physical
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model in order to yield tractable computations. If the latter can be written as y = h(θ)+ε,

with ε ∼ π(ε), then introducing a latent variable z ∼ κρ(z, h(θ)) such that y = z+ε allows

to take into consideration the model approximation. In those cases, one can set κρ to be

the distribution of the modeling error which could be adjusted thanks to some expertise.

3.4 Inheriting sophisticated inference schemes from ABC

Finally, this section shows that AXDA models, by sharing strong connections with ABC,

might inherit sophisticated algorithms to sample from (4).

ABC stands for a family of methods that permit to cope with intractable likelihoods by

sampling from the latter instead of evaluating them. In a nutshell, if one’s goal is to infer

a parameter θ based on a posterior of interest, the simplest ABC rejection sampler is as

follows. At iteration t, draw a candidate θ(t) from the prior, generate pseudo-observations z

from the likelihood given this candidate and accept θ(t) if z = y where y is the observations

vector. Many more sophisticated ABC samplers have been derived. We refer the interested

reader to the recent review by Sisson et al. (2018a) for more information about ABC

methods.

Among a huge literature on ABC (also called likelihood-free) methods, noisy ABC

approaches proposed and motivated by Fearnhead and Prangle (2012) andWilkinson (2013)

are strongly related to AXDA. Indeed, only comparing the underlying models, AXDA

with observation splitting is equivalent to noisy ABC. To see this, let π(y|θ) stand for an

intractable likelihood. Noisy ABC replaces the exact inference based on π by considering

the pseudo-likelihood with density

πρ(y|θ) ,
∫

Θ
πρ(y, z|θ)dz =

∫
Θ
π(z|θ)κρ(z,y)dz. (16)

This density has exactly the same formulation as the one defined in (4) except that noisy

ABC splits the observations y instead of the parameter of interest θ. Capitalizing on

this equivalence property, also pointed out by Rendell et al. (2020), one can derive efficient

algorithms for AXDA from the ABC framework. For instance, Rendell et al. (2020) recently

built on the works of Beaumont et al. (2002); Del Moral et al. (2012) in the ABC context to

propose a bias correction approach and a sequential Monte Carlo (SMC) algorithm avoiding
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the tuning of the tolerance parameter ρ. Obviously, many other inspirations from ABC can

be considered, such as the parallel tempering approach of Baragatti et al. (2013) among

others, to make the inference from an AXDA model more flexible and efficient.

4 Theoretical guarantees

By building on existing approaches, Section 3 showed that AXDA can be used in quite

general and different settings depending on ones motivations. In order to further promote

the use of such approximate augmented models, this section goes beyond the empirical

bias analysis performed by previous works and provides quantitative bounds on the error

between the initial and the approximate model. More precisely, for a fixed tolerance pa-

rameter ρ > 0, non-asymptotic results on the error associated to densities, potentials and

credibility regions are derived. We will assume all along this section that Θ = Rd. The

proofs of the results of this section can be found in Section 1 of the supplementary material.

4.1 Results for standard kernels

In this section, we consider the case κρ(z,θ) ∝ ρ−dK(ρ−1(θ − z)) where K is a kernel, see

Section 2.2. Under this model, πρ stands for the convolution of π and κρ and the following

results hold.

Proposition 1. Let π ∈ L1. The marginal with density πρ in (3) has the following prop-

erties.

i) Let π stand for a pdf associated to the random variable θ and Eκρ(X) = 0. Then, the

expectation and variance under πρ are given by

Eπρ(θ) = Eπ(θ) (17)

varπρ(θ) = varπ(θ) + varκρ(θ). (18)

ii) supp(πρ) ⊆ S where S is the closure of {x + z; x ∈ supp(π), z ∈ supp(κρ)}. The

notation supp(h) = {x ∈ X | h(x) 6= 0} refers to the support of a function h : X → R.

iii) If both π and κρ are log-concave, then πρ is log-concave.
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iv) If κρ ∈ C∞(Rd) and |∂kκρ| is bounded for all k ≥ 0, then πρ is infinitely differentiable

w.r.t. θ.

Proposition 1 permits to draw several conclusions about the inference based on πρ.

Firstly, the infinite differentiability of πρ (Property iv)) implies that it stands for a smooth

approximation of π, see Figure 5 in Section 5.2. Secondly, Property i) of Proposition 1 is

reassuring regarding the inference task. Indeed, if π stands for a prior distribution, then

considering the approximation πρ simply corresponds to a more diffuse prior knowledge

around the same expected value, see Section 5.2. Thus, more weight will be given to

the likelihood if a posterior distribution is derived with this prior. On the other hand, if π

stands for a likelihood, then considering the approximation πρ yields the opposite behavior:

the likelihood becomes less informative w.r.t. the prior. This idea is directly related to

robust hierarchical Bayesian models discussed in Section 3.3.

We now provide quantitative bounds on the approximation implied by considering the

marginal πρ instead of π. For p ≥ 1, we define the p-Wasserstein distance between π and

πρ by

Wp(π, πρ) =
(

min
µ

{∫
Rd

∫
Rd
‖θ − z‖p2 dµ(z,θ);µ ∈ Γ(πρ, π)

})1/p

, (19)

where Γ(πρ, π) is the set of probability distributions µ(θ, z) with marginals πρ and π w.r.t.

θ and z, respectively. Under mild assumptions on the kernel K, Proposition 2 gives a

simple and practical upper bound on (19).

Proposition 2. Assume that πρ in (3) stands for a pdf associated to the variable θ. Let

p ≥ 1 such that mp ,
(∫

Rd
‖u‖p2 K(u)du

)1/p
<∞. Then, we have

Wp(π, πρ) ≤ ρmp. (20)

Note that (20) holds without assuming additional assumptions on the initial density π

such as infinite differentiability. If the latter is assumed w.r.t. the parameter of interest

θ, then one can estimate the bias π − πρ with a Taylor expansion of π similarly to bias

analysis in ABC, see Sisson et al. (2018b). Table 1 gives closed-form expressions of m2

for the multivariate generalizations of standard kernels. One can see that the constant m2
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Table 1: Closed-form expressions of m2 appearing in (20) for multivariate generalizations

of standard kernels where d denotes the dimension.

Gaussian Cauchy Laplace Dirichlet Uniform Triangular Epanechnikov

m2
√
d -

√
2d -

√
d/3

√
d/6

√
d/5

has the same dependence w.r.t. the dimension d for the considered standard kernels K.

Hence, in high-dimensional scenarios, the approximation quality will be more affected by

an inappropriate value for the tolerance parameter ρ rather than by the choice of K. In

Section 5, we illustrate Proposition 2 with numerical experiments.

4.2 Pointwise bias for Bregman divergences

In complement to Section 4.1 where κρ was built using kernels, we now analyze the bias

induced by considering πρ when κρ is derived from a Bregman divergence dψ (see Definition

1), that is

κρ(z,θ) ∝ exp
(
−dψ(z,θ)

ρ

)
. (21)

Under regularity assumptions on both π and κρ, Proposition 3 shows the dependence of

the pointwise bias πρ− π w.r.t. to the tolerance parameter ρ when the latter is sufficiently

small.

Proposition 3. Assume that π is analytic and twice differentiable on Rd and so does dψ
w.r.t. its first argument. Let θ ∈ Rd such that both Hπ(θ) and Hdψ(θ)−1 exist and are

continuous, where Hπ(θ) is the Hessian matrix of π and Hdψ(θ) , ∂2dψ(z,θ)
∂z2

∣∣∣∣
z=θ

is the

Hessian matrix associated to dψ(·,θ). Then, if

• ‖Hπ‖ ≤ C <∞

•
∥∥∥Hdψ

∥∥∥ ≥ c > 0,

it follows that

πρ(θ)− π(θ) = O(√ρ). (22)
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In addition, if we have
∫
Rd

uκρ(θ −
√
ρu,θ)du = 0d, then

πρ(θ)− π(θ) = ρ

2Trace
(
Hπ(θ)Hdψ(θ)−1

)
+ o(ρ). (23)

Note that when ψ(z) = ‖z‖2
2 /2, κρ stands for a Gaussian smoothing kernel, see Section

4.1. In that case, we have the sanity check that the dependence w.r.t. ρ of the bias between

π and πρ in (23) is the same as the one derived by Sisson et al. (2018b) when interpreting

κρ as a kernel.

4.3 A detailed non-asymptotic analysis for Gaussian smoothing

The previous sections gave quantitative approximation results for a large class of densities

κρ built either via a kernel or a Bregman divergence. In this section, we provide comple-

mentary results by restricting our analysis on the case

κρ(z,θ) = N (z|θ, ρ2Id). (24)

This particular yet convenient assumption will allow to complement and sharpen results of

Section 4.1 by deriving quantitative bounds which take into account the regularity prop-

erties of f . Furthermore, these bounds can be extended to a sum of potential functions

f = ∑
i fi and used to assess the bias associated to both log-densities and credibility re-

gions. This analysis is also motivated by the fact that the Gaussian smoothing case has

been widely advocated in the literature since it generally leads to simple inference steps

(Holmes and Mallick 2003; Giovannelli 2008; Liechty et al. 2009; Dümbgen and Rufibach

2009), and can be related to both the ADMM in optimization (Boyd et al. 2011; Vono et al.

2019) and the approximation involved in proximal MCMC methods (Pereyra 2016; Dur-

mus et al. 2018; Salim et al. 2019). Unfortunately, a straigthforward generalization of the

proof techniques used in the sequel does not give informative upper bounds for smoothing

associated to other Bregman divergences.

4.3.1 Assumptions

To derive non-asymptotic bounds between quantities related to πρ defined in (3) and π in

(1), some complementary assumptions on f = − log π will be required. They are detailed

15



hereafter. For simplicity and with a little abuse of notations, we also denote here by f(θ)

the potential associated to (1) when π(y|θ) stands for a likelihood.

(A1) f is Lf -Lipschitz w.r.t. ‖·‖2, that is ∃ Lf ≥ 0 such that for all θ,η ∈ Rd, |f(θ) −

f(η)| ≤ Lf ‖θ − η‖2. When π is a likelihood, it is further assumed that Lf is inde-

pendent of y.

(A2) f is continuously differentiable and has an Mf -Lipschitz continuous gradient w.r.t.

‖·‖2, that is ∃Mf ≥ 0 such that for all θ,η ∈ Rd,
∥∥∇f(θ)−∇f(η)

∥∥
2 ≤Mf ‖θ − η‖2.

(A3) f is convex, that is for every α ∈ [0, 1], θ,η ∈ Rd, f(αθ + (1− α)η) ≤ αf(θ) + (1−

α)f(η).

(A4) Mf =
∫
Rd

∥∥∇f(θ)
∥∥2

2 π(θ)dθ <∞.

Assumptions (A1), (A2) and (A3) on the potential f stand for standard regularity

assumptions in the optimization literature and cover a large class of functions f (Beck and

Teboulle 2009; Bolte et al. 2014). In the broad statistical community, (A1) has been used

by Durmus et al. (2018) to derive non-asymptotic bounds on the total variation distance

between probability distributions while (A2) stands for a sufficient condition to have a

strong solution to the overdamped Langevin stochastic differential equation (Durmus and

Moulines 2017).

Under the previous assumptions (not used all at once), non-asymptotic upper bounds on

the total variation distance between πρ and π are derived in Section 4.3.2. Then, Sections

4.3.3 and 4.3.4 take advantage of this bound to state theoretical properties on the potential

functions and credibility regions.

4.3.2 Non-asymptotic bounds on the total variation distance

In this section, we make additional regularity assumptions on the potential f in order to

show quantitative results depending explicitly on regularity constants associated to f . Two

different cases will be considered, namely Lipschitz potentials, and differentiable, gradient-

Lipschitz and convex ones.

Lipschitz potential – When the potential function f is assumed to be Lipschitz

continuous but not necessarily continuously differentiable, the following result holds.
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Theorem 1. Let a potential function f satisfy (A1). Then,

∥∥∥πρ − π∥∥∥TV
≤ 1−∆d(ρ), (25)

where

∆d(ρ) = D−d(Lfρ)
D−d(−Lfρ) . (26)

The function D−d is a parabolic cylinder function defined for all d > 0 and z ∈ R by

D−d(z) = exp(−z2/4)
Γ(d)

∫ +∞

0
e−xz−x

2/2xd−1dx. (27)

As expected from Property 1, note that this bound tends towards zero when ρ → 0.

Additionally, this bound depends on few quantities that can be computed, bounded or

approximated in real applications: the dimension of the problem d, the Lipschitz constant

Lf associated to the regularized potential f and the tolerance parameter ρ. In the limiting

case ρ→ 0, the following equivalent function for the upper bound derived in (25) holds.

Corollary 1. In the limiting case ρ→ 0, we have:

∥∥∥πρ − π∥∥∥TV
≤ ρLf

2
√

2Γ
(
d+ 1

2

)

Γ
(
d

2

) + o(ρ), (28)

where for all z > 0 as Γ(z) =
∫ +∞

0
xz−1e−xdx.

Under some regularity conditions (here Lipschitz continuity) on the potential function

f , Proposition 1 states that
∥∥∥πρ − π∥∥∥TV

grows at most linearly w.r.t. the parameter ρ and

w.r.t. Lf when ρ is sufficiently small. Moreover, using Stirling-like approximations when d

is large in the equivalence relation (28) may give a mild dependence on the dimensionality

of the problem in O
(
Lfd

1/2
)
. Potential functions verifying the hypothesis of Theorem 1

are common in machine learning and signal/image processing problems, see Section 3 in the

online supplementary material. As an archetypal example, the sparsity promoting potential

function defined for all θ ∈ Rd by f(θ) = τ ‖θ‖1 with τ > 0 is Lipschitz continuous with

Lipschitz constant Lf = τ
√
d and satisfies Theorem 1 and Proposition 1. In this case,
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the dependence of (28) is linear w.r.t. d when d is large and ρ is small. Note also that

continuously differentiable functions on a compact set are Lipschitz continuous.

Convex and gradient-Lipschitz potential – We now show a complementary result

by assuming f to be convex and continuously differentiable with a Lipschitz-continuous

gradient.

Theorem 2. Let a potential function f satisfy (A2), (A3) and (A4). Then, when π stands

for a pdf associated to θ, we have:
∥∥∥πρ − π∥∥∥TV

≤ 1− 1
(1 + 2ρ2Mf )d/2

(
1− ρ4MfMf

1 + 2ρ2Mf

)
. (29)

In the limiting case ρ→ 0, the upper bound in (29) has a simpler expression as shown

hereafter.

Corollary 2. In the limiting case ρ→ 0, we have:
∥∥∥πρ − π∥∥∥TV

≤ ρ2dMf + o(ρ2). (30)

Note that the dependences w.r.t. both ρ and d in Corollary 1 and 2 are similar to the

ones found by Nesterov and Spokoiny (2017) for optimization purposes.

Figure 2 gives the behavior of the upper bounds in (25) and (29) w.r.t. the dimen-

sionality d of the problem ranging from 1 to 106 and as a function of ρ in log-log scale.

The linear (resp. quadratic) relation between this upper bound and ρ shown in (28) (resp.

(30)) is clearly observed for small values of ρ. Nonetheless, these upper bounds are not a

silver bullet. Indeed, as expected, for a fixed value of the parameter ρ, the approximation

error increases as the dimension d grows. Thus, these bounds suffer from the curse of

dimensionality and become non-informative in high-dimension if ρ is not sufficiently small.

Theorem 1 is easily extended to the case where the initial density π is expressed as a

product of several terms. If π stands for the pdf associated to the variable θ, this boils

down to considering

π(θ) ∝
J∏
j=1

πj(θ) ∝ exp
− J∑

j=1
fj(θ)

 , (31)
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Figure 2: Behavior of the quantitative bounds shown in Theorems 1 and 2 w.r.t. ρ in

log-log scale for a set of dimensions d. The other quantities appearing in the bounds have

been set to 1.

where for all j ∈ [J ], fj : Rd → R, and a natural generalization of AXDA when applied to

each πj, which writes

πρ(θ, z1:J) ∝
J∏
j=1

πj(zj)κρj(zj;θ) ∝ exp
− J∑

j=1
fj(zj) + 1

2ρ2
j

∥∥∥zj − θ∥∥∥2

2

 . (32)

Under this product form, we have the following corollary.

Corollary 3. For all j ∈ [J ], let fj satisfy (A1). Then,

∥∥∥πρ − π∥∥∥TV
≤ 1−

J∏
j=1

∆(j)
d (ρj), (33)

where ∆(j)
d (ρj) = D−d(Lfjρj)/D−d(−Lfjρj).

Unfortunately, Theorem 2 cannot be extended to the multiple splitting scenario. We are

nevertheless confident that quantitative bounds can be found with different proof techniques

but this task goes beyond the scope of this paper.

4.3.3 Uniform bounds on potentials

From an optimization point of view, it is quite common to consider potential functions

associated to densities. For such applications, we give hereafter a quantitative uniform

bound on the difference between the potential functions associated to π and πρ. Similarly
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to the definition of the potential function f in (1), we define the potential function fρ

associated to the approximate marginal πρ in (3), for all θ ∈ Rd, by

fρ(θ) = − log
∫
Rd

exp
(
−f(z)

)
κρ(z,θ)dz. (34)

By considering a Gaussian smoothing kernel κρ, the potential fρ becomes

fρ(θ) = − log
∫
Rd

exp
(
−f(z)− 1

2ρ2 ‖z− θ‖
2
2

)
dz + d

2 log(2πρ2). (35)

Note that fρ(θ) appears as a regularized version of f(θ).

Proposition 4. Let f satisfy (A1). Then, for all θ ∈ Rd,

Lρ ≤ fρ(θ)− f(θ) ≤ Uρ, (36)

with

Lρ = logNρ − logD−d(−Lfρ), (37)

Uρ = logNρ − logD−d(Lfρ), (38)

and

Nρ = 2d/2−1Γ
(
d/2

)
Γ(d) exp

(
L2
fρ

2/4
) . (39)

It is easily observed that these bounds are informative in the limiting case ρ→ 0 since

they both tend towards zero.

4.3.4 Uniform bounds on credibility regions

When π stands for the density associated to a posterior distribution, one advantage of

Bayesian analysis is its ability to derive the underlying probability distribution of the vari-

able of interest θ and thereby to provide credibility information under this distribution.

This uncertainty information is particularly relevant and essential for real-world applica-

tions. Since the marginal πρ stands for an approximation of the original target distribution

π, it is important to control the credibility regions under πρ w.r.t. those drawn under π.

The control in total variation distance given by Theorem 1 is already a good indication.

However, it is possible to quantify more precisely the difference between the credible regions

(Robert 2001) with confidence level (1− α) under πρ and π, as stated below.
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Proposition 5. Let π be a posterior distribution associated to θ and f such that (A1) is

verified. Let Cρα an arbitrary (1−α)-credibility region under πρ, that is Pπρ (θ ∈ Cρα) = 1−α

with α ∈ (0, 1). Then,

(1− α) Nρ

D−d(−Lfρ) ≤
∫
Cρα
π(θ)dθ ≤ min

(
1, (1− α) Nρ

D−d(Lfρ)

)
, (40)

where Nρ is defined in (39).

Proposition 5 states that the coverage of π under Cρα can be determined for a fixed value

of ρ. Thus, it is even possible to obtain a theoretical comprehensive description of Cρα w.r.t.

the initial target density π before conducting an AXDA-based inference. The bounds in

(40) permit to choose a parameter ρ in order to ensure a prescribed coverage property. The

behavior of these bounds w.r.t. ρ is the same as in Section 4.3.2, i.e., linear behavior w.r.t.

ρ when this parameter is sufficiently small.

5 Numerical illustrations

This section illustrates the quantitative results shown in Sections 4.1 and 4.3 on three differ-

ent examples which classically appear in statistical signal processing and machine learning.

As shown in Table 1, the bias induced by considering πρ is mostly driven by the value of

the tolerance parameter ρ rather than by the choice of κρ. Hence, for simplicity, most of

the numerical illustrations hereafter consider the case where κρ is a Gaussian smoothing

kernel. Additional illustrations can be found in the online supplementary material.

5.1 Multivariate Gaussian example

We start by performing a sanity check with the simple case where π stands for a multivariate

Gaussian density that is

π(θ) = N (θ|µ,Σ), (41)

where Σ is assumed to be positive definite. If κρ(·,θ) is taken to be Gaussian density with

mean θ and covariance matrix ρ2Id, then one can show that

πρ(θ) = N (θ|µ,Σ + ρ2Id). (42)

21



−4 −2 0 2 4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Gaussian kernel

ρ = 0.1

ρ = 0.5

ρ = 1

ρ = 2

ρ = 5

π(θ)

−4 −2 0 2 4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Uniform kernel

ρ = 0.1

ρ = 0.5

ρ = 1

ρ = 2

ρ = 5

π(θ)

Figure 3: Bias between πρ and π in the case Θ = R, π = N (µ, σ2) with µ = 0 and σ = 1.

(left) πρ is built with a Gaussian kernel N (0, ρ2) and (right) with a uniform kernel on

[−ρ, ρ]. Note that the curves associated to π and πρ for ρ = 0.1 are overlapping.

In particular, let consider the univariate setting, that is Θ = R, Σ = σ2. In this case, the

variance under πρ is σ2 + ρ2 and simply corresponds to the variance under π inflated by a

factor ρ2. Therefore, the approximation will be reasonable if ρ2/σ2 is sufficiently small, see

Figure 3. In this Figure, we also show the approximation induced by considering a uniform

kernel instead of a Gaussian one. The smoothing via the uniform kernel performs slightly

better than Gaussian smoothing due to its lower variance. In both cases, the approximation

is reasonable for small ρ although πρ, built with a uniform kernel, no longer belongs to the

Gaussian family.

In order to illustrate the proposed upper bounds on both 2-Wasserstein and total vari-

ation distances, we consider a covariance matrix Σ which stands for a squared exponential

matrix commonly used in applications involving Gaussian processes (Higdon 2007) and

which writes

Σij = 2 exp
(
−(si − sj)2

2a2

)
+ 10−6δij,∀i, j ∈ [d] (43)

where a = 1.5, si,i∈[d] are regularly spaced scalars on [−3, 3] and δij = 1 if i = j and zero

otherwise.

Figure 4 shows the behavior of the quantitative bounds derived in Proposition 2 and

Theorem 2 for d ∈ {10, 100}. The Gaussian case allows to compute exactly W2(π, πρ) by

noting thatW 2
2 (π, πρ) = Trace(Σ+ρ2Id−2ρΣ1/2). On the other hand,

∥∥∥π − πρ∥∥∥TV
has been
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estimated by using a Monte Carlo approximation. One can note that the general upper

bound on the 2-Wasserstein distance is quite conservative for small ρ since it does not catch

the behavior in O(ρ2) when ρ is small. This is essentially due to the fact that this bound

only assumes a finite moment property and does not require any regularity assumptions on

π such as differentiability or strong convexity of its potential. On the contrary, the bound

on the total variation distance, derived under stronger assumptions, manages to achieve a

rate of the order O(ρ2) for small ρ.
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Figure 4: For d ∈ {10, 100}, illustration of the quantitative bounds (20) and (29) associated

to 2-Wasserstein and total variation distances, respectively. The decay in O(ρ2) is shown

via the dashed line Cρ2 where C is a constant.

5.2 Sparse linear regression

We study here a generalized version of the least absolute shrinkage and selection operator

(lasso) regression problem analyzed by Park and Casella (2008). We assume a standard

linear regression problem where centered observations y ∈ Rn are related to the unknown

parameters θ ∈ Rd via the model y = Xθ + ε, where X ∈ Rn×d stands for a known

standardized design matrix and ε ∼ N (0n, σ2In). By considering a generalized Laplacian

prior distribution for θ, the target posterior distribution has density for all θ ∈ Rd,

π(θ) , π(θ|y) ∝ exp
(
− 1

2σ2 ‖y−Xθ‖2
2 − g(Bθ)

)
(44)

where g(Bθ) = τ ‖Bθ‖1 with τ > 0 and B ∈ Rk×d an arbitrary matrix acting on θ. The

choice of such a prior may promote a form of sparsity (lasso). For instance, this matrix B

might stand for a p-th order difference operator (Bredies et al. 2010) which is highly used
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in signal and image processing problems. As an archetypal example, the case p = 1 leads

to the well-known total variation regularization function (Chambolle et al. 2010) used to

recover piecewise constant signals.

Note that because of the presence of the matrix B, finding an exact data augmentation

leading to an efficient sampling scheme is not possible for the general case B 6= Id. Instead,

an AXDA model makes the posterior sampling task possible. Indeed, by regularizing the

prior with a Gaussian term, the joint density πρ writes

πρ(θ, z) ∝ exp
(
− 1

2σ2 ‖y−Xθ‖2
2 − g(z)− 1

2ρ2 ‖Bx− z‖2
2

)
. (45)

By resorting to a Gibbs algorithm to sample from (45), one can now use a simple data

augmentation scheme (Park and Casella 2008) to sample from the z-conditional. On the

other hand, sampling from the θ-conditional, which is a multivariate Gaussian distribution,

can be undertaken efficiently with state-of-the-art approaches (Papandreou and Yuille 2010;

Barbos et al. 2017; Marnissi et al. 2018).

In this specific case, the potential gρ associated to the smoothed prior distribution (see

(35)) has a closed-form expression given for all θ ∈ Rd, by

gρ(θ) = k

2 log(2πρ2)− log
k∏
i=1

∫
R

exp
(
−τ |zi| −

1
2ρ2 (bTi θ − zi)2

)
dzi

= k

2 log(2πρ2) (46)

− log
k∏
i=1

(
a(θ)

[
exp

(
b(θ)2

) {
1− erf(b(θ))

}
+ exp

(
c(θ)2

) {
1− erf(c(θ))

}])
(47)

with a(θ) =
√
πρ2/2 exp

(
−(bTi θ)2/(2ρ2)

)
, b(θ) =

√
ρ2/2(τ − bTi θ/ρ2), c(θ) =

√
ρ2/2(τ +

bTi θ/ρ2) and bi ∈ Rd standing for the i-th row of B. Note that in more general cases where

gρ has no closed form, one can estimate it by a Monte Carlo approximation.

Figure 5 shows the behavior of the regularized potential gρ defined in (47) for several

values of the parameter ρ along with the associated smoothed prior and posterior dis-

tributions. For simplicity and pedagogical reasons, the univariate case corresponding to

θ = θ1 ∈ R and B = 1 has been considered. The regularization parameter τ has been

set to τ = 1. The contours of the shaded area correspond to g + Lρ and g + Uρ. The

potential gρ is a smooth approximation of the potential g associated to the initial prior as
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Figure 5: From left to right, ρ = 0.01, ρ = 0.1 and ρ = 1. (1st row) Behaviors of g (blue)

and gρ (orange) where the contours of the shaded area correspond to g + Lρ and g + Uρ;

(2nd row) the corresponding normalized smoothed prior densities proportional to exp(−g)

and exp(−gρ); (3rd row) posterior densities πρ w.r.t. ρ.

expected, see Property iv) in Proposition 1. Note that the inequalities derived in (36) are

verified. Although this approximation seems similar to the Moreau-Yosida regularization

of a non-smooth potential function (Combettes and Pesquet 2011), the rationale behind

this approximation is different. Indeed, the Moreau-Yosida envelope stands for a particular

instance of the infimal convolution between two convex functions (an initial potential and

a Gaussian one). On the other hand, gρ is the potential associated to a smoothed density

obtained by convolution with a Gaussian kernel. In addition, the third row of Figure 5
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Table 2: Illustration of the bound derived in (40) for the marginal posterior πρ depicted

in Section 5.2. The (1-α)-credibility intervals Cα and Cρα are the highest posterior density

regions associated to each density with α = 0.05.

ρ Cα Cρα
∫
Cρα π(θ1)dθ1 Iρα

10−3 [-0.47,1.24] [-0.47,1.24] 0.95 [0.949,0.951]

10−2 idem [-0.47,1.24] 0.95 [0.948,0.952]

10−1 idem [-0.47,1.24] 0.95 [0.88,1]

100 idem [-0.47,1.37] 0.96 [0.34,1]

shows the form of the posterior of θ1 defined in (45) for y = 1, x = 2 and σ = 1 and derived

from the smoothed prior distributions shown in Figure 5. For sufficiently small values of

ρ, the marginal πρ stands for a quite accurate approximation of the original target π.

Table 2 illustrates the bounds derived in (40) for ρ ∈
{

1, 10−1, 10−2, 10−3
}
. For each

case, the values of the bounds are summarized in the interval

Iρα = [(1− α)Nρ/D−d(−Lfρ),min(1, (1− α)Nρ/D−d(Lfρ)], (48)

and the real coverage
∫
Cρα π(θ1)dθ1 is also reported. The (1-α)-credibility intervals Cα and

Cρα have been chosen to be the highest posterior density regions associated to each density

with α = 0.05. Note that the theoretical coverage interval Iρα becomes informative only if

ρ is sufficiently small which is not surprising since the assumptions on the potential of πρ
are weak. Indeed, the form of the density (e.g. symmetry or unimodality) is not taken into

account in the derived bounds. Regarding the empirical value of the coverage
∫
Cρα π(θ1)dθ1,

we emphasize that the marginal πρ stands for a conservative approximation of π in this

example. Indeed, in each case, the (1-α)-credibility interval under πρ denoted Cρα covers at

least 100(1− α)% of the probability mass under π.

5.3 Illustration on an image inpainting problem

We illustrate here the correctness of the proposed approach on a multidimensional and

non-Gaussian example which classically appears in image processing. To this purpose, we
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consider the observation of a damaged and noisy image y ∈ Rn (represented as a vector by

lexicographic ordering) related to the unknown original image θ ∈ Rd by the linear model

y = Hθ + ε, ε ∼ N (0n, σ2In), (49)

where n < d, H ∈ Rn×d stands for a decimation binary matrix. The dimension d being

typically large (e.g., 103 ≤ d ≤ 109), these problems require scalable inference algorithms.

Since the matrix H is not invertible, the linear inverse problem (49) is ill-posed. To cope

with this issue, we assign the total variation prior distribution to the unknown parameter

θ, leading to the posterior distribution

π(θ|y) ∝ exp
− 1

2σ2 ‖y−Hθ‖2
2 − τ

∑
1≤i≤d

∥∥(Dθ)i
∥∥

2

 , (50)

where τ > 0 is a regularization parameter, Dθ = (D1θ,D2θ) ∈ R2×d is the two-dimensional

discrete gradient associated to the image θ and the notation Mi stands for the i-th column

of the matrix M, see Chambolle et al. (2010) for more details about the total variation

regularization. The presence of the operator D and the non-differentiability of the total

variation norm rule out the use of common data augmentation schemes and simulation-

based algorithms (e.g., Hamiltonian and Langevin Monte Carlo methods). Possible sur-

rogates are proximal MCMC methods (Pereyra 2016; Durmus et al. 2018) which replace

the non-differentiable posterior distribution by a smooth approximation based on the prox-

imity operator (Combettes and Pesquet 2011) of the total variation norm. However, the

latter does not admit a closed-form expression and iterative routines are commonly used

to approximate the latter (Chambolle 2004) leading to higher computational costs.

To mitigate these issues, we propose to rely on a particular instance of AXDA by

smoothing the total variation prior with a Gaussian term, leading to the approximate joint

posterior density

πρ(θ, z|y) ∝ exp
− 1

2σ2 ‖y−Hθ‖2
2 − τ

∑
1≤i≤d

‖Zi‖2 −
1

2ρ2 ‖Z−Dθ‖2
2

 , (51)

where Z = (z1, z2) ∈ R2×d. By relying on (51), the inference is now simplified and can

be conducted with a Gibbs sampler, see Section 4 in the supplementary material. Since

ker(H) ∩ ker(D) = {0d}, the conditional posterior distribution of θ is a non-degenerate

27



multivariate Gaussian distribution. Samples from the latter can be obtained efficiently

with the two-dimensional discrete Fourier transform by exploiting the periodic boundary

conditions for θ (Wang et al. 2008; Marnissi et al. 2018). On the other hand, samples from

πρ(Z|θ) can be drawn efficiently using exact data augmentation, see Kyung et al. (2010).

All the inference details are given in Section 4 of the supplementary material.

We illustrate the proposed approximate model πρ by considering the Shepp-Logan phan-

tom magnectic resonance image of size 100 × 100 (d = 104), see Figure 6. We artifically

damaged and added noise to this image to build a noisy observation y consisting of 90%

randomly selected pixels of the initial image. The standard deviation of the Gaussian noise

and the regularization parameter have been set to σ = 7× 10−2 (corresponding to a SNR

of 58dB) and τ = 5, respectively. The tolerance parameter has been set to ρ = 0.1.

In order to assess the bias of the proposed approach, we implemented the Moreau-Yosida

Metropolis-adjusted Langevin algorithm (MYMALA) of Durmus et al. (2018), specifically

designed to sample exactly from high-dimensional and non-smooth posterior distributions.

For all the MCMC algorithms, the initialization has been set to θ[0] = 0d. We generated

105 samples and kept the last 5× 104 ones.

Figure 6 shows the minimum mean square estimate (MMSE) under πρ along with the

original image. One can denote that the MMSE under πρ is visually similar to the original

image and hence coherent with the reconstruction task. The relative residual error between

the former and the MMSE under π is of order 2%. The main differences are located on

the boundaries of the image, as depicted in the figure on the left which shows the absolute

difference between the pixels of the two posterior means Eπ(θ) and Eπρ(θ).

To emphasize the correctness of the proposed approach beyond the comparision between

pointwise estimates, we also paid attention to the comparison between posterior credibility

sets induced by both π and πρ. To this purpose, we considered the highest posterior density

region given by

C?α = {θ ∈ Rd | f(θ) ≤ γα}, (52)

where γα ∈ R is such that
∫
C?α π(θ|y)dθ = 1− α and f is the potential function associated

to π(θ|y).

Figure 7 shows the different values of the scalar summary γα estimated using π and
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Original MMSE under πρ |Eπ(θ)− Eπρ(θ)|

0

> 5

Figure 6: From left to right: original image, minimum mean square estimate (MMSE)

under πρ and absolute bias between the posterior means under πρ and π.

the scalar γρα estimated using πρ for α ∈ [0.01, 0.99]. Note that the approximation error

associated to γα is of order 2.6% whatever the value of α, which supports the use of πρ
to conduct Bayesian uncertainty analysis in this problem. After the burn-in period, the

efficiency of the Gibbs algorithm used to sample from πρ has been measured by comparing

the effective sample size (ESS) associated to the slowest component of θ to the one ob-

tained with MYMALA. We found that the two ESS were roughly similar but the cost per

iteration of the Gibbs sampler (0.079 sec/iteration) is almost two times lower than that of

MYMALA (0.144 sec/iteration)1. In addition, the number of iterations required to reach

high-probability regions is much less important for the Gibbs sampler than for MYMALA,

showing the interest of AXDA, see Figure 7.

6 Conclusion

This paper presented a unifying framework for asymptotically exact data augmentation

(AXDA) schemes. AXDA introduces approximate densities in order to simplify the infer-

ence. By building on existing works which considered special instances of AXDA, we illus-

trate potential benefits that can be inherited by the proposed framework such as distributed

computations, robustness or sophisticated inference schemes from the ABC literature. On

top of these qualitative properties, we derived a set of theoretical guarantees on the bias

involved in the proposed methodology. The latter encompass a large class of AXDA mod-
1Both algorithms have been implemented in Matlab with the same level of efficiency.
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Figure 7: (left) relative error between the threshold value estimated with π denoted γα and

the one estimated with πρ denoted γρα and (right) Potential f = − log π w.r.t. the number

of iterations t for both MYMALA and the Gibbs sampler targetting πρ.

els and a detailed non-asymptotic analysis has been done for Gaussian smoothing. These

results have been illustrated on several cases that can arise in statistical learning or signal

processing showing the broad scope of application of the proposed approach. In practice, we

emphasize that AXDA models can remarkably improve the inference task in big data and

high-dimensional settings. In summary, at the price of an approximation which comes with

theoretical guarantees, AXDA approaches appear to be a general, systematic and efficient

way to conduct simple inference in a wide variety of large-scale problems. They provide

accurate estimates with relevant confidence intervals that are crucial in many applications,

in particular when no ground truth is available.
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SUPPLEMENTARY MATERIALS

Appendices: The supplementary material includes the proofs of Theorems 1 and 2; Propo-

sitions 1, 2, 3, 4 and 5; and Corollary 1 and 3. It also includes additional details about
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standard kernels and Bregman divergences, inference details associated to the image

inpainting example in Section 5.3 and derivations of classical inference algorithms to

target AXDA models. (supplementary_material.pdf, pdf file)

Package for AXDA: The computer code associated to the illustrations and experiments

described in this paper is also available online. More precisely, the package “AXDA”

contains a Python jupyter notebook to reproduce all the tables and figures of the

paper and a Matlab-code associated to the image inpainting example along with a

README file. (axda.zip, zipped file)
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SUPPLEMENTARY MATERIALS

1 Proofs

1.1 Proof of Proposition 1

Property i) follows from the fact that πρ stands for a convolution integral between π and

κρ, i.e. πρ = π ∗ κρ. Therefore, the expectation and variance under πρ are the sum

of the expectations and variances of two independent random variables under π and κρ

respectively. Property ii) follows directly from (Folland 1999, Proposition 8.6). Property

iii) follows from the fact that log-concavity is preserved by convolution of distributions

(Dharmadhikari and Joag-Dev 1988, Theorem 2.18). Finally, Property iv) follows from the

dominated convergence theorem since π ∈ L1, κρ ∈ C∞(Rd) and for all k ≥ 0, |∂kκρ| ≤ Ck

(Folland 1999, Proposition 8.10).

1.2 Proof of Proposition 2

The proof can be found in Ambrosio et al. (2008, Lemma 7.1.10). Since it is quite short,

we recall it hereafter for completeness. We have

W p
p (π, πρ) = min

µ

{∫
Rd

∫
Rd
‖θ − z‖p2 dµ(θ, z);µ ∈ Γ(πρ, π)

}
(53)

≤
∫
Rd

∫
Rd
‖θ − z‖p2 πρ(θ, z)dθdz (54)

=
∫
Rd

∫
Rd
‖θ − z‖p2 κρ(z,θ)π(z)dθdz (55)

= ρ−d
∫
Rd

∫
Rd
‖θ − z‖p2 K(ρ−1(θ − z))π(z)dθdz (56)

= ρp
∫
Rd
‖u‖p2 K(u)du

∫
Rd
π(z)dz (57)

= ρp
∫
Rd
‖u‖p2 K(u)du. (58)
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1.3 Proof of Proposition 3

Let θ ∈ Rd. Since π has been assumed to be analytic and twice differentiable with Hπ

being continuous, there exists θ̃ lying between θ and θ −√ρu such that

πρ(θ) =
∫
Rd
π(z)κρ(z,θ)dz (59)

=

∫
Rd
π(θ −√ρu) exp

(
−
dψ(θ −√ρu,θ)

ρ

)
du

∫
Rd

exp
(
−
dψ(θ −√ρu,θ)

ρ

)
du

(60)

=

∫
Rd

[
π(θ)−√ρ∇π(θ)Tu + ρ

2uTHπ(θ̃)u
]

exp
(
−
dψ(θ −√ρu,θ)

ρ

)
du

∫
Rd

exp
(
−
dψ(θ −√ρu,θ)

ρ

)
du

, (61)

where Hπ stands for the Hessian matrix of π.

It follows that

πρ(θ) = π(θ) (62)

−√ρ∇π(θ)T
∫
Rd

u
exp

(
−
dψ(θ −√ρu,θ)

ρ

)
du

∫
Rd

exp
(
−
dψ(θ −√ρu,θ)

ρ

)
du

(63)

+ ρ

2

∫
Rd

uTHπ(θ̃)u exp
(
−
dψ(θ −√ρu,θ)

ρ

)
du

∫
Rd

exp
(
−
dψ(θ −√ρu,θ)

ρ

)
du

(64)

We now show that (63) = O(√ρ) and (64) = O(ρ). To this purpose, we use the analyticity

and two times differentiability of dψ w.r.t. to its first argument and the continuity of Hdψ .

By definition of the Bregman divergence (see Definition 1 in the main paper), dψ(θ,θ) = 0

and ∇zdψ(z,θ)
∣∣∣∣
z=θ

= 0d so that, for all u ∈ Rd,

dψ(θ −√ρu,θ) = ρ

2uTHdψ(θ′)u, (65)

where θ′ lies between θ and θ −√ρu.
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We first prove (64) = O(ρ). Using (65), we can re-write (64) as

(12) = ρ

2

∫
Rd

uTHπ(θ̃)u exp
(
−1

2uTHdψ(θ′)u
)

du
∫
Rd

exp
(
−1

2uTHdψ(θ′)u
)

du
. (66)

Since limρ→0 θ
′ = θ and limρ→0 θ̃ = θ, we will use the dominated convergence theorem

using that

lim
ρ→0

uTHπ(θ̃)u exp
(
−1

2uTHdψ(θ′)u
)

= uTHπ(θ)u exp
(
−1

2uTHdψ(θ)u
)
. (67)

In addition, since dψ is strictly convex w.r.t. its first argument, Hdψ is a symmetric and

positive-definite matrix. By using that ‖Hπ‖ ≤ C <∞ and
∥∥∥Hdψ

∥∥∥ ≥ c > 0, we have:∣∣∣∣∣∣uTHπ(θ̃)u exp
(
−1

2uTHdψ(θ′)u
)∣∣∣∣∣∣ ≤ C ‖u‖2

2 exp
(
− c2uTu

)
, (68)

which is integrable on Rd. From the dominated convergence theorem, it follows that∫
Rd

uTHπ(θ̃)u exp
(
−1

2uTHdψ(θ′)u
)

du =
∫
Rd

uTHπ(θ)u exp
(
−1

2uTHdψ(θ)u
)

du+o(1).

(69)

Similarly, ∫
Rd

exp
(
−1

2uTHdψ(θ′)u
)

du =
∫
Rd

exp
(
−1

2uTHdψ(θ)u
)

du + o(1). (70)

Hence,

(12) = ρ

2

∫
Rd

uTHπ(θ)u exp
(
−1

2uTHdψ(θ)u
)

du
∫
Rd

exp
(
−1

2uTHdψ(θ)u
)

du
+ o(ρ) (71)

= ρ

2Trace
(
Hπ(θ)Hdψ(θ)−1

)
+ o(ρ). (72)

We now prove (63) = O(√ρ). Using (65), it follows that

(11) = −√ρ∇π(θ)T

∫
Rd

u exp
(
−1

2uTHdψ(θ′)u
)

du
∫
Rd

exp
(
−1

2uTHdψ(θ′)u
)

du
. (73)
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Again, since
∥∥∥Hdψ

∥∥∥ has been assumed to be lower bounded, it follows from the dominated

convergence theorem that

(11) = −√ρ∇π(θ)T

∫
Rd

u exp
(
−1

2uTHdψ(θ)u
)

du
∫
Rd

exp
(
−1

2uTHdψ(θ)u
)

du
+ o(√ρ) (74)

= −√ρ∇π(θ)T

∫
Rd

u exp
(
−1

2uTHdψ(θ)u
)

du
∫
Rd

exp
(
−1

2uTHdψ(θ)u
)

du
+ o(√ρ) (75)

= o(√ρ) = O(√ρ). (76)

1.4 Proof of Theorem 1

We are interested in controlling w.r.t. ρ the quantity
∥∥∥πρ − π∥∥∥TV

. To this purpose, let

assume that f satisfies (A1) in the main paper. In the following, we will assume for

simplicity reasons that π stands for a pdf associated to the random variable θ. The case

when π is a likelihood is treated right after. Under this convention, it follows

∥∥∥πρ − π∥∥∥TV
= 1

2

∫
Rd

∣∣∣πρ(θ)− π(θ)
∣∣∣ dθ

= 1
2

∫
Rd
π(θ)

∣∣∣∣∣∣ CπCπρK(θ)− 1

∣∣∣∣∣∣ dθ, (77)

where Cπ and Cπρ are the normalizing constants associated to π and πρ, respectively, and

K(θ) = πρ(θ)Cπρ
π(θ)Cπ

(78)

=
∫
Rd

exp
(
f(θ)− f(z)− 1

2ρ2 ‖θ − z‖2
2

)
dz. (79)

Note that ∫
Rd
K(θ)π(θ)dθ = Cπρ

Cπ
. (80)

Since f is assumed to be Lf -Lipschitz, we have

K(θ) ≤
∫
Rd

exp
(
Lf ‖θ − z‖2 −

1
2ρ2 ‖θ − z‖2

2

)
dz. (81)
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We make the change of variables u = z− θ, which leads to

K(θ) ≤
∫
Rd

exp
(
Lf ‖u‖2 −

1
2ρ2 ‖u‖

2
2

)
du. (82)

Then, with another change of variables t = ‖u‖2, it follows

K(θ) ≤ 2πd/2

Γ
(
d

2

) ∫ ∞
0

td−1 exp
(
Lf t−

1
2ρ2 t

2
)

dt. (83)

This integral admits a closed-form expression (Gradshteyn and Ryzhik 2015, Formula 3.462

1.) by introducing the special parabolic cylinder function D−d defined for all d > 0 and

z ∈ R by

D−d(z) = exp(−z2/4)
Γ(d)

∫ +∞

0
e−xz−x

2/2xd−1dx. (84)

Then,

K(θ) ≤ A(ρ), (85)

where

A(ρ) =
2πd/2ρdΓ(d) exp

L2
fρ

2

4


Γ
(
d

2

) D−d
(
−Lfρ

)
. (86)

Then, with (80) and (85), we also have

Cπ
Cπρ
≥ 1
A(ρ) . (87)

We now use the triangle inequality in (77) which leads to

∥∥∥πρ − π∥∥∥TV
≤ 1

2

∫
Rd

∣∣∣∣∣∣ CπCπρK(θ)− 1
A(ρ)K(θ)

∣∣∣∣∣∣ π(θ)dθ +
∫
Rd

∣∣∣∣∣ 1
A(ρ)K(θ)− 1

∣∣∣∣∣ π(θ)dθ


= 1

2

∫
Rd

 Cπ
Cπρ
K(θ)− 1

A(ρ)K(θ)
 π(θ)dθ +

∫
Rd

(
1− 1

A(ρ)K(θ)
)
π(θ)dθ

 .
(88)
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The first term in this upper bound writes

∫
Rd

 Cπ
Cπρ
− 1
A(ρ)

K(θ)π(θ)dθ = 1− 1
A(ρ)

∫
Rd
K(θ)π(θ)dθ

=
∫
Rd

(
1− 1

A(ρ)K(θ)
)
π(θ)dθ. (89)

This allows us to bound (88), that is

∥∥∥πρ − π∥∥∥TV
≤
∫
Rd

(
1− 1

A(ρ)K(θ)
)
π(θ)dθ. (90)

Using one more time the Lf -Lipschitz assumption on f , we have for all θ, z,

− (f(z)− f(θ)) ≥ −|f(z)− f(θ)| ≥ −Lf ‖θ − z‖2 , (91)

so that K(θ) ≥
∫
Rd

exp
(
−Lf ‖θ − z‖2 −

1
2ρ2 ‖θ − z‖2

2

)
dz. (92)

With the same changes of variables as above, it follows

K(θ) ≥ B(ρ), (93)

where

B(ρ) =
2αVolπ

d/2ρdΓ(d) exp
L2

fρ
2

4


Γ
(
d

2

) D−d
(
Lfρ

)
. (94)

Then we have 1− 1
A(ρ)K(θ) ≤ 1− B(ρ)

A(ρ) which combined with (90) yields

∥∥∥πρ − π∥∥∥TV
≤ 1−

D−d
(
Lfρ

)
D−d

(
−Lfρ

) . (95)

Note: When π = π(y|θ) is a likelihood, (77) becomes

∥∥∥πρ − π∥∥∥TV
= 1

2

∫
Rn
π(y|θ)

∣∣∣∣∣∣ CπCπρK(y;θ)− 1

∣∣∣∣∣∣ dy. (96)

Since Lf is assumed to be independent of y, the same type of proof can be followed in this

case and yields the same quantitative bound.
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1.5 Proof of Corollary 1

The parabolic cylinder function when d > 0 has the following expression (Gradshteyn and

Ryzhik 2015, Formula 9.241 2.)

D−d(z) = exp(−z2/4)
Γ(d)

∫ +∞

0
e−xz−x

2/2xd−1dx. (97)

In the limiting case when z → 0, a first order Taylor expansion of e−xz gives

D−d(z) = exp(−z2/4)
Γ(d)

∫ +∞

0
e−x

2/2xd−1(1− xz + o(z))dx

= exp(−z2/4)
Γ(d)

(∫ +∞

0
e−x

2/2xd−1dx− z
∫ +∞

0
e−x

2/2xddx+ o(z)
)

= exp(−z2/4)
Γ(d)

Γ
(
d

2

)
2d/2−1 − zΓ

(
d+ 1

2

)
2d/2−1/2 + o(z)

 , (98)

recording that
∫+∞

0 e−x
2/2xddx = Γ((d + 1)/2)2d/2−1/2 (Gradshteyn and Ryzhik 2015, For-

mula 3.383 11.). Using (98) for z = ±ρLf yields

1− D−d(Lfρ)
D−d(−Lfρ) = 1−

exp(−(ρLf )2/4)
Γ(d)

Γ
(
d

2

)
2d/2−1 − ρLfΓ

(
d+ 1

2

)
2d/2−1/2 + o(ρ)


exp(−(ρLf )2/4)

Γ(d)

Γ
(
d

2

)
2d/2−1 + ρLfΓ

(
d+ 1

2

)
2d/2−1/2 + o(ρ)



= 1−
Γ
(
d

2

)
2d/2−1 − ρLfΓ

(
d+ 1

2

)
2d/2−1/2 + o(ρ)

Γ
(
d

2

)
2d/2−1

1 + ρ

LfΓ
(
d+ 1

2

)√
2

Γ
(
d

2

) + o(ρ)



= 1−

1− ρ
LfΓ

(
d+ 1

2

)√
2

Γ
(
d

2

) + o(ρ)



1− ρ
LfΓ

(
d+ 1

2

)√
2

Γ
(
d

2

) + o(ρ)



=
2
√

2Γ
(
d+ 1

2

)

Γ
(
d

2

) Lfρ+ o(ρ). (99)
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1.6 Dependence of (99) with respect to the dimension

The gamma function Γ can be expressed for all z > 0 as Γ(z) =
∫+∞

0 xz−1e−xdx. When z

is large, Stirling-like approximations give the following equivalent for Γ(z + 1/2) and Γ(z):

Γ(z + 1/2) ∼
z→+∞

√
2πzze−z (100)

Γ(z) ∼
z→+∞

√
2πzz−1/2e−z. (101)

So that when d is large

2
√

2Γ
(
d+ 1

2

)

Γ
(
d

2

) Lfρ ∼
d→+∞

2
√

2
√

2π(d/2)d/2e−d/2√
2π(d/2)d/2−1/2e−d/2

Lfρ

∼
d→+∞

2
√

2(d/2)1/2Lfρ

∼
d→+∞

2Lfρd1/2. (102)

1.7 Proof of Theorem 2

We now prove another bound on the TV distance when f satisfies (A2), (A3) and (A4)

in the main paper. The beginning of the proof follows the same lines as in the proof of

Theorem 1 above when π stands for a pdf associated to θ. Hence, we have from (77) that

∥∥∥πρ − π∥∥∥TV
= 1

2

∫
Rd
π(θ)

∣∣∣∣∣∣1−K(θ) Cπ
Cπρ

∣∣∣∣∣∣ dθ. (103)

We now use the convexity of f to write for all θ ∈ Rd, z ∈ Rd,

f(θ)− f(z) ≤ ∇f(θ)T (θ − z). (104)

By using (104) and (79), it follows that

K(θ) ≤
∫
Rd

exp
(
∇f(θ)T (θ − z)− 1

2ρ2 ‖θ − z‖2
2

)
dz

= exp
(
ρ2

2
∥∥∇f(θ)

∥∥2
2

)∫
Rd

exp
(
− 1

2ρ2

∥∥∥z− θ − ρ2∇f(θ)
∥∥∥2

2

)
dz

= exp
(
ρ2

2
∥∥∇f(θ)

∥∥2
2

)
(2πρ2)d/2 = B1(θ). (105)
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By using again the convexity of f , we also have for all θ ∈ Rd, z ∈ Rd,

f(θ)− f(z) ≥ ∇f(z)T (θ − z). (106)

Then, (106) leads to

K(θ) ≥
∫
Rd

exp
(
∇f(z)T (θ − z)− 1

2ρ2 ‖θ − z‖2
2

)
dz

=
∫
Rd

exp
(
∇f(θ)T (θ − z)− 1

2ρ2 ‖θ − z‖2
2

)

× exp
(
−(∇f(θ)−∇f(z))T (θ − z)

)
dz. (107)

We now use (A2) in the main paper which leads to

K(θ) ≥
∫
Rd

exp
∇f(θ)T (θ − z)−

(
1 + 2ρ2Mf

2ρ2

)
‖θ − z‖2

2

 dz

= exp
(

ρ2

2(1 + 2ρ2Mf )
∥∥∇f(θ)

∥∥2
2

)(
2πρ2

1 + 2ρ2Mf

)d/2
= B2(θ). (108)

We now apply the triangle inequality in (103) which yields

∥∥∥πρ − π∥∥∥TV
≤ 1

2

∫
Rd

∣∣∣∣∣∣ CπCπρ −
1

B1(θ)

∣∣∣∣∣∣K(θ)π(θ)dθ + 1
2

∫
Rd

∣∣∣∣∣ K(θ)
B1(θ) − 1

∣∣∣∣∣ π(θ)dθ

= 1
2

∫
Rd

∣∣∣∣∣∣ CπCπρ −
1

B1(θ)

∣∣∣∣∣∣K(θ)π(θ)dθ + 1
2

∫
Rd

(
1− K(θ)

B1(θ)

)
π(θ)dθ. (109)

The absolute value in the first term of (109) can be removed by noting that

Cπ
Cπρ

=

∫
Rd

exp(−f(θ))dθ∫
Rd

exp
(
−f(z)

) ∫
Rd

exp
(
− 1

2ρ2 ‖z− θ‖
2
2

)
dθdz

≥

∫
Rd

exp(−f(θ))dθ∫
Rd

exp
(
−f(z)

) ∫
Rd

exp
(
− 1

2ρ2 ‖z− θ‖
2
2

)
dθdz

=
(
2πρ2

)−d/2

=
exp

(
ρ2

2
∥∥∇f(θ)

∥∥2
)

B1(θ)

≥ 1
B1(θ) . (110)
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Then (109) becomes ∥∥∥πρ − π∥∥∥TV
≤
∫
Rd

(
1− K(θ)

B1(θ)

)
π(θ)dθ

≤
∫
Rd

(
1− B2(θ)

B1(θ)

)
π(θ)dθ. (111)

We now use the fact that − exp(−u) ≤ u− 1 for all u ≥ 0 which yields

∥∥∥πρ − π∥∥∥TV
≤ 1 +

(
1 + 2ρ2Mf

)−d/2 ∫
Rd

ρ4Mf

∥∥∇f(θ)
∥∥2

1 + 2ρ2Mf

− 1
 π(θ)dθ

(with (A3)) = 1−
(
1 + 2ρ2Mf

)−d/2 (
1− ρ4MfMf

1 + 2ρ2Mf

)
. (112)

The result in Corollary 3 in the main paper comes from a straightforward Taylor ex-

pansion of (112).

1.8 Proof of Corollary 3

Equation (79) becomes

K(θ) =
J∏
j=1

∫
Rd

exp
fj(θ)− fj(zj)−

1
2ρ2

j

∥∥∥θ − zj
∥∥∥2

2

 dzj =
J∏
j=1
Kj(θ). (113)

Bounding each term in (113) and following the proof of Theorem 1 detailed above completes

the proof.

1.9 Proof of Proposition 4

By using (85) and (93) we have for all θ ∈ Rd,

B(ρ) ≤
∫
Rd

exp
(
f(θ)− f(z)− 1

2ρ2 ‖θ − z‖2
2

)
dz ≤ A(ρ)

B(ρ) exp(−f(θ)) ≤
∫
Rd

exp
(
−f(z)− 1

2ρ2 ‖θ − z‖2
2

)
dz ≤ A(ρ) exp(−f(θ))

− logA(ρ) + f(θ) ≤ − log
∫
Rd

exp
(
−f(z)− 1

2ρ2 ‖θ − z‖2
2

)
dz ≤ − logB(ρ) + f(θ)

So that

− logA(ρ) + d

2 log(2πρ2) ≤ fρ(θ)− f(θ) ≤ − logB(ρ) + d

2 log(2πρ2). (114)

The result of Proposition 4 follows from the definition of A(ρ) and B(ρ).
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1.10 Proof of Proposition 5

By using (85) and (93) it follows, for all θ ∈ Rd,

B(ρ) ≤ K(θ) ≤ A(ρ) (115)

B(ρ)Cππ(θ) ≤ K(θ)Cππ(θ) ≤ A(ρ)Cππ(θ). (116)

Using (79) yields

B(ρ)π(θ) ≤ πρ(θ)Cπρ
Cπ
≤ A(ρ)π(θ) (117)

B(ρ)π(θ) ≤ πρ(θ)(2πρ2)d/2 ≤ A(ρ)π(θ). (118)

Using (86) and (94) gives

Nρ

D−d(−Lfρ)πρ(θ) ≤ π(θ) ≤ Nρ

D−d(Lfρ)πρ(θ), (119)

where the constant Nρ has been defined in (39) in the main paper.

Let Cρα an arbitrary (1− α)-credibility region under πρ. By integrating (119) on Cρα,

Nρ

D−d(−Lfρ)(1− α) ≤
∫
Cρα
π(θ)dθ ≤ Nρ

D−d(Lfρ)(1− α). (120)

Since Cρα ⊆ Rd and
∫
Rd π(θ)dθ = 1, the upper bound in (120) can be replaced by

min
{

1, Nρ

D−d(Lfρ)(1− α)
}
.
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1.11 Lipschitz loss functions - Dependence w.r.t. the number of

observations

Combining Corollary 4 in the main paper with (99), we have:

∥∥∥π − πρ∥∥∥TV
≤ 1−

n∏
i=1

1−
2
√

2Γ
(
d+ 1

2

)

Γ
(
d

2

) Lfiρ+ o(ρ)

 (121)

=
2
√

2Γ
(
d+ 1

2

)

Γ
(
d

2

) ρ
n∑
i=1

Lfi + o(ρ) (122)

≤
2
√

2Γ
(
d+ 1

2

)
max
i∈[n]

Lfi

Γ
(
d

2

) nρ+ o(ρ). (123)
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2 On the choice of κρ

Section 2.2 of the main document provides two distinct ways to choose κρ. We can first con-

sider a kernel K that is a positive function such that
∫
Rd
K(u)du = 1 and K(−u) = K(u),

for all u ∈ Rd. Based on the latter, we define for all z,θ ∈ Θ, κρ(z,θ) ∝z ρ
−dK(ρ−1(θ−z))

(Dang and Ehrhardt 2012). Table 3 lists some classical examples of symmetric kernels K(·)

which are not necessarily compactly supported. For sake of simplicity, we only define uni-

variate versions of them but they can obviously be generalized in higher dimension. Figure

8 illustrates these kernels. Some of them have for instance been used in ABC approaches

(Sisson et al. 2018b).

Table 3: Examples of classical kernels K that can be used to define an appropriate density

κρ verifying Property 1 in the main paper.

name support K(u)

Gaussian R 1√
2π exp

(
−u2/2

)
Cauchy R 1

π(1+u2)

Laplace R 1
2 exp

(
−|u|

)
Dirichlet R sin2(u)

πu2

Uniform [−1, 1] 1
21|u|≤1

Triangular [−1, 1] (1− |u|)1|u|≤1

Epanechnikov [−1, 1] 3
4(1− u2)1|u|≤1

Another natural choice consists in resorting to a divergence function φ such that κρ(z,θ) ∝z

exp(−ρ−1φ(z,θ)). Particular instances of these functions are the family of the Bregman

divergences, which are ubiquitous tools in signal processing, machine learning and opti-

mization (see Definition 1 of the main document). Table 4 recalls classical examples of

Bregman divergences that can be used to define φ. Again, only univariate examples of such

potentials are provided but they can be easily extended to the multivariate case.

Note that, reciprocally, tight connections have been already drawn between Bregman

divergences and regular exponential family distributions. Indeed, when the function κρ

belongs to the exponential family, its associated potential function defined by − log κρ can
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Figure 8: (left) Normalized non compactly-supported kernels; (right) normalized

compactly-supported kernels detailed in Table 3.

Table 4: Examples of divergence functions φ that can be used to define an appropriate

density κρ verifying Property 1 in the main paper.

name Θ φ(z, θ)

Squared loss R (z − θ)2

Absolute loss R |z − θ|

Logistic loss [0, 1] z log
(
z
θ

)
+ (1− z) log

(
1−z
1−θ

)
Itakura-Saito divergence R+

z
θ
− log

(
z
θ

)
− 1

Kullback-Leibler divergence [0, 1] z log
(
z
θ

)

be expressed as a Bregman divergence up to an additional term (Banerjee et al. 2005,

Theorem 4)

− log κρ(z,θ) = dψ(z,E(z|θ))− log bψ(z). (124)

3 Illustration for Lipschitz loss functions used in sta-

tistical learning

Some of the results of Section 4.3 in the main paper assume that the potential function f

associated to π is Lipschitz. Interestingly, such Lipschitz functions are used in standard

45



Table 5: Lipschitz loss functions f used in standard statistical learning problems. Their

domain of definition is denoted Df and y stands for an observation. The notation “reg.”

stands for regression.

name problem Df f(y; t)

hinge SVM {−1, 1} × R max (0, 1− yt)

Huber robust reg. R× R


(y − t)2/(2δ) if |y − t| ≤ δ

|y − t| − δ/2 otherwise, where δ > 0

logistic logistic reg. {−1, 1} × R log(1 + exp(−yt))

pinball quantile reg. R× R τ max(0, t− y) + (1− τ) max(0, y− t), τ ∈ (0, 1)

statistical learning problems to evaluate the discrepancy between observations and model

outputs (van de Geer 2016). Table 5 lists some of them along with their definition and

associated statistical problems. Note that the absolute loss stands for a particular instance

of the pinball loss with τ = 0.5. Figure 9 illustrates the form of these losses and associated

regularized potentials fρ with ρ = 1 obtained via a Monte Carlo approximation.

Without loss of generality, these problems consider a likelihood function that can be

written as in (32) in the main paper with

fj(yj;θ) = f(yj; xTj θ), (125)

where for j ∈ [n], xj is the feature vector associated with observation yj; f is one of the loss

functions in Table 5 and θ ∈ Rd is the parameter to infer. Since all the loss functions listed

in Table 5 are Lipschitz continuous w.r.t. their second argument t with Lipschitz constant

equal to 1, the potential fj in (125) is also Lipschitz with constant Lfj =
∥∥∥xj∥∥∥2

. Motivated

by the robustness properties inherited by AXDA, see Section 3.3 in the main paper, we

consider the smoothing of the likelihood contribution associated to each observation fj with

a Gaussian kernel. The results of Corollary 3 in the main paper can then be applied to π

defined in (32) in the main paper.

In practice, to illustrate the behavior of the upper bound in Corollary 3 w.r.t. the

number of observations, we fixed the dimension d and considered several values of n rang-
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ing from 1 to 104. For each n, we randomly generated sets of features
{
xj
}
j∈[n]

and we

normalized the columns of the matrix XT = [x1, . . . ,xn]T such that each entry is a random

number between 0 and 1. The latter operation is classical in machine learning and is also

called feature scaling.
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Figure 9: Loss functions of Table 5 along with their associated regularized loss fρ with

ρ = 1 estimated with a Monte Carlo approximation. The Huber and pinball losses have

been plotted with δ = 1 and τ = 0.2, respectively. The contours of the shaded area

correspond to f + Lρ and f + Uρ.

Figure 10 shows the behavior of the upper bound in Corollary 3 for two values of the

dimension d = 10 and d = 103. As expected, the bound becomes less informative for a

fixed value of ρ as the number of likelihood approximations increases with the size of the

dataset n. Nonetheless, the effect of n on the bound is not highly prohibitive. In both cases

d = 10 and d = 103, ρ and n appear to be complementary variables: increasing the value of

the latter and decreasing the value of the former by the same factor roughly gives the same

bound value. Actually, one can show that the dependence of the bound when ρ is small is

of the order O(nρ) for a fixed dimension d, see the supplementary material. Obviously, one

can limit this dependence on n by splitting blocks of observations in minibatches instead

of splitting each observation. This splitting strategy has for instance been considered by

Rendell et al. (2020).
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Figure 10: Behavior of the upper bound in Corollary 3 w.r.t. ρ and n for several values of

the dimension d. The notation ∆(j)
d (ρ) has been defined in Corollary 3.

4 Inference details for the image inpainting example

In this section, we detail the steps of the Gibbs sampler used to sample from the posterior

distribution πρ(θ, z|y) in Section 5.4 in the main paper.

4.1 Sampling the auxiliary vector

The conditional distribution associated to the auxiliary variable Z = (z1, z2) writes

πρ(Z|θ) ∝ exp
−τ ∑

1≤i≤d
‖Zi‖2 −

1
2ρ2 ‖Z−Dθ‖2

2

 . (126)

This conditional distribution can be sampled exactly by using data augmentation. In-

deed, one can re-write the distribution involving the non-differentiable potential ‖·‖2 as

a mixture of normal and gamma distributions (Kyung et al. 2010, Section 3.1). Hence,

sampling from (126) can be performed with the following two steps

Draw 1
γi
∼ InverseGaussian

(
τ

‖Zi‖2
, τ 2

)
∀i ∈ [d], if ‖Zi‖2 > 0

Draw 1
γi
∼ InverseGaussian

(
3
2 ,
τ 2

2

)
∀i ∈ [d], if ‖Zi‖2 = 0

Draw z1,i ∼ N
(
γi(D1θ)i
ρ2 + γi

,
ρ2γi
ρ2 + γi

)
∀i ∈ [d],

Draw z2,i ∼ N
(
γi(D2θ)i
ρ2 + γi

,
ρ2γi
ρ2 + γi

)
∀i ∈ [d].

Note that all these sampling steps can be performed efficiently by “vectorizing” them.
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4.2 Sampling the parameter of interest

The conditional distribution associated to the image to recover θ writes

πρ(θ|Z,y) ∝ exp
(
− 1

2ρ2 ‖Z−Dθ‖2
2 −

1
2σ2 ‖y−Hθ‖2

2

)
. (127)

The distribution (127) is a non-degenerate Gaussian distribution N (µθ,Σθ) where

Σθ =
(
ρ−2DTD + σ−2HTH

)−1
(128)

µθ = Σθ

(
σ−2HTy + ρ−2DTZ

)
. (129)

Sampling from this multivariate distribution can be done efficiently in O(d log d) floating

point operations by resorting to the two-dimensional discrete Fourier transform. Indeed,

under periodic boundary conditions for θ, the matrix DTD is a block circulant matrix and

hence diagonalizable in the Fourier domain. On the other hand, HTH stands for a diagonal

matrix with some zeros on the diagonal corresponding to the missing pixels. Since these

two matrices cannot be diagonalized in the same domain, we use the auxiliary variable

method of Marnissi et al. (2018) to decouple them. Let η
∥∥∥HTH

∥∥∥
S
< σ2 where ‖M‖S is the

spectral norm of the matrix M. Then, we have the following two-step sampling scheme

Draw v ∼ N

(Id
η
− HTH

σ2

)
θ,

Id
η
− HTH

σ2

 ,
Draw θ ∼ N (µθ,Σθ) ,

where

Σθ =
(

Id
η
− DTD

ρ2

)−1

,

µθ = Σθ

(
v + HT

σ2 y + DT

ρ2 Z
)
.

5 Inference algorithms based on AXDA

Motivated by the issues detailed in Section 2, the good expected properties reviewed in

Section 3 as well as the theoretical results shown in Section 4 in the main paper, this section

shows that AXDA may allow to derive more efficient and distributed inference algorithms
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ranging from simulation to optimization-based methods. To do so, the potential benefits

of AXDA in comparison with direct inference from π are presented and discussed. MCMC

and VB methods based on AXDA models are detailed to explore the distribution of the

parameters to infer. Optimization-based approaches such as ADMM and the EM-algorithm

are also derived if maximum likelihood (ML) or maximum a posteriori (MAP) estimates

based on the approximate density πρ are desired.

From now on, we assume that Θ = Rd and we consider a target density with the general

form

π(θ) ∝
J∏
j=1

πj(Ajθ) ∝
J∏
j=1

exp
(
−fj(Ajθ)

)
. (130)

Based on this target density, the augmented density πρ is assumed to take the form

πρ(θ, z1:J) ∝
J∏
j=1

πj(zj)κρ(zj,Ajθ). (131)

This writing permits to highlight the benefits of using the augmented density πρ instead of

π for each of the different inference approaches detailed in the sequel.

5.1 Monte Carlo sampling from AXDA

A standard way to sample from the joint density πρ is to consider a Gibbs sampler as

in Algorithm 1. This algorithm can make the inference tractable, simpler and/or faster

by targetting πρ instead of π. First, by splitting the initial potential ∑j fj, πρ admits

simpler and lower-dimensional conditional posterior distributions, each of them possibly

defined by a single potential fj. Within a Gibbs algorithm, these conditional posteriors

yield simpler sampling steps, which may embed efficient dedicated state-of-the-art sampling

methods. Second, given the current iterate θ[t], sampling each auxiliary variable z[t]
j can

be performed in an independent and parallel manner for a faster inference. This is of

particular interest in big data settings where datasets are stored on multiple kernels or

machines (Rendell et al. 2020). In addition, Vono et al. (2019) experimentally showed that

considering AXDA-based models can even improve the convergence properties of classical

MCMC methods such as Langevin Monte Carlo by embedding them. A detailed description

of additional benefits of AXDA simulation-based methods and their illustration on image
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processing and machine learning problems can be found in Rendell et al. (2020) and Vono

et al. (2019).

Algorithm 1: Gibbs sampler
Input: Functions fj, tolerance parameter ρ, initialization z[0] and total nb. of

iterations TMC
1 for t← 1 to TMC do
2 % Drawing the variable of interest θ

3 θ[t] ∼ πρ(θ|z[t−1]) =
J∏
j=1

κρ(z[t−1]
j ,Ajθ);

4 % Drawing the splitting variables zj
5 for j ← 1 to J do
6 z[t]

j ∼ πρ(zj|θ[t]) = πj(zj)κρ(zj,Ajθ
[t]);

7 end
8 end
Output: Collection of samples

{
θ[t]
}TMC

t=1
asymptotically distributed according to πρ.

Example 3. We consider in this example the penalized logistic regression problem. We
assume that n binary responses y ∈ {−1, 1}n are observed and correspond to conditionally
independent Bernoulli random variables with probability of success σ(xTj θ). The function
σ is the sigmoid function, xj ∈ Rd stands for the feature vector associated to observation
yj and θ ∈ Rd are the unknown regression coefficients to infer. We consider a zero-mean
Gaussian prior distribution on θ with precision 2τ , that is g(θ) = τ ‖θ‖2

2. The target π
then stands for the posterior distribution of the unknown regression coefficients θ

π(θ|y) ∝ exp
−g(θ)−

n∑
j=1

log
[
1 + exp

(
yjxTj θ

)] . (132)

By denoting f(n+1) = g and for all j ∈ [n] with J = n, fj(u) = log
[
1 + exp

(
yju

)]
, the

posterior distribution in (132) has the form (130) with J = n + 1. Following the work of
Polson et al. (2013), one can derive a promising DA scheme from π based on the Polya-
Gamma distribution. Hence, a Gibbs sampler can be used to sample from each conditional
distribution as detailed by Polson et al. (2013). However, this Gibbs sampler scales poorly
in high-dimensional settings as pointed out by Durmus and Moulines (2016). The AXDA
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alternative is Algorithm 1 with a quadratic potential and resulting conditional distributions

πρ(zj|θ, yj) ∝ exp
(
− log

[
1 + exp

(
yjzj

)]
− 1
ρ2 (zj − xTj θ)2

)
∀j ∈ [n] (133)

πρ(θ|z1:n) ∝ exp
−τ ‖θ‖2

2 −
n∑
j=1

1
ρ2 (zj − xTj θ)2

 . (134)

Thanks to this splitting scheme, the inference is simpler, might be distributed, and sampling
from these conditional distributions can be done exactly and efficiently. Indeed, since (133)
is univariate and log-concave, one can use adaptive rejection sampling (Gilks and Wild
1992) while sampling the variable of interest θ from (134) boils down to high-dimensional
Gaussian sampling and efficient methods can be applied.

5.2 Variational Bayes inference from AXDA

AXDA can also be a major asset when conducting variational Bayes (VB) inference, pro-

viding important benefits such as simplicity and parallelization. VB methods (Bishop and

Tipping 2000; Opper and Saad 2001) circumvent the direct sampling from a target density

such as πρ by defining an approximation of the latter denoted π̃ρ. The best approximation

is found by minimizing the Kullback-Leibler (KL) divergence between π̃ρ and πρ restricted

to a set of tractable candidates π̃ρ. Depending on this set, a lot of VB approximation

methods exist in the literature, see Bishop (2006) and Pereyra et al. (2016) for reviews.

In this section, we will consider the widely-used mean-field approximation method where

the approximate density π̃ρ is chosen among the set of conditionally independent (w.r.t. ρ)

densities, that is π̃ρ(θ, z1:J) = π̃ρ(θ)∏J
j=1 π̃ρ(zj). Under this constraint, the optimal choice

of the VB approximation is given by

log π̃ρ(θ) =
J∑
j=1

Eπ̃ρ(zj) log κρ(zj,Ajθ) (135)

log π̃ρ(zj) = −fj(zj) + Eπ̃ρ(θ) log κρ(zj,Ajθ). (136)

The above VB-marginals require to compute expectations under each marginal distribution

which are often functions of moments under each marginal. Similarly to what has been

encountered for Gibbs sampling in the previous section, deriving a VB approach based on

πρ, instead of π, yields important benefits for parallel and possibly easier computations.
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Indeed, the VB-marginal in (136) shows again that each potential fj contributes indepen-

dently given θ. The updates of expectations under (136) are thereby simplified since (i)

the VB-marginals (136) are simpler than those obtained from a mean-field approximation

of π and (ii) the moments under the latter can be computed in parallel or distributed.

Example 3 (continued). Jaakkola and Jordan (2000) considered a local VB algorithm
for the penalized logistic regression problem. Instead of using a local VB approach and
finding bounds on each individual function fj, the use of πρ instead of π permits to consider
directly a global VB approach such as the mean-field approximation. In addition, similarly
to Algorithm 1, the updates of (136) and the associated expectations can be computed
in parallel and efficiently by using state-of-the-art existing methods. For instance, the
expectations Eπ̃ρ(zj) can be approximated efficiently using rejection sampling.

5.3 Optimizing AXDA meets quadratic penalty methods

Computing the MAP or ML estimate under the AXDA model (131) boils down to solve

the optimization problem

min
θ,z1:J

J∑
j=1

fj(zj)− log κρ(zj,Ajθ). (137)

If κρ stands for a Gaussian kernel, the problem (137) can be viewed as a quadratically pe-

nalized formulation of the initial problem minθ
∑J
j=1 fj(θ), see Nocedal and Wright (2006,

Section 17.1). As expected, the solution of (137) stands for an approximate solution w.r.t.

the initial optimization problem. The associated algorithm is depicted in Algorithm 2. Re-

garding this algorithm, one can clearly see the benefit of using a variable splitting approach

as in AXDA: the initial potential is split into J individual potentials with no operator act-

ing on θ. Therefore, the corresponding minimization problems are simpler (e.g., associated

proximity operators may become available) and can be handled in parallel.

We eventually point out that the benefits of Algorithm 2 highlighted previously are also

shared with the ADMM (Boyd et al. 2011). Instead of solving the approximate optimization

problem (137) which encodes the splitting operation with a quadratic regularization term,

the latter builds on Lagrangian duality in order to provide an exact solution to the initial

minimization problem min fj.
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Algorithm 2: Quadratic penalty minimization
Input: Functions fj, penalty parameter ρ, t← 0 and z[0]

1:J
1 while stopping criterion not satisfied do
2 % Minimization w.r.t. θ

3 θ[t] ∈ arg min
θ

J∑
j=1

1
2ρ2

∥∥∥∥Ajθ − z[t−1]
j

∥∥∥∥2

2
;

4 for j ← 1 to J do
5 % Minimization w.r.t. zj
6 z[t]

j ∈ arg min
zj

fj(zj) + 1
2ρ2

∥∥∥Ajθ
[t] − zj

∥∥∥2

2
;

7 end
8 % Updating iterations counter
9 t← t+ 1 ;

10 end
Output: MAP or ML estimate depending on the considered problem.

Example 3 (continued). Computing directly the MAP estimate with classical forward-
backward algorithms (e.g., the fast iterative shrinkage-thresholding algorithm (FISTA)
(Beck and Teboulle 2009)) associated to π is challenging if the observations are distributed
among multiple nodes. In addition, proximity operators associated to fj are generally not
available in closed-form because of the operators Aj. Algorithm 2 permits to tackle these
issues by splitting the initial objective function. In particular, the minimization w.r.t. zj
for j ∈ [J ] corresponds to an unidimensional l2 regularized logistic regression problem that
can be dealt with gradient-based methods with few iterations. The minimization w.r.t. θ
boils down to the solving of a linear system where efficient solvers can be applied. Note
that such a splitting scheme avoids the use of stochastic gradient methods.

5.4 Expectation-maximization for AXDA

An EM algorithm under the augmented density πρ(θ, z) will target the MAP or ML esti-

mator, see Algorithm 3. If the expectations in the E-step cannot be evaluated, one can use

a Monte Carlo approximation to approximate them (Wei and Tanner 1990). The benefits

of using the augmented density πρ instead of π are threefolds. Firstly, as pointed out in

Section 2 in the main paper, exact DA schemes based on π cannot be derived in general

cases and corresponding EM algorithms cannot be implemented. Instead, considering πρ
gives a quite systematic way of introducing latent variables in the original statistical model.

Secondly, the expectations involved in the E-step of Algorithm 3 can be simpler to derive
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than the expectation under π. Indeed, the latter involves the whole potential ∑j fj while

the former involves regularized parts fj− log κρ of this potential separately. Finally, condi-

tionally on θ[t], the random variables zj are independent. Thus, each expectation involved

in the E-step can be computed in parallel.

Algorithm 3: EM
Input: Functions fj, penalty parameter ρ, t← 0 and θ[0]

1 while stopping criterion not satisfied do
2 % E-step

3 Define Q(θ|θ[t]) =
J∑
j=1

Eπρ(zj |θ[t])

(
−fj(zj) + log κρ(zj,Ajθ)

)
;

4 % M-step
5 ; Compute θ[t+1] = arg max

θ
Q(θ|θ[t]);

6 % Updating iterations counter
7 t← t+ 1 ;
8 end
Output: MAP or ML estimate depending on the considered problem.

Example 3 (continued). Again, following the work of Polson et al. (2013), if the po-
tential g of the prior distribution is quadratic or corresponds to a sparsity-promoting `p-
penalization (0 < p ≤ 1), a simple EM-algorithm can be derived as detailed by Scott and
Sun (2013). However, although this EM algorithm can be generalized to an online ver-
sion, it does not scale to distributed and high-dimensional problems. On the other hand,
the E-step of Algorithm 3 can be processed in parallel by computing the J expectations
on individual nodes: thanks to the AXDA approach, the algorithm is therefore suited to
distributed and high-dimensional scenarios.
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